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Abstract. A subset R of integers is a set of Bohr recurrence if ev-
ery rotation on Td returns arbitrarily close to zero under some non-zero
multiple of R. We show that the set {k! 2m3n : k,m, n ∈ N} is a set of
Bohr recurrence. This is a particular case of a more general statement
about images of such sets under any integer polynomial with zero con-
stant term. We also show that if P is a real polynomial with at least one
non-constant irrational coefficient, then the set {P (2m3n) : m,n ∈ N}
is dense in T, thus providing a joint generalization of two well-known
results, one of Furstenberg and one of Weyl.

1. Introduction and main results

1.1. Notions of recurrence. The recurrence properties of a dynamical sys-
tem are a classical way to study the system’s qualitative and quantitative
properties. We focus on recurrence in a topological dynamical system (X,T ),
meaning that X is a compact metric space and T : X → X is a homeomor-
phism, and further assume that the system is minimal, meaning that no
proper closed set in X is T -invariant. A set R ⊂ N is a set of (topologi-
cal) recurrence if for every minimal system (X,T ) and non-empty open set
U ⊂ X, there is some r ∈ R such that U ∩T−rU ̸= ∅. It follows quickly from
the compactness of X that N is a set of recurrence, and many sparser subsets
have been shown to be sets of recurrence. These include, for example, the
set of differences of an infinite set (see [6] for this example and others), the
set {p(n) : n ∈ N} where p is any integer valued polynomial with no con-
stant term (see [5, 12]), and the set of shifted primes {p − 1 : p is a prime}
(see [13]). It is also easy to check that parity obstructions give rise to exam-
ples, such as the odd numbers or any shift of the primes other than ±1, that
cannot be sets of recurrence.

A natural question is if restricting the class of topological systems changes
the possible sets of recurrence. The most basic nontrivial systems to consider
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are rotations on the d-dimensional torus Td = Rd/Zd. For x ∈ Rd, write
∥x∥Td := d(x,Zd), and we define sets of recurrence for these systems.

Definition. A subset R of the integers is a set of Bohr recurrence if for
every integer d ∈ N, all α1, . . . , αd ∈ R, and every ε > 0, there exists non-
zero r ∈ R such that

∥rαj∥T ≤ ε for j = 1, . . . , d.

Equivalently, the set R is a set of Bohr recurrence if for every integer
d ∈ N and every x ∈ Td, the point 0 belongs to the closure of the set
{rx : r ∈ R \ {0}} in Td. By building an appropriate rotation, one can
check that no lacunary set can be a set of Bohr recurrence, and therefore
cannot be a set of recurrence. An important open problem, popularized by
Katznelson [10], is whether a set of Bohr recurrence is necessarily a set of
topological recurrence. See [15, 3, 9, 7, 8] for various equivalent formulations
of this question and related results.

1.2. Non-lacunary semigroups. Our objective is to derive recurrence and
density properties of sets generated by thin non-lacunary semigroups of the
integers, a prototypical example being the set {2m3n : m,n ∈ N}. Again,
parity reasons prevent this from being a set of Bohr recurrence, but after
removing this obstruction we are led to the well-known question in dynamics
whether the set

{k! 2m3n : k,m, n ∈ N}
is a set of topological recurrence (more generally one can ask if this is a set
of measurable multiple recurrence). Although we are unable to answer these
questions, we derive some recurrence results of intermediate strength, which
follow from Furstenberg’s Diophantine Theorem (see Section 1.3), using el-
ementary manipulations.

Two positive integers are multiplicatively independent if their only common
power is 1. The first main goal of this note is to establish the following result:

Theorem 1. Let p, q ∈ N be multiplicatively independent integers. Then the
set {k! pmqn : k,m, n ∈ N} is a set of Bohr recurrence.

More generally, it follows from our argument that k! can be replaced by
any sequence that contains multiples of every positive integer.

On the other hand, considering rational multiples of elements of this set
shows that the multiplicative factor k! cannot be removed, and, in fact, it
is necessary for our argument to work even if the real numbers α1, . . . , αd

have no rational relations. As shown in [11, Theorem 2], for d ≥ 4, there
exists x ∈ Td with rationally independent coordinates for which the set
{2m3nx : m,n ∈ N} is not dense in Td. Although for fixed d ∈ N this
particular obstruction can be removed if more powers are included in the
set (see [14] for a density statement on T2 that uses three powers), [11,
Theorem 2] shows that the problem persists even when using ℓ powers instead
of two and taking d large enough; in this case we have non-density in Td
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for some x ∈ Td with rationally independent coordinates whenever d ≥
2ℓ. Furthermore, by slightly modifying the example in [11, Lemma 4.2], we
obtain a point x ∈ T4 with rationally independent coordinates, such that for
some ε > 0 we have ∥2m3nx∥T4 ≥ ε for every m,n ∈ N (see Section 3.2).

We also remark that combining Theorem 1 with [9, Theorem 4.1] and [7,
Theorem A], we deduce that the sets in Theorem 1 (and in Theorem 2 below)
are also good for topological recurrence for all nilsystems and for a large class
of skew product systems.

In the proof of Theorem 1, we consider a more general situation where sets
of the form {pmqn : m,n ∈ N} are replaced by more general non-lacunary
semigroups of N.

Definition. A semigroup of N is a sub-semigroup of (N, ·) and it is non-
lacunary if it contains two multiplicatively independent integers.

Equivalently, a semigroup is non-lacunary if it is not contained in the set
of powers of a single integer. It is shown in [4, Lemma IV.1] that a semigroup
Σ = {s1 < s2 < · · · } of N is non-lacunary if and only if sn+1/sn → 1 as
n → ∞.

We say that P is an integer polynomial if it has integer coefficients. We
prove the following result, generalizing Theorem 1.

Theorem 2. Let Σ be a non-lacunary semigroup of N, K ⊂ N be a set that
contains multiples of every positive integer, and P be a non-constant integer
polynomial with P (0) = 0. Then the set {P (ks) : k ∈ K, s ∈ Σ

}
is a set of

Bohr recurrence.

In particular, if p, q ∈ N are multiplicatively independent and P is a non-
constant integer polynomial with zero constant term, then the set

{P (k! pmqn) : k,m, n ∈ N
}

is a set of Bohr recurrence. By taking P (n) = n, Theorem 1 follows.
The argument used to prove Theorem 2 can also be used, essentially with-

out change, to show that if P1, . . . , Pℓ are integer polynomials with zero
constant terms, then for every α1, . . . , αℓ ∈ R and ε > 0, there exist k ∈ K
and s ∈ Σ such that ∥Pj(k · s)αj∥T ≤ ε for j = 1, . . . , ℓ.

We prove Theorem 2 in Section 3. The main ingredient is Proposition 4,
which is of independent interest and shows the existence of a point with
rational coordinates in the orbit closure of non-lacunary semigroup actions
of Td. A special case of this result is that if Σ is a non-lacunary semigroup
of N and A is a non-empty closed subset of Td, which is invariant under
coordinate-wise multiplication by elements of the form (s, . . . , s) for every
s ∈ Σ, then A contains a point with rational coordinates. Theorem 1 is a
direct consequence of this result.

1.3. A Weyl-type extension of Furstenberg’s result. We recall a cele-
brated theorem of Furstenberg [4, Theorem IV.1] (see also [2] for an elemen-
tary proof):
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Theorem (Furstenberg). Let Σ be a non-lacunary semigroup of N and α be
irrational. Then the set {sα : s ∈ Σ} is dense in T.

This immediately implies that a closed Σ-invariant subset of T is either
dense or finite. In the latter case, it consists entirely of rational points.

Another celebrated theorem, this time of Weyl [16], is as follows:

Theorem (Weyl). Let P ∈ R[t] be a polynomial with at least one non-
constant irrational coefficient. Then the set {P (n) : n ∈ N} is dense in T.

We prove the following common generalization of these two density state-
ments:

Theorem 3. Let Σ be a non-lacunary semigroup and P ∈ R[t] be a polyno-
mial with at least one non-constant irrational coefficient. Then the set

{P (s) : s ∈ Σ}
is dense in T.

Taking P (n) := n gives Furstenberg’s result and taking Σ := N gives
Weyl’s result. On the other hand, even for the simplest non-linear cases,
such as P (n) = (n2+n)α, where α is irrational, it is not clear how to proceed
and prove density, since the set {P (s) : s ∈ Σ} does not seem to satisfy any
useful Σ-invariance property. A key maneuver in our argument is to instead
work with the subset {(sα, s2α) : s ∈ Σ} of T2, which is invariant under
multiplication by all elements of the set {(s, s2) : s ∈ Σ}. In Proposition 5,
we show that this invariance implies that the closure of this set contains a
line segment parallel to some coordinate axis. Theorem 3 follows easily from
this fact.

Finally, we note that more general d-dimensional versions of Theorem 3
fail. For example, if P1, . . . , Pd ∈ R[t] are such that every non-trivial integer
combination of the polynomials is a polynomial with at least one irrational
non-constant coefficient, and Σ is a non-lacunary semigroup of N, it is not
always true that the set

{(P1(s), . . . , Pd(s)) : s ∈ Σ}
is dense in Td (this holds for Σ := N since equidistribution follows from
Weyl’s criterion). To see this, take d = 4 and Σ := {2m3n : m,n ∈ N},
Pj(n) = nαj , j = 1, . . . , 4, for the rationally independent reals α1, . . . , α4

constructed in [11, Lemma 4.2], so that the above set is not dense.

1.4. Notation. We denote the set of positive integers by N. We let T denote
the one dimensional torus R/Z, and we often identify it with [0, 1). We
denote elements of T by real numbers and we implicitly assume that these
real numbers are taken modulo 1.

If (t1, . . . , td) and (x1, . . . , xd) are two vectors in Rd, we define their prod-
uct by coordinate-wise multiplication as follows

(t1, . . . , td) · (x1, . . . , xd) := (t1x1, . . . , tdxd).
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Likewise, if (k1, . . . , kd) ∈ Zd and (x1, . . . , xd) ∈ Td, we write

(k1, . . . , kd) · (x1, . . . , xd) := (k1x1, . . . , kdxd).

If S is a subset of Zd and A a subset of Td, we say that A is S-invariant or
invariant under S if s · x ∈ A for every s ∈ S, x ∈ A.

1.5. Acknowledgement. The authors would like to thank J. Griesmer and
R. Alweiss whose questions related to the proof of Theorem 1 motivated the
authors to write this manuscript.

2. Existence of rational points

Furstenberg’s Theorem implies that if Σ is a non-lacunary semigroup of
N, then a closed Σ-invariant subset of T always contains a rational point.
A natural question to consider is whether there are generalizations of this
statement in higher dimensions. We prove that this is the case, and use this
result in the proofs of both Theorems 2 and 3. To give the precise statement,
we need another definition.

Definition. A point x ∈ Td is rational if its coordinates are rational. If Σ is
a subset of N, we say that the denominators of a rational point x are relatively
prime to Σ if its coordinates are rationals with denominators relatively prime
to each element of Σ. By convention, the denominator of 0 is 1.

Proposition 4. Let Σ be a non-lacunary semigroup, d ∈ N, and ℓ1, . . . , ℓd ∈
N (not necessarily distinct). Let A be a non-empty closed subset of Td,
invariant under

Σℓ1,...,ℓd := {(sℓ1 , . . . , sℓd) : s ∈ Σ}.
Then A contains a rational point with denominators relatively prime to Σ.

Remark. For the proof of Theorem 1, only the case ℓ1 = · · · = ℓd = 1 is
needed. The more general case is needed in the proofs of Theorems 2 and 3.

Proof. We proceed by induction on d ∈ N. Throughout, for ℓ ∈ N we let

Σℓ := {sℓ : s ∈ Σ}.

The case d = 1. Since Σℓ1 is a non-lacunary semigroup of N, by Furstenberg’s
Theorem (see Section 1.3) we have that A contains a rational point x = a/b
with a ∈ Z and b ∈ N. Write b = b′c, where b′ divides some element k of Σ
and c is relatively prime to every element of Σ. Then kx = a(k/b′)

c and thus
this point of A is rational with denominator relatively prime to Σ.

Suppose that the result holds for some d ∈ N. We show that it holds for d+1.
Let A be a non-empty closed subset of Td+1, invariant under Σℓ1,...,ℓd+1 , where
ℓ1, . . . , ℓd+1 ∈ N. Let B be the image of A under the coordinate projection

(x1, . . . , xd, xd+1) 7→ xd+1
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of Td+1 onto T. Then B is a non-empty closed subset of T, invariant under
the non-lacunary semigroup Σℓd+1 , and hence by the case d = 1, it contains
a rational point y with denominator relatively prime to Σ.

Write y = a/m, where a ∈ Z and m is a positive integer relatively prime
to every element of Σ, and let

Σm := Σ ∩ (mZ+ 1).

Then Σm is a semigroup of N with the property that

sy = y for every s ∈ Σm.

We claim that Σm is non-lacunary. Indeed, if p and q are two multiplicatively
independent integers belonging to Σ, then p and q are relatively prime to
m (because the denominator of y = a/m is relatively prime to Σ). Hence,
by Euler’s Theorem, there exist integers t and n such that pt ≡ 1 (mod m)
and qn ≡ 1 (mod m). Then pt and qn are multiplicatively independent and
belong to Σm and thus the semigroup Σm is non-lacunary.

We define the set

C :=
{
(x1, . . . , xd) ∈ Td : (x1, . . . , xd, y) ∈ A

}
.

Then C is a closed subset of Td, and is non-empty since y ∈ B. We claim
that C is invariant under the semigroup

Σℓ1,...,ℓd
m := {(sℓ1 , . . . , sℓd) : s ∈ Σm}.

Indeed, if (x1, . . . , xd) ∈ C, using that sℓd+1y = y for every s ∈ Σm and the
invariance of A under Σℓ1,...,ℓd+1 , we have that

(sℓ1x1, . . . , s
ℓdxd, y) = (sℓ1x1, . . . , s

ℓdxd, s
ℓd+1y) ∈ A for every s ∈ Σm.

Using the defining property of C, we deduce that (sℓ1x1, . . . , s
ℓdxd) ∈ C.

Using the induction hypothesis with C substituted for A and Σℓ1,...,ℓd
m sub-

stituted for Σℓ1,...,ℓd , we deduce that C contains a rational point (y1, . . . , yd)
with denominators relatively prime to Σ. Then the point (y1, . . . , yd, y) is
rational with denominators relatively prime to Σ, and belongs to A, as de-
sired. □

3. Proof of the Bohr-recurrence result

3.1. Proof of Theorem 2. Suppose that

P (n) = c1n+ c2n
2 + · · ·+ crn

r

for some r ∈ N and c1, . . . , cr ∈ Z, not all of them zero. Let ε > 0, d ∈ N,
and x = (x1, . . . , xd) ∈ Td. Let A be the closure of the set

{(sc1x1, . . . , sc1xd, s2c2x1, . . . , s2c2xd, . . . , srcrx1, . . . , srcrxd) : s ∈ Σ}.

Then A is a non-empty closed subset of Trd that is invariant under

{(s, . . . , s, s2, . . . , s2, . . . , sr, . . . , sr) : s ∈ Σ},
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where each power of s is repeated d times. Therefore, by Proposition 4,
A contains a rational point y ∈ Trd. Since K contains multiples of every
positive integer, there exists k ∈ K such that all the coordinates of ky are
integers. It follows that 0 (as an element of Trd) belongs to the closure of
the set

{(ksc1x, (ks)2c2x, . . . , (ks)rcrx) : s ∈ Σ}.
Since P (ks)x = ksc1x+ (ks)2c2x+ · · ·+ (ks)rcrx, we have that

∥P (ks)x∥Td ≤ ∥ksc1x∥Td +
∥∥(ks)2c2x∥∥Td + · · ·+ ∥(ks)rcrx∥Td .

It follows that 0 (as an element of Td) belongs to the closure of the set

{P (ks)x : k ∈ K : s ∈ Σ
}

and so

(1) ∥P (ks)x∥Td ≤ ε, for some k ∈ K, s ∈ Σ.

The polynomial P has finitely many zeros, all bounded by some integer
N ∈ N. Estimate (1) also holds for the semigroup Σ∩ (N,+∞) instead of Σ,
and thus replacing Σ with this semigroup we deduce that there exist k ∈ K
and s ∈ Σ such that P (ks) ̸= 0 and ∥P (ks)x∥Td ≤ ε. It follows that the set
{P (ks) : k ∈ K, s ∈ Σ

}
is a set of Bohr recurrence. □

3.2. Non Bohr recurrence of 2m3n for totally ergodic rotations. Al-
though the set {2m3n : m,n ∈ N} is not good for recurrence of rational ro-
tations, it is reasonable to hope that it is good for recurrence for all x ∈ Td

that have rationally independent coordinates. An even more optimistic con-
jecture is that it is good for measurable recurrence for all totally ergodic
systems. Unfortunately, we show that neither claim holds.

We claim that there exists x ∈ T4 with rationally independent coordinates
and ε > 0 such that ∥2m3nx∥T4 ≥ ε for every m,n ∈ N. Indeed, using [11,
Lemma 4.2], we have the existence of y = (y1, y2, y3, y4) ∈ R4 with rationally
independent coordinates such that for all but finitely many m,n ∈ N we have
{2m3nyj} ≤ 1/10 for some j ∈ {1, 2, 3, 4}, where {t} denotes the fractional
part of t ∈ R. Let xj := yj+1/5, j ∈ {1, 2, 3, 4}, and x = (x1, x2, x3, x4); then
obviously x also has rationally independent coordinates. Since {2m3n/5} ∈
[1/5, 4/5] for all m,n ∈ N, it follows that for all but finitely many m,n ∈ N
we have {2m3nxj} ∈ [1/5, 9/10] for some j ∈ {1, 2, 3, 4}. Then ∥2m3nx∥T4 ≥
1/10 for all but finitely many m,n ∈ N. This immediately implies the claim.

The situation does not improve much if we consider sets of the form

Σ := {pn1
1 · · · pnℓ

ℓ : n1, . . . , nℓ ∈ N}.

Using [11, Lemma 4.2], we can show in a similar fashion that there exists x ∈
T2ℓ with rationally independent coordinates and ε > 0 such that ∥sx∥T2ℓ ≥ ε
for every s ∈ Σ.

However, the possibility that the set {2m3n : m,n ∈ N} is good for mea-
surable or topological recurrence for systems without rotational factors (i.e.
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for weakly mixing systems) remains open. For measurable recurrence this
problem is explicitly stated in [1, Question 3].

4. Proof of the density result

Our goal in this section is to prove Theorem 3.

4.1. A reduction. Theorem 3 is a direct consequence of the following higher
dimensional density result. This higher dimensional setting has the advan-
tage of some dilation invariance that the 1-dimensional setting lacks.

Let e1, . . . , ed denote the standard unit vectors of Td or Rd, depending on
the context.

Proposition 5. Let d ∈ N, Σ be a non-lacunary semigroup of N, and A be
a closed infinite subset of Td that is invariant under

{(s, s2, . . . , sd) : s ∈ Σ}.
Then {x+tej : t ∈ T} ⊂ A for some rational point x ∈ Td and j ∈ {1, . . . , d}.

Proof of Theorem 3 assuming Proposition 5. Let ε > 0 and α ∈ T be arbi-
trary. It suffices to show that there exists s ∈ Σ such that ∥P (s)− α∥T ≤ ε.

We can assume that P (0) = 0 and write P (n) = c1n+ · · ·+ cdn
d for some

d ∈ N and real numbers c1, . . . , cd, at least one of which is irrational. Let A
be the closure of the set

{(c1s, c2s2, . . . , cdsd) : n ∈ Σ},
considered as a subset of Td. Clearly A is invariant under the map x 7→
(s, s2, . . . , sd) · x for every s ∈ Σ, and since at least one of the c1, . . . , cd is
irrational the set A is infinite. It follows from Proposition 5 that there exist
some rational point x = (x1, . . . , xd) ∈ Td and j0 ∈ {1, . . . , d} such that
{x+ tej0 : t ∈ T} ⊂ A. Hence, for t := α −

∑
1≤j≤d xj (mod 1) there exists

s ∈ Σ such that∥∥cjsj − xj
∥∥
T ≤ ε

d
for j ̸= j0 and

∥∥∥∥∥∥cj0sj0 − α+
∑

1≤j≤d, j ̸=j0

xj

∥∥∥∥∥∥
T

≤ ε

d
.

Then

∥P (s)− α∥T ≤
∑

1≤j≤d, j ̸=j0

∥∥cjsj − xj
∥∥
T +

∥∥∥∥∥∥cj0sj0 − α+
∑

1≤j≤d, j ̸=j0

xj

∥∥∥∥∥∥
T

≤ ε,

completing the proof. □

4.2. A key density property on Td. The main goal in this subsection is
to prove Proposition 7. In its proof we use the following fact:

Lemma 6. For every d ∈ N and u1, . . . , ud ∈ R \ {0}, the set

{(tu1 + k1, t
2u2, . . . , t

dud + kd) : t ∈ (0,+∞), k1, . . . , kd ∈ Z}
is dense in Rd.
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Proof. We can assume that u1 > 0. First, note that if we let t′ := tu1 and
u′j := uj/u

j
1, for j = 2, . . . , d, we see that it is sufficient to verify the stated

property when u1 = 1. We work with this assumption from now on.
Let x := (x1, . . . , xd) ∈ Rd. It suffices to show that for every ε > 0 there

exists t > 0 such that

(2) ∥t− x1∥T ≤ ε,
∥∥t2u2 − x2

∥∥
T ≤ ε, . . . ,

∥∥∥tdud − xd

∥∥∥
T
≤ ε.

So let ε > 0. First, we claim that there exists δ0 ∈ (0, ε) such that every
non-trivial integer combination of the polynomials (in k)

(k + x1 + δ0)
2u2, . . . , (k + x1 + δ0)

dud

has at least one irrational non-constant coefficient. Indeed, note that modulo
rational multiples, the coefficients of the (degree 1) monomial k in these
polynomials are respectively

(x1 + δ0)u2, (x1 + δ0)
2u3, . . . , (x1 + δ0)

d−1ud.

So it suffices to choose δ0 such that all non-trivial integer combinations of
these numbers are irrational. Such a choice of δ0 exists, since for any choice
of ℓ1, . . . , ℓd ∈ Z, not all of them 0, the equation

ℓ1u2δ + ℓ2u3δ
2 + · · ·+ ℓdudδ

d−1 = 0

has finitely many solutions in the variable δ, so there exists δ0 ∈ (0, ε) such
that x1 + δ0 avoids all these (countably many) solutions. This proves the
claim.

For this choice of δ0, Weyl’s criterion [16] gives that the sequence(
(k + x1 + δ0)

2u2, . . . , (k + x1 + δ0)
dud

)
k∈N

is equidistributed in Td and thus dense in Td. It follows that there exists an
integer k0 > |x1|+ δ0 such that∥∥(k0 + x1 + δ0)

2 − x2
∥∥
T ≤ ε, . . . ,

∥∥∥(k0 + x1 + δ0)
d − xd

∥∥∥
T
≤ ε.

Letting t := k0 + x1 + δ0, and recalling that δ0 ∈ (0, ε), we deduce that (2)
holds, completing the proof. □

Proposition 7. Let d ∈ N, Σ be a non-lacunary semigroup of N, and A be
a closed subset of Td, invariant under

{(s, s2, . . . , sd) : s ∈ Σ}.
If 0 is a non-isolated point of A, then {tej : t ∈ T} ⊂ A for some j ∈
{1, . . . , d}.
Proof. For d = 1, this follows from Furstenberg’s Theorem (see Section 1.3).
For general d ∈ N, we argue as follows using ideas from [4] and [14], with
the caveat that we are not working with the Euclidean norm but with the
quantity defined in (3).

Let π : Rd → Td = Rd/Zd be the natural projection and let B = π−1(A) =
A+ Zd. Then for every s ∈ Σ, the closed subset B of Rd is invariant under
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the map x 7→ (s, s2, . . . , sd) · x, and the point 0 of Rd is a non-isolated point
of B.

For x = (x1, . . . , xd) ∈ Rd let

(3) |||x||| := |x1|+ |x2|
1
2 + · · ·+ |xd|

1
d .

Note that ||| · ||| satisfies the triangle inequality and we have the following
identity

(4) |||(tx1, t2x2, . . . , tdxd)||| = |t||||(x1, x2, . . . , xd)|||.

Note also that a sequence of vectors in Rd converges to a vector x with
respect to the Euclidean norm if and only if it converges to x with respect to
the distance associated with ||| · |||; we use this fact without further reference.

For every ε > 0, we let

(5) Dε :=
{( x1

|||x|||
,

x2
|||x|||2

, . . . ,
xd
|||x|||d

)
: x ∈ B, 0 < |||x||| ≤ ε

}
and

(6) D :=
⋂
ε>0

Dε.

Then D is a closed subset of the compact set {x ∈ Rd : |||x||| = 1}. Since, by
assumption, 0 is a non-isolated point of A (this is the only point where this
assumption is used), for every ε > 0 the compact set Dε is non-empty, so
the set D is non-empty.

We claim that for every u ∈ D and every t > 0 we have (t, t2, . . . , td)·u ∈ B
(a similar statment holds for every t ∈ R but we do not need this). So let
u = (u1, . . . , ud) ∈ D, t > 0, and ε > 0. It suffices to show that there exists
b ∈ B with

(7) |||(t, t2, . . . , td) · u− b||| ≤ ε.

Let Σ = {s1 < s2 < · · · }. Since Σ is a non-lacunary semigroup of N, we
have limn→∞ sn = ∞ and limn→∞

sn+1

sn
= 1. Hence, for every δ > 0 (to be

chosen later, depending on ε and t only) there exists M = M(δ) ≥ s1 such
that if sn+1 > M we have

|sjn+1 − sjn| ≤ δsjn, for j = 1, . . . , d.

It follows that for every real σ ≥ M , there exists s ∈ Σ with

(8) |sj − σj | ≤ δ · σj , for j = 1, . . . , d.

Indeed, we can choose s := sn0 where n0 ∈ N satisfies sn0 ≤ σ < sn0+1, then
sn0+1 > M and we have |σj − sjn0 | ≤ |sjn0+1 − sjn0 | ≤ δsjn0 ≤ δσj .

Since u belongs to D, by (5) and (6) there exists x = (x1, . . . , xd) ∈ B,
depending on ε, t, u,M , with

(9) 0 < |||x||| ≤ t

M
and |||

( x1
|||x|||

,
x2

|||x|||2
, . . . ,

xd
|||x|||d

)
− u||| ≤ ε

2t
.
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Applying (8) with δ := εd

2d(1+td)
and σ := t

|||x||| ≥ M (by (9)), it follows
that there exists s ∈ Σ (depending on ε, t, x) such that

(10)
∣∣∣sj − tj

|||x|||j
∣∣∣ ≤ δ · tj

|||x|||j
=

εd

2d|||x|||j
, for j = 1, . . . , d.

If we add and subtract
(
tx1
|||x||| ,

t2x2
|||x|||2 , . . . ,

tdxd

|||x|||d
)

in the expression below and
use the triangle inequality, we get

(11) |||(tu1, t2u2, . . . , tdud)− (sx1, s
2x2, . . . , s

dxd))||| ≤

|||
(
t
( x1
|||x|||

− u1
)
, t2

( x2
|||x|||2

− u2
)
, . . . , td

( xd
|||x|||d

− ud
))

|||+

|||
(
x1

( t

|||x|||
− s

)
, x2

( t2

|||x|||2
− s2

)
, . . . , xd

( td

|||x|||d
− sd

))
||| ≤ ε,

where the last estimate follows from (9) and (10) as follows: By (4) the first
term is equal to

t |||
( x1
|||x|||

,
x2

|||x|||2
, . . . ,

xd
|||x|||d

)
− u||| ≤ ε

2
,

where the last estimate follows from (9). By (3) the second term is equal to

|x1|
∣∣∣ t

|||x|||
− s

∣∣∣+ |x2|
1
2

∣∣∣ t2

|||x|||2
− s2

∣∣∣ 12 + · · ·+ |xd|
1
d

∣∣∣ td

|||x|||d
− sd

∣∣∣ 1d ,
and using (10) we can bound this by

ε

2|||x|||
(|x1|+ |x2|

1
2 + · · ·+ |xd|

1
d ) =

ε

2
.

It follows from (11) that (7) holds for b := (s, s2, . . . , sd) · x, which is an ele-
ment of B since x ∈ B and B is invariant under the map x 7→ (s, s2, . . . , sd)·x.
This completes the proof of the claim.

Let u now be any element in D. We have just shown that the set C :=
{(t, t2, . . . , td) · u : t > 0} is contained in B and thus the closure of its image
π(C) under the natural projection π : Rd → Td is contained in A = π(B).
Since u ∈ D we have |||u||| = 1, hence there exists j0 ∈ {1, . . . , d} such that
uj0 ̸= 0. We deduce from this and Lemma 6 that {tej0 : t ∈ R} ⊂ C+Zd ⊂ B,
hence {tej0 : t ∈ T} ⊂ A. This completes the proof. □

We deduce the following:

Corollary 8. Let d ∈ N, Σ be a non-lacunary semigroup of N, and A be a
closed subset of Td that is invariant under

{(s, s2, . . . , sd) : s ∈ Σ}.

If x is a non-isolated rational point of A, with denominators relatively prime
to Σ, then {x+ tej : t ∈ T} ⊂ A for some j ∈ {1, . . . , d}.
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Proof. As in the proof of Proposition 4 we let m be an integer that is rela-
tively prime to every element of Σ and such that the coordinates of x remain
invariant when multiplied by any element of the non-lacunary semigroup
Σm := Σ ∩ (mZ+ 1). Then the set A− x is closed, invariant under

{(s, s2, . . . , sd) : s ∈ Σm},

and has 0 as a non-isolated point. Applying Proposition 7 with Σm instead
of Σ, we get that there exists j ∈ {1, . . . , d} such that {tej : t ∈ T} ⊂ A− x,
completing the proof. □

4.3. Proof of Proposition 5. Since A is an infinite subset of Td, the set
A′ of non-isolated points of A is non-empty. It is also closed and invariant
under the set Σ1,...,d of Proposition 4. Applying Proposition 4 for ℓ1 :=
1, . . . , ℓd := d, we get that A′ contains a rational point with denominators
relatively prime to Σ. The result now follows from Corollary 8 and the fact
that A′ ⊂ A (since A is closed).
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