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Abstract. Motivated by Furstenberg’s Theorem on sets in the circle invariant

under multiplication by a non-lacunary semigroup, we define a general class

of dynamical systems possessing similar topological dynamical properties. We
call such systems chaotic almost minimal, reflecting that these systems are

chaotic, but in some sense are close to minimal. We study properties of the

acting group needed to admit such an action, and show the existence of a
chaotic almost minimal Z-action. We show there exists chaotic almost mini-

mal Zd-actions which support multiple distinct nonatomic ergodic probability
measures.

1. Furstenberg’s Theorem

As celebrated result of Furstenberg [9] shows that the action of a pair of com-
muting maps x 7→ px mod 1 and x 7→ qx mod 1 on the circle T = R/Z, where
p, q ≥ 2 are multiplicatively independent integers, is highly constrained. Namely,
any closed set that is invariant under multiplication by such p and by q is either
finite or is all of T. Here, we explore what dynamical behavior is behind this type
of dichotomy.

We focus on two properties: that there is a dense set of points with finite orbit,
and that finite orbits are the the only proper closed invariant sets. This leads us
to define a faithful and transitive action of a group (or semigroup) on a compact
metric space X to be chaotic almost minimal if there is a dense set of points with
finite orbit and every proper, closed invariant subset of X is finite (see Definition 2.1
for the precise conditions). The motivation for the name is that a transitive system
with dense periodic points is chaotic, for example in the sense of [6] (see also [1, 10]),
and the condition on the proper, closed invariant subsets is termed almost minimal
in the context of algebraic actions by Schmidt [26].

Extending the definition, we call a group (or semigroup) chaotic almost minimal
if it admits a chaotic almost minimal action on some compact metric space. In this
terminology, Furstenberg’s Theorem shows that N2 is chaotic almost minimal, and
the invertible symbolic cover of this system, such as that used by Rudolph [25],
shows that Z2 is chaotic almost minimal. Similarly one can show that Nd and Zd
are chaotic almost minimal for any d ≥ 2. While we focus on discrete groups,
we can extend these notions to continuous actions, defining an action of a locally
compact group G to be chaotic almost minimal if there is a dense set of points
whose stabilizer is a lattice in G and every proper compact G-invariant subset is
the quotient of G by a lattice. In this setting, there are also well-known examples
of continuous actions which are chaotic almost minimal. For instance, Ratner’s
Theorem [24] implies the action of the unipotent flow on the space SL2(R)/SL2(Z)
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is chaotic almost minimal. By taking the one-point compactification, we obtain a
chaotic almost minimal R-action on a compact space. We note however that for
any time t > 0, the time t-map of the flow ϕt on SL2(R)/SL2(Z) is not chaotic
almost minimal according to our definition: since there are periodic trajectories of
arbitrary length, for any time t > 0, there are invariant circles on which the time t
map acts by irrational rotation.

Several other examples of chaotic minimal groups have been well studied, includ-
ing SLd(Z) for d ≥ 2 and the automorphism group of a shift of finite type, and we
discuss some of these in Section 2.3. All of these examples, and the variety of other
groups that we show have chaotic almost minimal actions (such as those following
from the results in Section 3.1) are all either higher rank or are complicated in some
other way. It is therefore natural to ask about the existence of a Z-action that is
chaotic almost minimal. At the same time, with an eye toward the well-known
question of Furstenberg on measures invariant under multiplication by two multi-
plicatively independent integers, it is also natural to wonder whether being chaotic
almost minimal is compatible with having multiple nonatomic, ergodic probability
measures.

We show that not only do chaotic almost minimal Z-systems exist, but that such
systems are capable of supporting more than one nonatomic, ergodic probability
measure. Specifically, we construct a symbolic chaotic almost minimal Z-system
with (at least) two distinct, nonatomic, ergodic probability measures.

Theorem 1.1. There exists a topological Z-system that is chaotic almost mini-
mal. Furthermore, this system supports two distinct nonatomic ergodic probability
measures.

Our definition of CAM systems is strongly motivated by Furstenberg’s Theorem
on ×p,×q invariant subsets of the torus. Moreover, we are also motivated here
by Furstenberg’s question regarding the possible nonatomic ergodic measures for
×p,×q on the circle. A consequence of Theorem 1.1 is that if the answer to Fursten-
berg’s question is positive, meaning there is a unique nonatomic ergodic measure
invariant under a non-lacunary semigroup, then the CAM structure alone is not
responsible for this uniqueness. Moreover, in higher ranks the same result holds,
and we prove that in fact, there exists Zd-CAM systems possessing two distinct
nonatomic ergodic measures.

Theorem 1.2. For every d ≥ 1, there exists a topological Zd-system that is chaotic
almost minimal and supports two distinct nonatomic ergodic probability measures.

As in the one dimensional case of Theorem 1.1, our constructed system is a
subshift over the alphabet {0, 1}.

The details of the construction of the CAM Z-system are in Section 4.1. We
show that the resulting system is chaotic almost minimal in Proposition 4.5, and
in Section 4.2 we prove that this system has more than one nonatomic, ergodic
measure. In Section 5, we adapt this construction to a Zd-action, and show the
existence of a d-dimensional subshift that is chaotic almost minimal and supports
multiple distinct nonatomic ergodic probability measures.

A property shared by all of the groups that we show are chaotic almost minimal
is that they are all residually finite, and in fact it is not hard to show that any
group which admits a chaotic action must be residually finite (see Section 3.1).
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This leaves open the question of whether every residually finite group gives rise to
a chaotic almost minimal action, and we conjecture (see Section 6) that this holds.

We comment that we define chaotic almost minimal systems in terms of invariant
subsets and not in terms of orbits of points. As a tool to showing the existence of
chaotic almost minimal systems, we often proceed by showing a weaker property,
which we call weakly chaotic almost minimal, in which we replace the condition
on subsets by the condition that all orbits are either finite or dense. While every
chaotic almost minimal system is weakly chaotic almost minimal, the converse does
not hold and a construction showing that the two notions are not the same is given
in Example 2.20. However, in Proposition 2.19 we show these notions are the same
for expansive systems, which is why we are able to make use of the weakly chaotic
almost minimal property in our constructions. A related question, along with some
others and a conjecture, are discussed in Section 6.

Acknowledgment. We thank Xiangdong Ye for helpful remarks in the prepara-
tion of this article.

2. CAM systems

2.1. General definitions and notation. For a countable group G and compact
metric space X, a topological G-system (X,T ) is an action of G on X by homeo-
morphisms, meaning a homomorphism T : G → Homeo(X). Given such a system
and g ∈ G we write Tg : X → X for the action by the element g on X. We use
the same terminology when G is a semigroup, referring to a topological G-system
(X,T ), but assuming that the associated actions Tg : X → X are continuous maps
which are not necessarily invertible. When G = Z we write simply (X,T ) to mean
T is a homeomorphism from X to itself.

The system (Y, S) is a (topological) factor of the system (X,T ) if there exists a
continuous surjective map π : X → Y such that π ◦ T = S ◦ π.

The G-system (X,T ) is topologically transitive if for all open sets U, V ⊂ X,
there is some g ∈ G such that TgU ∩ V 6= ∅, and is point transitive if there exists
some x ∈ X such that the orbit {gx : g ∈ G} is dense in X.

Some of our examples and constructions involve symbolic systems. For a finite
set A, called the alphabet, we consider the compact metric space AZ, writing x ∈ AZ

as x = (xn)n∈Z, where AZ is endowed with the metric d(x, y) = 2−{inf |n|:xn 6=yn}.
The shift σ : AZ → AZ is defined by (σx)n = xn+1 for all n ∈ Z. A subshift is a
system (X,σ), where X ⊂ AZ is a compact σ-invariant subset and A is some finite
alphabet.

For n ≥ 0, a concatenation w = w0 . . . wn−1 ∈ An is called a word w and we
say that this word has length n. Given a subshift (X,σ) over the alphabet A and
word w ∈ An , the cylinder set Ck(w) is the collection of all x ∈ X such that
xk = w0, . . . xk+n−1 = wn. By a cylinder set in (X,σ) we mean a set Ck(w) for
some k ∈ Z and word w over the respective alphabet. A word w is in the language
L(X) of (X,σ) if there is some nonempty cylinder set determined by w. The
language L(X) =

⋃
n≥0 Ln(X), where Ln(X) denotes all of the words of length n

in L(X).

2.2. Definition of CAM systems. We now define our main object of study. All
groups and semigroups here are assumed to be discrete.
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Definition 2.1. A topological G-system (X,T ) is chaotic almost minimal (CAM)
if all of the following hold:

(1) The system (X,T ) is topologically transitive and the action of T on X is
faithful.

(2) The space X contains a dense set of points whose T -orbit is finite.
(3) Every proper closed T -invariant subset of X is finite.

When (X,T ) satisfies these conditions, we say that (X,T ) is a CAM system, or
shorten this further and say that it is CAM. When we want to emphasize the group
acting, we call this a G-CAM system.

We note that for general groups, we can easily construct examples showing that
no two of these conditions implies the third. There are various variations of these
assumptions possible, and one which is useful for our purposes is a weakening of
the third condition to be about points, and not invariant sets (see Section 2.7). We
further note that if a system is CAM, then it is topologically transitive, has a dense
set of points with finite orbit, and the only compact minimal subsystems are finite.
However, the converse is not true in general, as can be seen from Example 2.20.
Related examples are constructed in [8], where they produce an N-system with
dense periodic points such that every point either is periodic or has dense orbit.

We also study which groups admit CAM actions, and this is captured in the
next definition.

Definition 2.2. The group or semigroup G is (topologically) CAM if there exists
an infinite compact metric space X such that the system (X,G) is a CAM system.

2.3. Classical examples of systems that are CAM. Before proceeding further,
we give several examples of CAM systems.

Example 2.3 (Systems invariant under a non-lacunary (semi-) group). Our moti-
vating example is Furstenberg’s Theorem [9], which proves that ×p,×q for multi-
plicatively independent integers p, q ≥ 2 acting on the torus is an N2-CAM system.
A symbolic Z2-CAM system is given by Rudolph’s coding [25] of of this system. By
taking the restriction of this system to N2, we also obtain an example of a symbolic
N2-CAM system.

Generalizations of this example for actions on higher dimensional tori that are
CAM are given in Berend [3]. Another CAM action on higher dimensional tori is
given in the next example.

Example 2.4 (The action of SLd(Z) on Td). We make use of results in the literature
to check that the action of SLd(Z) on Td is CAM. Several papers prove that any
infinite set has dense orbit (see for example [11, 21, 7]). It suffices then to check
that periodic points are dense, but this is trivial. Namely, if v ∈ Qd/Zd, write v
using a common denominator for all coordinates. Then for any A ∈ SLd(Z) the
denominators of the coordinates of Av are again bounded above by the original
denominators, and so the orbit of v must be finite. We note that any probability
measure invariant under this action is a linear combination of Haar measure and
atomic measures (this is a simple case of the deep results in [2, 4]). These results
cover more general settings, as shown in [11, 21, 2, 4].

A different type of example arises by considering the symmetries of symbolic
systems.
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Example 2.5 (The automorphism group of a mixing shift of finite type). Let
(X,T ) be an infinite mixing Z-shift of finite type and let Aut(X,T ) denote the
group of automorphisms of (X,T ), meaning the group of self-homeomorphisms of
X that commute with T . Then the action of Aut(X,T ) on X is CAM. Indeed,
the density of periodic points is immediate, as the action of Aut(X,T ) preserves
T -periodic points of a given period and T -periodic points are dense in X. If Y
is an infinite, closed Aut(X,T )-invariant set, then in particular it is T -invariant,
and so Y contains an aperiodic point. It follows from [5, Theorem 9.2] that the
Aut(X,T )-orbit of this aperiodic point is dense in X, and so the system is weakly
CAM. Since it is expansive, it follows from Proposition 2.19 that the system is
CAM. It is interesting to note that it is also proved in [5] that the only nonatomic
measure on X invariant under Aut(X,T ) is the measure of maximal entropy for T .

2.4. Basic dynamical properties of CAM systems. For any group (or semi-
group) G, the collection of G-CAM systems is closed under factors, orbit equiv-
alence, and flow equivalence, but is not closed under taking products. We verify
these and other simple properties of CAM systems.

Proposition 2.6. If (X,T ) is infinite, has dense periodic points, and is point
transitive, then X has no isolated points. In particular, if (X,T ) is CAM then X
is perfect and uncountable.

Proof. We proceed by contradiction and assume that x ∈ X is an isolated point.
Since the periodic points are dense in X, it follows that x itself is periodic. If
(Un)n∈N is a countable base of open sets for X, then for each n ∈ N, the set
Vn =

⋃
m>0 T

−mUn is open and dense. The intersection
⋂
n∈N Vn is a residual set

and by transitivity, every point in it has forward dense orbit. In particular, there
is some point with a dense forward orbit and so the periodic point x itself has a
dense forward orbit, contradicting the assumption that the system is infinite. Thus
X has no isolated points. Since X is compact, it follows that it is perfect and
uncountable. �

Proposition 2.7. A system with dense periodic points that is point transitive ad-
mits a Borel invariant probability measure of full support.

Again, this applies immediately to any CAM system.

Proof. Let (Oi)i∈N be a collection of disjoint periodic orbits whose union is dense
in the space and let (mi)i∈N be a sequence of positive real numbers such that∑
i∈Nmi = 1. Setting µ =

∑
i
mi

|Oi|
(∑

x∈Oi
δx
)
, where δx denotes the Dirac measure

at x, we produce such a measure. �

Proposition 2.8. Any nonatomic invariant Borel probability measure on a CAM
system has full support.

Proof. As the support of the measure is a closed, invariant set, any nonatomic
measure has some infinite closed invariant set. Invariance implies that the measure
has full support. �

Proposition 2.9. For any factor of a CAM system, if the group action on the
factor is faithful, then the factor is also a CAM system. In particular, any infinite
factor of a Z-CAM system is Z-CAM.



6 VAN CYR, BRYNA KRA, AND SCOTT SCHMIEDING

Proof. Suppose the system (X,T ) is CAM and let ϕ : X → Y be a factor map
onto some system (Y, S). Clearly S-periodic points are dense in Y , since T -periodic
points are dense in X, and (Y, S) is transitive since (X,T ) is. If A ⊂ Y is an infinite
closed S-invariant subset, then π−1(A) is an infinite closed T -invariant subset of
X. Since the system (X,T ) is CAM, it follows that π−1(A) = X and so we have
that A = Y . Thus when the action S on Y is faithful, we have that (Y, S) is CAM.

The conclusion about Z-CAM factors follows from the fact that the action on
an infinite factor of a Z-system is automatically faithful. �

The next result follows quickly from the definitions (see for example [23] for
background).

Proposition 2.10. Any system that is topologically orbit equivalent to a CAM
system is also CAM.

Proof. The first two properties of Definition 2.1 are immediate. Suppose (X,S)
and (Y, T ) are topologically orbit equivalent G-systems via an orbit equivalence
h : X → Y . If the system (X,S) is not CAM, then there exists a proper infinite G-
invariant closed subset Z ⊂ X. But then h(Z) would is a proper infinite G-invariant
closed subset of Y , and so (Y, T ) is not CAM. �

To close this section, we use results of [27] we derive a result for Z-CAM systems
(see Remark 2.15 for contrasting behavior).

Proposition 2.11. If (X,T ) is an expansive Z-CAM system, then (X,T ) is a
subshift.

Proof. Since the system (X,T ) is a Z-CAM system, every point is either transitive
or is periodic. In particular, every point is recurrent. By [27, Theorem 1.2], it
follows that (X,T ) is a subshift. �

2.5. Many Z-CAM systems. In section 4 we prove that there exists a Z-CAM
subshift. We use this here to show that the existence of one such subshift implies
that CAM Z-subshifts are abundant in a certain sense. In fact, for any n ≥ 2,
they are dense in the space of infinite totally transitive subsystems of the full shift
(Xn, σn) with the Hausdorff metric. They are not however a generic set, as [22,
Theorem 1.4] shows there is a generic set of minimal subshifts in the space of totally
transitive subshifts.

Theorem 2.12. If (Y, σY ) is an infinite mixing shift of finite type, then (Y, σY )
contains a CAM subshift.

Proof. Let (X,σ) be the Z-CAM shift constructed in Section 4, and note that (X,σ)
is contained in the full 2-shift (X2, σ2). Given m ≥ 1, let (X(m), σ(m)) denote the
height m discrete tower over (X,σ), meaning that X(m) = X ×{0, . . . ,m− 1} and

σ(m)(x, i) =

{
(x, i+ 1) mod m if i < m− 1

(σ(x), 0) if i = m− 1.

Since (X,σ) is CAM, it is straightforward to check that (X(m), σ(m)) is also CAM.
Given an infinite mixing shift of finite type (X,σY ), we show that there exists

m ≥ 1 such that (X
(m)
2 , σ

(m)
2 ) embeds into (Y, σY ). Since (X,σ) is contained in

(X2, σ2), once we have this result the theorem follows.
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Let qn(Z) denotes the points of least period n in the subshift Z. By Krieger’s
Embedding Theorem [18], it suffices to show there exists m ≥ 1 such that both of
the following hold:

(1) h(σ
(m)
2 ) < h(σY ).

(2) qn(X
(m)
2 ) ≤ qn(Y ) for all n ≥ 1.

For the entropy condition, note that h(σ
(m)
2 ) = 1

mh(σ2) for all m ≥ 1, and so

by choosing m sufficiently large we can guarantee that h(σ
(m)
2 ) < h(σY ). Thus it

suffices to find m satisfying the periodic point condition.
To show this, we recall some notation and results (see for example [19, Section

10.1]). Let A be a Z+-matrix presenting the shift (Y, σY ). The function qn satisfies
the formula

(1) qn(Y ) = trn(A) =
∑
d|n

µ(
n

d
)tr(Ad),

where µ denotes the Möbius function and tr the trace. Letting s×(A) denote the
nonzero spectrum of A (excluding eigenvalues of modulus one) and λA denote the
Perron-Frobenius eigenvalue for A, then for any mn > 1, we have

trmn(A) ≥ λmnA −
λ
mn/2+1
A − λA
λA − 1

−
∑

µ∈s×(A),µ6=λA

|µ|mn+1 − |µ|
|µ| − 1

.

Let S = max{|µ| : µ ∈ s×(A), µ 6= λA} and K1 = λA

λA−1 . It follows that

trmn(A) ≥ λmnA −K1

(
λ
mn/2
A − 1

)
−K2(Smn − 1)

for some constant K2 which does not depend on either m or n. By the Perron-
Frobenius Theorem, we have that S/λA < 1 and so

1

λmnA
trmn(A) ≥ 1−K1(λ

−mn/2
A − λ−mnA )−K2

[(
S

λ

)mn
− λ−mnA

]
.

Combining this with (1), there is some m1 ≥ 1 such that for all m ≥ m1 and all
n ≥ 1,

(2)
1

λm1n
A

qm1n(Y ) ≥ 2

3
.

Considering the full 2-shift (X2, σ2), we have that

qmn(X
(m)
2 ) = mqn(X(2)) ≤ m2n.

Thus for all m,n ≥ 1
1

λmnA
qmn(X

(m)
2 ) ≤ m

(
2

λmA

)n
.

Taking m2 such that 2
λm
A
< 1

3m for all m ≥ m2, then for for all m ≥ m2 and any

n ≥ 1, we have that

1

λmnA
qmn(X

(m)
2 ) ≤ m

(
2

λmA

)n
< m

(
1

3m

)n
< 2/3.

Taking M = max{m1,m2} and combining this with (2), we have that for all n ≥ 1,

1

λMn
A

qMn(Y ) ≥ 2

3
>

1

λMn
A

qMn(X
(M)
2 ).
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Thus it follows that qMn(Y ) ≥ qMn(X
(M)
2 ), verifying the necessary periodic point

condition for the application of Krieger’s Embedding Theorem. �

For a full shift (Xn, σn), let S(Xn) be the space of all subshifts of Xn, meaning
that S(Xn) is the set of all compact σn-invariant subsets of Xn endowed with the
Hausdorff metric (more background on these spaces can be found in [22]). We use
Theorem 2.12 to show that for any n ≥ 2, the closure of the set of CAM shifts in
S(Xn) contains all infinite totally transitive subshifts.

Theorem 2.13. Fix n ≥ 2 and let (W,σW ) be an infinite totally transitive subshift
in Xn. Then W is a limit of Z-CAM subshifts in S(Xn).

Proof. Fix m ≥ 1. Since W is infinite and totally transitive, using standard Markov
approximation there exists an infinite mixing shift of finite type (Z, σZ) such that
dH(Z,W ) < 2−m where dH denotes the Hausdorff distance. This means that Z
and W have the same m-languages. Using the proof of [22, Theorem 6.4], it follows
that there is an infinite mixing shift of finite type Y ⊂ Z such that every point in
Y contains every word of length m from W . In particular, the systems Y and W
have the same m-languages. Applying Theorem 2.12 to the system Y , we have that
Y contains a CAM subshift X such that the m-languages of X and W agree, and
hence dH(X,W ) < 2−m. �

We note that we can not directly apply Theorem 2.12; while it shows that we
can embed a CAM shift into Z, it does not a priori guarantee that the embedded
CAM is close in the Hausdorff metric to Z.

2.6. Dynamical restrictions on CAM actions.

Theorem 2.14. If X is locally connected compact metric space, then X does not
support an expansive Z-CAM action.

Our argument closely follows the one used by Mañé [20].

Proof. Suppose (X,T ) is CAM. Fix some periodic points x, y ∈ X and choose ε > 0

such that
⋃`
i=1 T

i(Bε(x)) is a proper subset of X and y 6∈ B2ε(x); such points exist
since (X,T ) is CAM. Without loss of generality, we can assume that both x and y
have period `.

Consider the ε-stable set of x, defined by

W s
ε (x) = {y ∈ X : d(Tnx, Tny) ≤ ε for all n ≥ 0},

and let CW s
ε (x) denote the connected component of x in W s

ε . By [12, Proposition
C], making ε > 0 smaller if necessary, there exists δ > 0 such that for all x ∈ X,
we have diam(CW s

ε (x)) ≥ δ.
Given such δ, by [15, Corollary 2.4], there exists M > 0 such that for all m ≥M ,

if diam(CW s
ε (x)) ≥ δ, then diam(T−m(CW s

ε (x)) ≥ 4δ. Choose such an m and
without loss of generality, assume δ is sufficiently small such that Bδ(y)∩Bε(x) = ∅
and

⋃`
i=1 T

i(Bδ(y)) is proper in X. Moreover we may assume that ` and m are
relatively prime. It follows there exists two disjoint connected components A1

1, A
1
2

of T−m(CW s
ε (x)) \Bδ/4(y) for which diam(A1

i ) = δ for i = 1, 2. We now apply the

same procedure to both A1
1 and A1

2 to obtain four connected components {A2
i }4i=1

of T−2m(CW s
ε (x)) \Bδ/4(y) for which diam(A2

i ) = δ for all 1 ≤ i ≤ 4. Inductively
we continue the procedure to generate, for every r ≥ 1, 2r connected components
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{Ari }2
r

i=1 of T−rm(CW s
ε (x))\Bδ/4(y) such that diam(Ari ) = δ for all 1 ≤ i ≤ 2r. Let

C =
⋂∞
r=1

⋃2r

i=1 T
mr(Ari ). Note that C ⊂ CW s

ε (x), is compact, and is uncountable
(in fact C is a Cantor set). Since (X,T ) is expansive, there are at most countably
many T -periodic points, and so we may choose a T -aperiodic point p ∈ C. Since
C ⊂ CW s

ε (x), T k(C) ⊂ Bε(T
kx) for all k ≥ 0, and it follows that the forward T -

orbit of p is contained in Bε(x). Since Bε(x)∩Bδ(y) = ∅, y is not a limit point of the
forward orbit of p. We claim that the backward orbit of p does not accumulate on
y. By construction we have that T−km(C) ∩Bδ/4(y) = ∅ for all k ≥ 1. Continuity

implies we may choose γ > 0 such that if d(u, v) < γ then max{d(T i(u), T i(v)) :
1 ≤ i ≤ `m} < δ/4. Now suppose there exists k ≥ 0 such that T−k(p) ∈ Bγ(y);
without loss of generality assume that k is much larger than `m. Since ` and m are
relatively prime we may choose a, b such that k = a` + bm where 1 ≤ a ≤ m and
b ≥ 1. Then a` ≤ `m so T−k+a`(p) ∈ Bδ/4(T a`(y)) = Bδ/4(y). But −k+a` = −bm
so this implies T−bm(p) ∈ Bδ/4(y); since b ≥ 1, this is a contradiction and the claim
is proven. �

Remark 2.15. Remarkably, if (X,T ) is an N-CAM action such that every non-
transitive point not only has finite orbit but actually is periodic, then X cannot
be totally disconnected. This follows from [16, Proposition 2.1] and the discussion
that follows. In particular, an N-CAM subshift must have points with finite orbit
which are not periodic.

Many existing examples (see Section 2.3) of CAM systems are algebraic, meaning
that the system consists of the action of a group by automorphisms on some compact
group. However, this can not happen for a Z-action.

Theorem 2.16. If α : X → X is an automorphism of a compact group X, then
(X,α) is not a CAM system.

To prove this, we use several results in the literature. Suppose β is an action of Zd
by automorphisms on some compact group X. Recall that Schmidt [26, Section 29]
defines an action to be almost minimal if every closed proper β-invariant subgroup
of X is finite. Clearly if β is CAM, then it is almost minimal. (We note that we do
not know if the converse of this holds.)

Proof of Theorem 2.16. Without loss of generality, we can assume that α : X → X
is transitive, and hence ergodic with respect to the Haar measure on X. If α is
CAM, then it is almost minimal. It is a consequence of [26, Theorem 29.2] that X
is either zero-dimensional, a torus, or a solenoid.

First consider the toral case. If α has no eigenvalues of modulus one, then it is
hyperbolic and hence not CAM. But if α has an eigenvalue on the unit circle, then
it induces a rotation on some subset, and again it is not CAM. By passing to an
inverse limit, the solenoid case follows.

Thus we are left with the case that X is zero dimensional. We follow ideas in
Kitchens [17]. Since X is compact and zero dimensional, we can choose an open
normal subgroup K containing the identity. Then the cosets of K are disjoint and
partition X; since X is compact, finitely many cosets {aiK} suffice for partitioning
X and the subgroup K is closed.

We claim for all n ∈ N, there exists xn ∈ X such that x−1n αn(xn) 6∈ K. We
verify the claim by contradiction, supposing that K does not have this property.
Note that K is infinite (since it is open and X is perfect) and so there exists m ∈ N
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such that for all x ∈ X we have x−1αm(x) ∈ K, and hence αm(x) ∈ xK. This
implies that αm(K) ⊂ K, and since K is closed, proper and infinite, it follows that
α is not CAM, a contradiction. This verifies the claim about the subgroup K.

Since X/K is a finite group, we can code orbits using the partition {aiK} to get a
system ((X/K)Z, σ) and factor map π : X → X/K. Let Y ⊂ (X/K)Z be the image
of π. Then Y is a compact totally disconnected topological group and (Y, σ) is
expansive, and so by Kitchens [17, Theorem 1] the system (Y, σ) is a one-step shift
of finite type. Since (X,α) is transitive, the factor (Y, σ) has a point with dense
forward orbit. We claim that Y is infinite. Suppose instead that Y is finite, and
choose N such that σN = Id on Y . Then for all x ∈ X, we have σN (xK) = xK. It
follows that αN (x)K = xK, and hence x−1αN (x) ∈ K. However, we chose K such
that for all n ∈ N there exists xn ∈ X such that x−1n αn(xn) 6∈ K, a contradiction,
proving that Y is infinite. Summarizing, we have that Y is an infinite shift of finite
type that is point transitive, and hence contains a proper infinite closed σ-subset
Z ⊂ Y . Let A = π−1(Z). Then A is closed, α-invariant, infinite, and proper, and
so (X,α) is not CAM. �

2.7. Weakly CAM systems.

Definition 2.17. The topological G-system (X,T ) is a weakly CAM system if all
of the following hold:

(1) The system (X,T ) is transitive and the action of T on X is faithful.
(2) The space X contains a dense set of T -periodic points.
(3) If x ∈ X, then the orbit of x is either finite or dense in X.

It is immediate that a CAM system is a weakly CAM system (see Proposi-
tion 2.19), and to explore the relation between weakly CAM and CAM we use a
result that is well known for subshifts, adapting the argument to the general case.

Lemma 2.18. If (X,T ) is infinite and expansive, then it contains an aperiodic
point.

Proof. Choose a sequence of distinct elements in X and pass to a convergent sub-
sequence xi → x. If x is aperiodic, we are done and so suppose that x has period
p. Since the system is expansive, there are only a finite number of points of period
p, and so by removing finitely many terms of the sequence xi, we can assume that
none of the xi are of period p. Let εc be an expansivity constant for (X,T ). Then
for each i ∈ N, there exists ji ∈ N such that d(T ji(xi), T

ji+p(xi)) > εc (if instead
for all k ∈ N we have that d(T k(xi), T

k+p(xi)) ≤ εc, then xi = T p(xi) contradict-
ing that xi does not have period p). Passing to a subsequence if necessary, we can
assume that all of the ji are either positive or negative; let us assume they are
positive, as the negative case is analogous. Choose for each i the minimal such ji
which satisfies the conditions. Then d(T k(xi), T

k+p(xi)) ≤ εc for all 0 ≤ k < ji.
Since the sequence xi consists of distinct element and converges to x, the ji’s must
be unbounded. Choosing a limit point y of the sequence T ji(xi), it follows that
y is backward asymptotic to a point of period p. If the point y is periodic, then
its period would necessarily be p, but by construction, d(y, T p(y) ≥ εc. Thus the
point y is not periodic. �

Proposition 2.19. If (X,T ) is CAM, then it is weakly CAM. Moreover, if (X,T )
is expansive and weakly CAM, then it is CAM.
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Proof. If (X,T ) is CAM and x ∈ X has infinite orbit, then the orbit closure of x is
an infinite closed T -invariant subset, and hence is all of X.

For the second statement, suppose (X,T ) is expansive and weakly CAM. Let Y ⊂
X be an infinite closed T -invariant subset. Then (Y, T |Y ) is an infinite expansive
system, and so by Lemma 2.18, Y contains an aperiodic point. Since (X,T ) is
weakly CAM, that point has dense orbit under T , and hence Y = X. �

This proposition motivates the following example showing that the two notions
are distinct (a related issue is raised in Question 6.5).

Example 2.20. (A weakly CAM but not CAM system) Let (X,T ) be a CAM
Z-subshift and assume that (X,T ) has a fixed point p. (The existence of a Z-CAM
system is shown in Section 4, and this system has two fixed points.)

We start by defining the space for our new action. Choose a sequence of proper
clopen subsets An in X such that for every n ∈ N, both of the following are satisfied:

(1) An contains p.
(2) An+1 is a proper subset of An.

For n ∈ N, let Un = { k2n : 0 ≤ k ≤ 2n− 1} denote the additive group of 2n-th roots

of unity in S1 = R/Z. Let Z = X × S1, and consider the subset Y of Z defined as
the set of points (x, t) ∈ Z such that:

(3) If x 6∈ A1, we require that t = 0.
(4) If x ∈ A1 and n is chosen such that x ∈ An but x 6∈ An+1, we require

t ∈ Un+1.
(5) If x = p, there is no constraint on t.

Note that any point of the form (p, t) is a limit of points of the form (x, t) with
x 6= p.

The map f : Y → Y is defined as follows.

(6) If x 6∈ A1, then f(x, 0) = (T (x), 0).
(7) For any t ∈ S1, f(p, t) = (p, t).
(8) Suppose x ∈ A0 and let n be such that x ∈ An but x 6∈ An+1. Consider

(x, t) where t = k
2n+1 ∈ Un+1. We then define

f(x, t) =

{
(x, t+ 1

2n+1 ) for t 6= 2n+1−1
2n+1

(T (x), 0) for t = 2n+1−1
2n+1 .

In other words, points of the form (x, t) where x ∈ An (and n is maximal
such) rotate through the 2n+1-st roots of unity in the S1 term, and at the
end of that excursion, map back to X via T .

We claim that the map f : Y → Y is a homeomorphism and the system (Y, f) is
weakly CAM but not CAM.

To check that f is a homeomorphism, we consider the various cases. If (x, t) ∈ Y
and x 6= p, then continuity of f at (x, t) is immediate. For a point (p, t) with
t 6= 0, consider a sequence (xn, tn) → (p, t) as n → ∞. Consider {m(n) : xn ∈
Am(n) and m(n) is maximal among these choices} (note that by the nesting prop-
erty, this set is finite). By construction, m(n)→∞ as n→∞, and since t 6= 0, the
sequence tn is bounded away from 0. Thus f(xn, tn) = (xn, tn + 1

2m(n)+1
) → (p, t)

as n→∞ and continuity of f at (p, t) follows. Continuity at (p, 0) is similar.
We now consider the system (Y, f). Since the set {(p, t) : t ∈ S1} is proper,

infinite, closed, and f -invariant, this system is not CAM. To check that (Y, f) is
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weakly CAM, note that if x is periodic then (x, t) is also periodic. Since X is CAM,
periodic points are dense in X, and so the same holds for (Y, f). If x ∈ X is not
periodic then since (X,T ) is weakly CAM, the orbit of x is dense in X. It follows
immediately that the orbit of (x, 0) is also dense in Y .

This example is useful in that it shows two things: that a weakly CAM Z-
system need not be expansive, and that it need not be totally disconnected. A
slight variation of the example can be used to produce a weakly CAM Z-system
which is totally disconnected but not expansive.

3. Groups that admit CAM actions

3.1. Residually finite. Recall that a group G is residually finite if for every ele-
ment g ∈ G that is not the identity, there is a group homomorphism from G to a
finite group such that g is not mapped to the identity.

Proposition 3.1. If G is a CAM group, then G is residually finite.

Proof. Assume that the G-system (X,T ) is CAM and suppose that g ∈ G is not
the identity. Since G acts faithfully and the periodic points are dense, there is a
periodic point p such that Tgp 6= p. It follows that G acts on the finite orbit of p
and g acts nontrivially on this orbit. �

We note that this proof only relies on the faithfulness of the action and the
existence of a dense set of periodic points, and not the other properties of a CAM
group. However, this clarifies that many types of groups, such as the additive group
of rationals or any infinite simple group, are not CAM. However, we do not know
if residual finiteness is the only restriction (see Conjecture 6.4).

3.2. Finite index subactions. The main result in this section is showing that a
finite index subgroup of a CAM group is also CAM. To show this, we start with a
lemma on how orbits act under the action of a CAM system.

Lemma 3.2. Suppose (X,T ) is a G-CAM system and H is finite index normal
subgroup of G. Let {g1H, g2H, . . . , gmH} denote the set of left cosets of H in G.
If Y ⊆ X is a compact H-invariant subspace containing an infinite H-orbit, then⋃m
i=1 gi(Y ) = X. Furthermore, the H-periodic points are dense in Y .

Proof. We first prove that
⋃m
i=1 gi(Y ) = X. Choose y ∈ Y which has an infinite

H-orbit. Then the G-orbit of y is infinite, and since the action of G on X is CAM,
it follows that the orbit of y is dense in X. Let x ∈ X and choose a sequence of
elements kn ∈ G such that kn · y → x as n → ∞. For each n ∈ N, there exists
1 ≤ i(n) ≤ m and hn ∈ H such that kn = gi(n)hn. By passing to a subsequence if
necessary, we can assume that i(n) = i for all n ∈ N. It follows that gihn · y → x
as n → ∞, and hn · y → g−1i (x) as n → ∞. Since Y is closed and H-invariant we

have that g−1i (x) ∈ Y , and so x ∈ gi(Y ) for some i ∈ {1, . . . ,m}, proving the first
statement.

We next show that the boundary ∂Y is a finite set consisting of G-periodic points
(note that ∂Y is not necessarily G-invariant). To check this, let B =

⋃m
i=1 gi(∂Y ).

The set B is closed, and we claim it is G-invariant. Indeed, given g ∈ G, write
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g = gjh for some j and h ∈ H. Then

g(B) = g
( m⋃
i=1

gi(∂Y )
)

=

m⋃
i=1

ggi(∂Y ) =

m⋃
i=1

gjhgi(∂Y )

=

m⋃
i=1

gjgih
′(∂Y ) =

m⋃
i=1

g`(i)h`(i)(∂Y ) =

m⋃
i=1

gi(∂Y ) = B,

where the third to last equality follows from normality of H in G and the second to
last from the fact that for each i there exists a unique `(i) such that gjgi = g`(i)h`(i)
for some h`(i) ∈ H. Since Y is closed, ∂Y is nowhere dense, and hence so is gi(∂Y )
for i = 1, . . . ,m. Thus B is a proper subset of X. Therefore, B is a G-invariant
subspace of X and since the action of G on X is CAM, it follows that B is finite
and only consists of G-periodic points. Since ∂Y ⊂ B, it follows that the same
holds for ∂Y .

Since G-periodic points are dense in X, it follows that H-periodic points are
dense in the interior Int(Y ) of Y . Since Y = Int(Y ) ∪ ∂Y and ∂Y consists of
H-periodic points, the second statement follows. �

Theorem 3.3. Any finite index subgroup of a CAM group is CAM.

Proof. Suppose (X,G) is CAM and let H be a finite index subgroup of G. We first
show that we can reduce to the case that H is normal in G. Since H has finite
index, there exists a subgroup K ⊆ H such that K is finite index and normal in G.
Suppose there exists a compact K-invariant subspace Z ⊂ X such that the system
(Z,K) is CAM. Let {αi}mi=1 be a set of left coset representatives of K in H. Setting
Z ′ =

⋃m
i=1 αi(Z), we have that Z ′ ⊆ X is H-invariant and compact. We claim that

the system (Z ′, H) is CAM. It is easy to check that periodic points (with respect to
the H-action) are dense in Z ′, since K-periodic points are dense in Z and each αi
takes a K-periodic point in Z to a K-periodic point (and hence H-periodic point)
in αi(Z).

Now suppose A is a nonempty proper compact H-invariant subset of Z ′. It
follows that A′ = A ∩ αj(Z) 6= ∅ for some j ∈ {1, . . . ,m}. Furthermore, A′ is
K-invariant, since K is normal in G and both A and αj(Z) are K-invariant. Since

K is normal, this implies that α−1j (A′) ⊂ Z is also K-invariant. Since (Z,K) is

CAM, we must have α−1j (A′) = Z, and so αj(Z) ⊂ A. But A is H-invariant and

so Z ′ ⊂ A, and it follows that the system (Z ′, H) is CAM.
We can thus assume that H is a finite index, normal subgroup in G. Let CH

denote the set of all compact H-invariant subsets of X which contain some point
with an infinite H-orbit. The set CH is partially ordered by setting Y1 � Y2 if
Y1 ⊂ Y2. Suppose {Yj}j∈J is a totally ordered collection of such subsets and let
{g1, . . . , gm} be a set of left coset representatives for H in G.

Set Y∞ =
⋂
j∈J Yj . We claim that Y∞ contains a point with infinite H-orbit.

Since H has finite index in G, it suffices to show that Y∞ contains a point with infi-
niteG-orbit. In fact we show the stronger statement that for any x ∈ X with infinite
G-orbit, we have that Y∞ contains at least one point from the set {g−11 x, . . . , g−1m x};
since each of these points has infinite G-orbit, the claim follows. Arguing by con-
tradiction, if this does not hold, then for each 1 ≤ i ≤ m, there exists ji such
that g−1i (x) 6∈ Yji . We set J = max1≤i≤m{ji}, and note that J is finite since

any finite subset of a totally ordered set has a maximum. Then g−1i (x) 6∈ YJ for
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all i ∈ {1, . . . ,m}, since YJ ⊂ Yji for all i ∈ {1, . . . ,m}. This then implies that
x 6∈ giYJ for all i ∈ {1, . . . ,m}. However, YJ belongs to CH and hence contains some
point with infinite H-orbit. Thus by Lemma 3.2, it follows that

⋃m
i=1 gi(Yj) = X,

a contradiction. In particular, Y∞ contains a point with infinite H-orbit.
Thus we have that Y∞ belongs to CH and is an upper bound for the collection

{Yj}j∈J . By Zorn’s Lemma, there is a maximal element in Z ∈ CH , and this element
Z is a compact H-invariant subset of X containing some point with an infinite H-
orbit. We claim the action of H on Z is a CAM H-system. If x ∈ Z has infinite
H-orbit, then that orbit is dense, for otherwise its orbit closure would be a proper
compact H-invariant subspace of Z containing an infinite H-orbit, contradicting
the maximality of Z. Thus if A is a proper compact H-invariant subset of Z, then
A consists only of H-periodic points. Consider A′ =

⋃m
i=1 αi(A) ⊂ X. Then A′ is

compact, nonempty G-invariant set in X, and it is proper since it consists only of
G-periodic points. Since (X,G) is CAM it follows that A′ is finite and so A is also
finite.

Finally, by Lemma 3.2, the H-periodic points are dense in Z. �

We note the following corollary.

Corollary 3.4. Suppose H is group acting by a CAM action on X and that H is
a finite index subgroup of a group G. If there is an action of G on X extending the
action of H, then the G action is also CAM.

Example 3.5 (Free group). Since SL2(Z) is CAM (see Example 2.4), Theorem 3.3
implies the free group on two generators is CAM. More generally, the free group
on n generators for any n ≥ 3 is a finite index subgroup of the free group on 2
generators, and so is also CAM.

Another corollary of Theorem 3.3 gives a sharpening of Corollary 3.4.

Corollary 3.6. Suppose G acts on X by a CAM action and let H ⊂ G be a finite
index normal subgroup. Suppose there exists x ∈ X whose H-orbit is dense in X.
Then the action of H on X is CAM.

Proof. Let Z denote an H-invariant set in X on which the action of H is CAM,
which exists by Theorem 3.3. By Lemma 3.2 we have

⋃m
i=1 gi(Z) = X. Moreover,

it is straightforward to check that each gi(Z) is H-invariant and the action of H
on any gi(Z) is also CAM. Now if x ∈ X has dense H-orbit we may choose gi such
that x ∈ gi(Z), and then X = gi(Z). �

It follows immediately from Theorem 3.3 and Example 2.5 that any finite index
subgroup of the automorphism group of a mixing shift of finite type is CAM. Com-
bining the same example with Corollary 3.6 we obtain the stronger statement for
shifts of finite type.

Corollary 3.7. If H is a finite index subgroup of the automorphism group of a
mixing shift of finite type (X,σ), then the H-subaction on X is a CAM system.

4. Existence of a Z-CAM system

4.1. Construction of a CAM Z-system with multiple nonatomic, ergodic
invariant measures. In this section we show that a Z-CAM subshift exists. More-
over, the Z-CAM subshift that we construct has two different, non-atomic ergodic
measures.
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4.1.1. Setting notation. We build the system as a subshift on the alphabet A =
{0, 1}. The system is defined recursively, defining the language of the system in
levels. The first three levels play a special role in starting the inductive process of
defining the words on higher levels. Beginning with level four, we use a recursive
formula to define the words, and the words constructed are of two types: those used
to form the periodic points, denoted by the letter w with appropriate subscripts,
and those designed to produce dense orbits, denoted by the letters a and b with
appropriate subscripts. Throughout the construction, the periodic words have two
subscripts, with the second coordinate denoting the level at which the word is
introduced, whereas the density words come in two types (a and b) but only have
a single subscript, also indicating the level at which such a word is introduced. We
remark that, in our construction, we build a single infinite word that has the desired
property, and its orbit closure is the CAM system. We do not explicitly build the
language in our construction.

We fix a sequence {εk}∞k=1 for use throughout our construction, which we refer
to as a frequency sequence: assume that {εk}∞k=1 is a sequence of non-negative real
numbers that satisfy

∑∞
k=1 εk < 1/3, and further assume that for any N ≥ 1, we

have

(3)

∞∑
n=N

εn <
1

3N
.

To keep track of frequency counts, for words u, v ∈ {0, 1}∗ of finite length, define
N (u, v) to be the number of times u occurs as a subword of v.

4.1.2. Level 1 words (introduction of the words w). There are 2 words on this level,

w(1,1) = 0 and w(2,1) = 1,

and we call these the level-1 words. Set W1 = {w(1,1), w(2,1)}.

4.1.3. Level 2 words (introduction of the words a and b). There are 4 words on this
level, playing two distinct roles as distinguished by two types: we have periodic
words w and density words a, b. This level also introduces a parameter n2 > 1 that
controls the densities (note that this is the first level with such a parameter and so
there is no n1; the meaning of this is clarified momentarily). We define:

w(1,2) = wn2+1
(1,1)

w(2,2) = wn2+1
(2,1)

a2 = w(1,1)w
n2

(2,1)

b2 = wn2

(1,1)w(2,1)

The parameter n2 is chosen sufficiently large such that N (0, a2)/|a2| < ε1 and
N (1, b2)/|b2| < ε1. In other words, a2 consists almost entirely of 1’s, b2 almost
entirely of 0’s, and all of the words constructed on this level have the same length.
We call the four words introduced at this point the level-2 words and we write
W2 = {w(1,2), w(2,2), a2, b2}. For use in verifying properties of the words constructed
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at higher levels, we describe the basic properties of the words constructed at level
2.

Proposition 4.1. For all distinct words u, v ∈ W2, the word u does not occur as
a subword of vv.

Proof. First we establish the statement when v ∈ {w(1,2), w(2,2)} and u ∈ W2 is
distinct from v. Neither a2 nor b2 occurs as a subword of w(i,2)w(i,2) for i = 1, 2,
because those words are 1-periodic whereas a2 and b2 are not. The word w(1,2)

does not occur as a subword of w(2,2)w(2,2), since the symbol 0 does not occur in
w(2,2) but does occur in w(1,2) and similarly w(2,2) does not occur as a subword of
w(1,2)w(1,2). This establishes the statement when v ∈ {w(1,2), w(2,2)}.

Next we establish the statement when v ∈ {a2, b2} and u ∈ W2 is distinct
from v. Neither w(1,2) nor w(2,2) occurs as a subword of a2a2, as the longest 1-
periodic subword of a2a2 has length n2 · |w(2,1)| < |w(i,2)| for i = 1, 2. Similarly,
neither can occur as a subword of b2b2. We claim that the word a2 does not
occur as a subword of b2b2 (the argument that b2 does not occur as a subword of
a2a2 is analogous). By construction, N (0, a2)/|a2| < ε1 and so N (0, a2) < ε1|a2|.
Therefore N (1, a2) ≥ (1−ε1)|a2|. Similarly, N (0, b2b2) ≥ (1−ε1)|b2b2|. If a2 occurs
as a subword of b2b2 then, using the fact that |a2| = 1

2 |b2b2|, we obtain

N (1, b2b2) ≥ N (1, a2) ≥ (1− ε1)|a2| =
1− ε1

2
|b2b2|.

This implies that N (0, b2b2) ≤
(
1− 1−ε1

2

)
|b2b2| = 1+ε1

2 |b2b2|. Combined with our

earlier observation that N (0, b2b2) ≥ (1− ε1)|b2b2|, we get 1− ε1 ≤ 1+ε1
2 . However,

this can not occur because we assumed that ε1 <
∑∞
k=1 εk < 1/3. Therefore the

statement holds when v ∈ {a2, b2}. �

4.1.4. Level 3 words (recursive definitions of periodic and density words). There
are 6 words on this level, again playing distinct roles distinguished by two types:
periodic words w and density words a, b. Again we introduce a parameter n3 > 1
to control the densities. Define the words by setting

w(1,3) = w5n3+4
(1,2)

w(2,3) = w5n3+4
(2,2)

w(3,3) = a5n3+4
2

w(4,3) = b5n3+4
2

a3 = an3
2 w(1,2)a

n3
2 w(2,2)a

n3
2 a2a

n3
2 b2a

n3
2

b3 = bn3
2 w(1,2)b

n3
2 w(2,2)b

n3
2 a2b

n3
2 b2b

n3
2

and choose n3 such that N (0, a3)/|a3| < ε1 + ε2 and N (1, b3)/|b3| < ε1 + ε2 (we
note that this is possible because N (0, a2)/|a2| < ε1 and a3 is mainly made of
concatenated copies of a2, similarly N (1, b2)/|b2| < ε1). We further assume that
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n3 has been chosen sufficiently large such that for u ∈ {w(1,2), w(2,2), b2}, we have

(4)
N (u, a3a3)

|a3a3|
<

ε2
|u|(2|u| − 1)

,

and note that this can be done since a3a3 is mainly made of concatenated copies
of a2a2 and u does not arise as a subword of a2a2. Note that if |u| = 1 then
the denominator on the right-hand side of this inequality is 1, so this formula
generalizes the analogous inequality (and assumptions about the size of n2) in
the previous level. Using the same reasoning, this choice of n3 ensures that if
u ∈ {w(1,2), w(2,2), a2}, then we have

(5)
N (u, b3b3)

|b3b3|
<

ε2
|u|(2|u| − 1)

.

Finally note that by choosing n3 sufficiently large, we can guarantee that |a2|/|a3|
is as small as desired. For use in the proof of the next proposition describing
occurrences of words and subwords, we have a specific constant we would like it to
be smaller than. Let p be the minimal period of the word a2a2 which, by symmetry
of the construction, is also the minimal period of b2b2. We assume that n3 is chosen
to be sufficiently large such that

(6)
|a2|
|a3|

<
1

6p
− 1

9|a2|
.

We call the words constructed on this level the level-3 words and set W3 to be the
set of all level-3 words.

Proposition 4.2. For any choice of distinct words u, v ∈ W3, the word u does not
occur as a subword of vv.

Proof. We check that for each v ∈ W3 and u ∈ W3 \{v}, the word u does not occur
as a subword of vv, checking cases depending on the type of word v.

First consider when v = w(i,3) for some i ∈ {1, 2}. We consider two cases,
depending on the choice of u. First suppose that u ∈ {w(3,3), w(4,3), a3, b3}. By
Proposition 4.1, neither a2 nor b2 occurs as a subword of w(i,2)w(i,2). The word
vv = w(i,3)w(i,3) is the self-concatenation of a large number of copies of w(i,2) and
so neither a2 nor b2 occurs as a subword of vv. But at least one of a2 and b2
occurs as a subword of u, and so u cannot be a subword of vv. Next suppose
u = w(j,3) where j ∈ {1, 2} and j 6= i. The word u = w(j,3) is not a subword of
vv = w(i,3)w(i,3) because w(j,2) is not a subword of w(i,2)w(i,2) and, as noted, vv
is the self-concatenation of copies of w(i,2) while w(j,3) is the self-concatenation of
copies of w(j,2). Thus u does not occur as a subword of vv for any u ∈ W3 \ {v}.
Thus the statement holds when v ∈ {w(1,3), w(2,3)}.

Next consider when v = w(i,3) for some i ∈ {3, 4}. Again we have two cases,
depending on the choice of u. First suppose u ∈ {w(1,3), w(2,3), a3, b3}. By Proposi-
tion 4.1, neither w(1,2) nor w(2,2) occurs as a subword of a2a2 or of b2b2. The word
vv = w(i,3)w(i,3) is the self-concatenation of a large number of copies of a2 or of b2,
and so neither w(1,2) nor w(2,2) occurs as a subword of vv. However at least one of
w(1,2) and w(2,2) occurs in u, and so u is not a subword of vv. We next consider
when j ∈ {3, 4} \ {i} and let u = w(j,3). Then one of the words u and v is the
self-concatenation of many copies of a2 and the other is the self-concatenation of
many copies of b2. By Proposition 4.1, a2 is not a subword of b2b2 and b2 is not a
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subword of a2a2, and so u is not a subword of vv. This establishes the statement
when v ∈ {w(3,3), w(4,3)}.

Finally consider when v ∈ {a3, b3}. We give the argument when v = a3, and
the argument for b3 is similar. Again, we have two cases, depending on the
choice of u. First suppose u ∈ {w(1,3), w(2,3), w(4,3), b3}. By (4), we know that
N (x, a3a3)/|a3a3| < ε2/|x|(2|x| − 1) for x ∈ W2 \ {a2}. For any such x and any
particular occurrence of x in a3a3, there are 2|x| − 1 subwords of a3a3 that have
length |x| and partially (or completely) overlap this occurrence of x. This means
that, for any x ∈ W2 \ {a2}, if we look at the collection of all locations within a3a3
where x occurs, we have

subwords of length |x| in a3a3 that partially overlap an occurrence of x

|a3a3|
<
ε2
|x|
.

Let p be the minimal period of the word a2a2. Note that p ≤ |a2|. Since all four
words in W2 have the same length, we deduce that

(7)
N (a2, a3a3)

|a3a3|
≥ 1

p
− 3 · ε2

|a2|
because a3a3 is made by concatenating words in W2. On the other hand, we claim
that N (a2, u) ≤ 6|a2|. To check this, note that if u = b3, any occurrence of a2 in
u must partially overlap w(1,2), w(2,2) or a2 in the definition of b3, because it does
not occur as a subword of b2b2, and there are only 6|a2| locations that have such
overlaps. If u 6= b3 then a2 does not occur in u, by Proposition 4.1 and the claim
follows. If u occurred as a subword of a3a3, such an occurrence would account for
half of the letters in a3a3 and we could write

a3a3 = xuy

where |x| + |y| = |a3a3|
2 . We refer to this decomposition of a3a3 in what follows.

Any occurrence of a2 in a3a3 is either entirely within u, entirely within x, entirely
within y, or partially overlaps x (or y) and partially overlaps u. There are at most
|x| + |y| = |a3a3|/2 many possible locations for a2 to occur in a3a3 that are not
entirely within u, and these locations consist of two disjoint intervals of starting
points. Because the minimal period of a2a2 is p, within either of these intervals,
the density with which a2 occurs is at most 1/p as any higher density would force
two occurrences of a2 whose starting points differ by less than p and therefore
contradicting minimality of p. This implies that

N (a2, a3a3)

|a3a3|
≤ # times a2 occurs not entirely in u

|a3a3|
+

# times a2 occurs in u

|a3a3|

≤ 1

2p
+

6|a2|
|a3a3|

=
1

2p
+ 3 · |a2|

|a3|
.

But, by construction, by Equation (6) we have that |a2|/|a3| < 1
6p −

1
9|a2| , and so

N (a2, a3a3)/|a3a3| < 1
p−

1
3|a2| . By our choice of frequency sequence in (3), it follows

that ε2 <
∑∞
k=2 εk < 1/9 and so equation (7) implies that N (a2, a3a3)/|a3a3| ≥

1
p −

1
3|a2| . This is a contradiction, and so u cannot occur as a subword of vv = a3a3.

Lastly, suppose that u = w(3,3). By construction, u is the self-concatenation of
5n3 + 4 copies of a2. Then u cannot occur as a subword of vv = a3a3 because

a3a3 = an3
2 w(1,2)a

n3
2 w(2,2)a

n3
2 a2a

n3
2 b2a

n3
2 an3

2 w(1,2)a
n3
2 w(2,2)a

n3
2 a2a

n3
2 b2a

n3
2
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and so the largest power m such that am2 occurs as a subword of a3a3 satisfies
m ≤ 2n3 + 2, by Proposition (4.1) (any larger power would force an occurrence of
an element of W2 \ {a2} as a subword of am2 ). This establishes the statement when
v = a3. The argument for v = b3 is similar, with the roles played by a2 and b2
switched. �

4.1.5. Preparing to build the level k + 1 words (inductive assumptions). For k ≥ 3,
we construct the words on level k + 1 using the words on level k. Again they
come in two varieties (periodic words and density words), and again we have a
parameter nk+1 > 1 chosen to guarantee that the words have the desired properties.
Inductively, we assume that we have constructed the level-k words: these are words
w(i,k) for all 1 ≤ i ≤ 2k − 2, words ak and bk, with all of these words having equal
length, and we denote the collection of all level-k words byWk. We further assume
that we have defined the parameter nk ∈ N, and these constructions satisfy the
following properties:

(i) For 1 ≤ i ≤ 2k − 4, we have

w(i,k) = w
(2k−1)nk+2(k−1)
(i,k−1) .

(ii) We have

w(2k−3,k) = a
(2k−1)nk+2(k−1)
k−1 .

(iii) We have

w(2k−2,k) = b
(2k−1)nk+2(k−1)
k−1 .

(iv) We have

ak =

(
2k−4∏
i=1

ank

k−1w(i,k−1)

)
· ank

k−1 · (ak−1) · ank

k−1 · (bk−1) · ank

k−1.

(v) We have

bk =

(
2k−4∏
i=1

bnk

k−1w(i,k−1)

)
· bnk

k−1 · (ak−1) · bnk

k−1 · (bk−1) · bnk

k−1.

We further assume that for any word u constructed on some level m with m < k,
other than when u = am, we have

(8)
N (u, akak)

|akak|
<

1

|u|(2|u| − 1)

k−1∑
j=m

εj

and that for any m < k and any level-m word u other than u = bm, we have

N (u, bkbk)

|bkbk|
<

1

|u|(2|u| − 1)

k−1∑
j=m

εj .

Finally we assume that

(9) for any u, v ∈ Wk with u 6= v, the word u does not occur as a subword of vv.



20 VAN CYR, BRYNA KRA, AND SCOTT SCHMIEDING

4.1.6. Level-(k+1) words (recursive definition). We apply the analogous procedure
used for level 3 and construct the periodic and density words, this time assuming
the properties given in ((i)) through ((v)).

(vi) For 1 ≤ i ≤ 2k − 2, define the first group of periodic words by setting

w(i,k+1) = w
(2k+1)nk+1+2k
(i,k) .

(vii) Define the next periodic word by setting

w(2k−1,k+1) = a
(2k+1)nk+1+2k
k .

(viii) Define the last periodic word by setting

w(2k,k+1) = b
(2k+1)nk+1+2k
k .

(ix) Define the first type of density word by setting

ak+1 =

2(k+1)−4∏
i=1

a
nk+1

k w(i,k)

 · ank+1

k · (ak) · ank+1

k · (bk) · ank+1

k .

(x) Define the second type of density word by setting

bk+1 =

2(k+1)−4∏
i=1

b
nk+1

k w(i,k)

 · bnk+1

k · (ak) · bnk+1

k · (bk) · bnk+1

k .

We choose the parameter nk+1 sufficiently large such that for every m < k+ 1 and
every word u ∈ Wm \ {am}, we have

(10)
N (u, ak+1ak+1)

|ak+1ak+1|
<

1

|u|(2|u| − 1)

k∑
j=m

εj .

When m < k, recall that N (u, akak)/|akak| < (
∑k−1
j=m εj)/|u|(2|u| − 1) by (8).

Therefore it is possible to satisfy (10) because, for nk+1 large, the word ak+1 pri-
marily consists of concatenated copies of ak and so we can make the left hand side

of (10) as close as we want to (
∑k−1
j=m εj)/|u|(2|u| − 1); in particular we can make

it less than the right hand side of (10). When m = k it is possible to satisfy (10)
because u does not occur as a subword of akak and, again, ak+1 is primarily made
of concatenated copies of ak. Similarly we choose nk+1 sufficiently large such that
if u ∈ Wm \ {bm}, then we have

(11)
N (u, bk+1bk+1)

|bk+1bk+1|
<

1

|u|(2|u| − 1)

k∑
j=m

εj .

For our next estimate, let pk be the minimal period of the word akak. For use in a
future argument, we finally require that nk+1 is sufficiently large such that

(12)
|ak|
|ak+1|

<
1

(4k − 2)pk
− 1

3k · |ak|
.

This is possible as long as the right-hand side of the inequality is positive. Note
that pk ≤ |ak| and that 4k − 2 < 3k because k ≥ 3, and that all of the words
constructed on level k+1 have equal length. We call the words constructed in ((vi))
through ((x)) the level-(k+1) words and letWk+1 denote the set of all level-(k+1)
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words. Therefore, the only thing that is required now to complete our inductive
construction is to prove the following proposition.

Proposition 4.3. For any choice of distinct words u, v ∈ Wk+1, the word u does
not occur as a subword of vv.

Proof. As on level three, fixing some v ∈ Wk+1, we argue that for all u ∈ Wk+1\{v},
the statement holds. Again, we split the argument into cases depending on the type
of the word v.

First suppose that v ∈ {w(i,k+1) : 1 ≤ i ≤ 2k − 2} for some 1 ≤ i ≤ 2k − 2. We
start by considering the case that u ∈ {w(2k−1,k+1), w(2k,k+1), ak+1, bk+1}. By (9),
neither ak nor bk occurs as a subword of w(i,k)w(i,k), and by construction, at least
one of ak or bk occurs as a subword of u. Since vv = w(i,k+1)w(i,k+1) is the self-
concatenation of a large number of copies of w(i,k), u cannot be a subword of vv.
Next consider when u = w(j,k+1) for some j ∈ {1, 2, . . . , 2k − 2} with j 6= i. Again
by (9), w(i,k) is not a subword of w(j,k)w(j,k). But w(i,k+1) is the concatenation of
many copies of w(i,k) and w(j,k+1) is the concatenation of many copies of w(j,k), and
so an occurrence of u in vv forces an occurrence of w(i,k) in the word w(j,k)w(j,k),
a contradiction. Thus u cannot occur as a subword of vv. This establishes the
statement for v ∈ {w(i,k+1) : 1 ≤ i ≤ 2k − 2}.

Next assume v = w(i,k+1) for some i ∈ {2k − 1, 2k}. We first consider when
u ∈ {w(j,k+1) : 1 ≤ j ≤ 2k − 2} ∪ {ak+1, bk+1}. By (9), none of the words in the
set {w(j,k) : 1 ≤ j ≤ 2k − 2} occurs as a subword of akak or of bkbk. But by
construction, the word w(i,k+1)w(i,k+1) is the self-concatenation of a large number
of copies of ak or bk, and we know that at least one of the words in {w(j,k) : 1 ≤
j ≤ 2k − 2} occurs as a subword of u. Therefore u cannot occur as a subword of
vv. Now instead assume j ∈ {2k − 1, 2k} with j 6= i. This time, one of the words
w(i,k+1) and w(j,k+1) is the concatenation of many copies of ak and the other is the
concatenation of many copies of bk. By (9), ak is not a subword of bkbk and bk is
not a subword of akak. Thus u cannot be a subword of vv, proving the statement
for v ∈ {w(2k−1,k+1), w(2k−2,k+1)}.

We are left with checking the case that v ∈ {ak+1, bk+1}. As on level three,
we only include the argument when v = ak+1, as the other case is similar. As
before, there are two possibilities and we treat them separately. First suppose
u ∈ {w(j,k+1) : 1 ≤ j ≤ 2k− 2} ∪ {w(2k,k+1), bk+1}. By (10), for any w ∈ Wk \ {ak}
we have that

N (w, ak+1ak+1)

|ak+1ak+1|
<

εk
|w|(2|w| − 1)

.

For each particular occurrence of w in ak+1ak+1, there are 2|w| − 1 subwords of
length |w| that partially overlap this occurrence. This means that

# of length |w| subwords of ak+1ak+1 that partially overlap an occurrence of w

|ak+1ak+1|
<

εk
|w|

.

Recall that pk is the minimal period of the word akak. Note that pk ≤ |ak|. Since
|Wk \{ak}| = 2k−1 and all words inWk have the same length, we deduce from (3)
that

(13)
N (ak, ak+1ak+1)

|ak+1ak+1|
≥ 1

pk
− (2k − 1)εk

|ak|
.

On the other hand, by (9), ak does not occur as a subword of w(i,k+1) for any
k ≤ 2k − 2 (because it is not a subword of w(i,k)w(i,k)), ak does not occur as
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a subword of w(2k,k+1) (because it is not a subword of bkbk), and ak occurs as
a subword of bk+1 at most (4k − 2) · |ak| times (because it does not occur as a
subword of bkbk and so all occurrences have to partially overlap bk and some w(i,k)

or partially overlap the copy of ak that appears in the definition of bk+1). Therefore,

N (ak, u) ≤ (4k − 2) · |ak|.

If u occurred as a subword of ak+1ak+1, such an occurrence would account for half
of the letters in ak+1ak+1 and we could write

ak+1ak+1 = xuy

where |x|+ |y| = |ak+1ak+1|/2. Any occurrence of ak in ak+1ak+1 would either be
entirely inside of u, entirely inside of x, entirely inside of y, or partially overlap x
(or y) and u. Any occurrence of ak that is not entirely inside u must either start in
x or end in y (but never both because |u| > |ak|), so there are at most |ak+1ak+1|/2
locations where ak could occur that are not entirely inside u and the density of
occurrences of ak in concatenated copies of akak is 1/pk. Thus we can estimate the
relation between the number of occurrences and the length:

N (ak, ak+1ak+1)

|ak+1ak+1|
≤ # times ak occurs not entirely in u

|ak+1ak+1|
+

# times ak occurs in u

|ak+1ak+1|

≤ 1

2pk
+

(4k − 2) · |ak|
|ak+1ak+1|

<
1

2pk
+ (2k − 1) · |ak|

|ak+1|
.

By equation (12), we have that |ak|
|ak+1| <

1
(4k−2)pk −

1
3k·|ak| and so N (ak,ak+1ak+1)

|ak+1ak+1| <
1
pk
− 2k−1

3k|ak| . On the other hand, by equation (3), we have εk <
∑∞
m=k εm < 1

3k
and

so, by equation (13), we also have N (ak,ak+1ak+1)
|ak+1ak+1| ≥ 1

pk
− 2k−1

3k|ak| , a contradiction.

Therefore u cannot occur as a subword of vv = ak+1ak+1. The last possiblity
we need to consider is when u = w(2k−2,k+1). Then u is the concatenation of
(2k+ 1)nk+1 + 2(k+ 1) copies of ak. But the largest power m such that amk occurs
as a subword of ak+1ak+1 satisfies m ≤ 2nk+1 + 2, because any larger power would
force an occurrence of and element of Wk \ {ak} (that occurs in ak+1ak+1) as a
subword of amk , contradicting (9). Thus we have the statement for v = ak+1, and
the argument for v = bk+1 is similar, reversing the roles played by ak and bk. �

4.1.7. Construction of the shift (X,σ). For all k > 2, note that ak+1 begins and
ends with the word ak. Therefore there is a unique x ∈ {0, 1}Z such that for all
k > 2 we have

x1x2 . . . x|ak| = x−|ak|+1x−|ak|+2 . . . x0 = ak.

Set X to be the orbit closure of x in {0, 1}Z and for the remainder of this section,
we study the properties of the shift (X,σ).

Proposition 4.4. If k > 2, any y ∈ X can be written as a bi-infinite concatenation
of words constructed on level k. In the special case that y = x, more holds: whenever
n ≡ 1 (mod |ak|) the subword xnxn+1 . . . xn+|ak|−1 is a level-k word.

Furthermore, if n ≡ 1 (mod |ak|) and xnxn+1 . . . xn+2|ak|−1 = uv is the concate-
nation of two level-k words, then either u = v or uv is one of the following:

(1) akw(i,k) or w(i,k)ak for some 1 ≤ i ≤ 2k − 2;
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(2) bkw(i,k) or w(i,k)bk for some 1 ≤ i ≤ 2k − 2;
(3) akbk;
(4) bkak.

Moreover, for any y ∈ X there exists 0 ≤ r < |ak| and a sequence {nm}∞m=1

such that nm ≡ r (mod |ak|) for all m ∈ N and limm→∞ σnmx = y. With this
value of r fixed, whenever n ≡ r + 1 (mod |ak|) then ynyn+1 . . . yn+2|ak|−1 = uv is
a concatenation of two level-k words and either u = v or uv is one of the forms
listed in (1), (2), (3), (4).

Proof. It suffices to prove this for the transitive point x used to define (X,σ), as
then the result for general y ∈ X follows by noting that every level-k word has the
same length and y is in the orbit closure of x.

By construction, all level k words have the same length and for any s > 0,
ak+s is a concatenation of level-(k + s − 1) words. Therefore, ak+s is a concate-
nation of level-k words. For each s, the word x−|ak+s|+1 . . . x|ak+s| = ak+sak+s
and so x−|ak+s|+1 . . . x|ak+s| can be written as a concatenation of level-k words and
xnxn+1 . . . xn+|ak|−1 is a level-k word for all n ≡ 1 (mod |ak|) with −|ak+s| < n ≤
|ak+s|. This holds for all s, and so x can be written as a concatenation of level-k
words and xnxn+1 . . . xn+|ak|−1 is such a word whenever n ≡ 1 (mod |ak|).

We next turn to the second statement on the form of concatenated level-k words.
We consider a level-(k + s) word w and proceed by induction on s > 0. It suffices
to show that when w is written as a concatenation of level-k words and uv is the
concatenation of two adjacent level-k words that occur when w is parsed in this
way, then either u = v or uv one of forms given in (1)–(4). By the definition
of the level-(k + 1) words, the result clearly holds for s = 1. For s = 2, this
follows immediately by writing the level-2 words as concatenations of level-1 words.
Inductively, assume this holds for all level-(k + s) words for some s > 1, and we
consider the level-(k + s + 1) words. When 1 ≤ i ≤ 2(k + s + 1) − 4, the word
w(i,k+s+1) is the self-concatenation of w(i,k+s) a large number of times. But, since
s > 1, w(i,k+s) is itself a self-concatenation of level-(k + s − 1) words, this means
that any two adjacent level-k words that occur in w(i,k+s)w(i,k+s) already occurred
within w(i,k+s−1) (if i ≤ 2(k + s) − 3) or within ak+s−1 or bk+s−1. By induction,
the result holds for all s ≥ 1.

For the final statement of this proposition, note that if y ∈ X, then y ∈ O(x)
and so exists a sequence {nm}∞m=1 such that limm→∞ σnmx = y. Without loss of
generality, passing to a subsequence if necessary, we can assume that there exists
0 ≤ r < |ak| such that nm ≡ r (mod |ak|) for all m. So whenever n ≡ r + 1
(mod |ak|) then ynyn+1 . . . yn+2|ak|−1 is the same as a subword of x that begins at
some location congruent to 1 (mod |ak|). �

Proposition 4.5. The system (X,σ) is a CAM subshift.

Proof. Let x ∈ X denote the transitive point used to define the system. We start
by showing that the periodic points are dense in X. For any k > 2, the word
akak = x−|ak|+1 . . . x|ak| and so the orbit of any periodic point that contains akak

as a subword is within distance 1/2|ak|+1 < 1/22
k−1+1 of the point x. For each fixed

k and any s > 0, the word w(2k−1,k+s) is the self-concatenation of many copies of ak.
Therefore there is a periodic point pk ∈ X that is the bi-infinite self-concatenation
of copies of ak. It follows that x = limk→∞ pk. Since x is a transitive point and is
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approximated arbitrarily well by periodic points, it then follows that the periodic
points are dense in X.

We next check that if y ∈ X is not periodic, then it has a dense orbit. If,
for all k > 2, the word akak occurs as a subword of y, then the orbit of y is
dense since points in its orbit would approximate x arbitrarily well. We proceed by
contradiction, assuming the existence of some y ∈ X that is not periodic and does
not have a dense orbit. Thus we can assume that there is some k > 2 such that
akak does not occur as a subword of y.

The word ak+1 does not occur as a subword of y, because this would force an
occurrence of akak in y. By Proposition 4.4, y can be written as a bi-infinite
concatenation of words constructed on level k + 2 and, therefore, can be written
as a bi-infinite concatenation of w(1,k+2), . . . , w(2k−2,k+2) as well as w(2k,k+2) and
w(2k+2,k+2). We omit the words w(2k−1,k+2), w(2k+1,k+2), ak+2, and bk+2 from the
list of possible level k + 2 words because:

• w(2k−1,k+2) is the self-concatenation of many copies of ak;
• w(2k+1,k+2) is the self-concatenation of many copies of ak+1, which contains
akak as a subword;
• ak+2 has ak+1 as a subword and ak+1 has akak as a subword;
• bk+2 has ak+1 as a subword and ak+1 has akak as a subword.

Again applying to Proposition 4.4 to the words constructed on level k+2, whenever
uv are two adjacent level k+2 words that occur in x, we must have u = v since none
of the other forms listed in Proposition 4.4 can be written only using the words
w(1,k+2), . . . , w(2k−2,k+2) and w(2k+2,k+2). But then it follows that y is periodic, a
contradiction. Thus we have shown that (X,σ) is weakly CAM and is expansive,
and so by Proposition 2.19, the system (X,σ) is CAM. �

4.2. Invariant measures on the system. We continue letting (X,σ) denote the
system defined in Section 4.1.7.

Proposition 4.6. The system (X,σ) supports two nonatomic ergodic measures.

Proof. Our goal is to construct two (not necessarily ergodic) measures, µa and µb,
supported on X, and show the following:

(1) µa 6= µb (which we do by showing µa([0]) 6= µb([0]));
(2) almost every measure in the ergodic decomposition of µa is nonatomic;
(3) almost every measure in the ergodic decomposition of µb is nonatomic.

It follows from these facts that there exist two distinct, ergodic, nonatomic mea-
sures supported on X and, therefore, that CAM systems are capable of having this
property.

Let x ∈ X be the infinite word defined by the condition that for all k ≥ 1, we
have

ak = x1 . . . x|ak| = x−|ak|+1 . . . x0

and let x′ ∈ X be the infinite word defined by the condition that for all k ≥ 1, we
have

bk = x′1 . . . x
′
|ak| = x′−|ak|+1 . . . x

′
0.

For each k ≥ 3, set

νk,a :=
1

2|ak|

|ak|∑
m=−|ak|+1

δσm(x)
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and set

νk,b :=
1

2|bk|

|bk|∑
m=−|bk|+1

δσm(x′).

Let µa be a weak*-limit point of {νk,a}∞k=1 and let µb be a weak*-limit point of
{νk,b}∞k=1. Then for all k ≥ 1, we have

νk,a([0]) =
N (0, ak)

|ak|
≤

k∑
j=1

εj <
1

3
and νk,b([1]) =

N (1, bk)

|bk|
≤

k∑
j=1

εj <
1

3

and so in particular it follows that µa([0]) ≤ 1
3 and µb([1]) ≤ 1

3 . Let

µa =

∫
X

µxadµa(x) and µb =

∫
X

µxbdµb(x)

be the ergodic decompositions of µa and µb, respectively. Then we have

µa

({
x : µxa([1]) ≥ 2

3

})
> 0;(14)

µb

({
x : µxb ([0]) ≥ 2

3

})
> 0.(15)

Let p ∈ X be a periodic point. By construction of X, there is some k ∈ N and a
level-k word, u, such that p is a shift of the word · · ·uuuu · · · (because arbitrarily
long segments of p have to occur in ak+t as t → ∞). Fix ε > 0 and find m > k
such that

∑∞
j=m εj < ε. Let ũ be the level-m word that is |u|-periodic and is the

self-concatenation of a large number of copies of u. Since m > k, we have that
ũ 6= am and so for all t ≥ 0, it follows from Equation (8) that

N (ũ, am+tam+t)

|am+tam+t|
<

1

|ũ|(2|u| − 1)

∞∑
j=m

εj <
ε

|ũ|(2|u| − 1)
.

Therefore

νa,m+t([ũ]) <
ε

|ũ|(2|u| − 1)
+

|ũ| − 1

|am+tam+t|
for all t ≥ 0, as the second term on the right hand side is from possible occurrences
of ũ in x that are within distance |ũ| of the right edge of the rightmost copy of am+t.
Thus it follows that µa([ũ]) ≤ ε/|ũ|(2|u| − 1). Similarly, using the same argument
but replacing am by bm, it follows that µb([ũ]) ≤ ε/|ũ|(2|u| − 1). Repeating this
argument for any ε > 0, we conclude that

lim
c→∞

µa([uc]) = 0 and lim
c→∞

µb([u
c]) = 0.

This implies that µa({x : µxa is atomic and concentrated on p}) = 0 and, similarly,
that µb({x : µxb is atomic and concentrated on p}) = 0. Since the choice of p was
arbitrary, it follows that µa-almost every ergodic component of µa is nonatomic
and µb-almost every ergodic component of µb is nonatomic. However by (14), there
is a set of ergodic components of µa of positive µa-measure that give measure at
least 2/3 to the cylinder set [1], and hence there is at least one nonatomic ergodic
measure that does. Similarly, by (15) there is a nonatomic ergodic component of µb
that gives measure at most 1/3 to the cylinder set [1], and so there is at least one
nonatomic ergodic measure that does. It follows that these two nonatomic, ergodic
measures are distinct. �
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Combining Propositions 4.5 and 4.6, we have thus completed the proof of The-
orem 1.1 Some open quesitions and directions for exploration about the system
defined in 4.1.7 are contained in Section 6.

5. Zd-CAM system

5.1. The setup. In Section 4, we showed the existence of a symbolic Z-CAM
system and further showed that such a system can support two distinct nonatomic,
ergodic probability measures. In this section we generalize this result to Zd. The
inductive construction is similar to that in one dimension, but the added dimensions
complicate the counting of ways in which configurations can overlap, and so in the
initial levels of the construction we include all details. When the proofs become
close enough that changes are mainly changing notation, we omit the details.

Similar to the one dimensional case, we construct a Zd-subshift on the alphabet
{0, 1}, and the higher dimensional setting necessitates changes in some of the defi-
nitions. If S ⊆ Zd, we refer to S as a shape and define an S-word to be a function
w : S → {0, 1}. When w is an S-word, we let [w] denote any function whose domain
is a translate of S and we say [w] has the same shape as w; we let |w| denote the
number of integer points in S.

For the special case that S is rectangular, we make use of a notion of sub-

words. Assume that S =
∏d
i=1{1, 2, . . . ,mi} for some m1, . . . ,md ∈ N, T =∏d

i=1{1, 2, . . . ,m′i} with m′i ≤ mi for i = 1, . . . , d, let w : S → A be an S-word
and let v : T → A be a T -word. We say that v occurs as a subword of w if there ex-
ist k1 ≤ m1−m′1, . . . , kd ≤ md−m′d such that v(x1, . . . , xd) = w(x1+k1, . . . , xd+kd)
for all (x1, . . . , xd) ∈ T .

For fixed d, e1, . . . , ed, n ≥ 1 and function w : {1, 2, . . . , n}d → {0, 1}, define the
(e1 × e2 × · · · × ed)-fold self-concatenation of w to be the function

w(e1,...,ed) :

d∏
i=1

{1, 2, . . . , ein} → {0, 1}

defined by

w(e1,...,ed)(x1, . . . , xd) := w (x1 (mod n), x2 (mod n), . . . , xd (mod n)) .

For convenience, when d is clear from the context, we write w(e) as shorthand for
w(e,e,...,e).

If u1, . . . , uk : {1, 2, . . . , n}d → {0, 1} and e ≥ 2k + 4, define

P[u1, . . . , uk | w, e] : {1, 2, . . . , (2e+ 1)n}d → {0, 1}

to be the postcard function, where we consider u1, . . . , uk to be the stamp (thought
of as in the lower left corner) defined by:

Case 1 (the stamp): if (x1, . . . , xd) ∈ {2mn+1, . . . , (2m+1)n}×{2n+1, . . . , 3n}d−1
for some 1 ≤ m ≤ k, define

P[u1, . . . , uk | w, e](x1, . . . , xd) := um(x1 − 2mn, x2 − 2n, . . . , xd − 2n).

Case 2 (the rest of the postcard): if (x1, . . . , xd) /∈ {2mn + 1, . . . , (2m + 1)n} ×
{2n+ 1, . . . , 3n}d−1 for any 1 ≤ m ≤ k, we define

P[u1, . . . , uk | w, e](x1, . . . , xd) := w(e)(x1, . . . , xd)
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w w u1 w u2 w w w w w w w w

Figure 1. The postcard P[u1, u2 | w, 6] : {1, . . . , 13|w|} → {0, 1}

w w w w w w w w w

w w w w w w w w w

w w w w w w w w w

w w w w w w w w w

w w w w w w w w w

w w w w w w w w w

w w u1 w u2 w w w w

w w w w w w w w w

w w w w w w w w w

Figure 2. The postcard P[u1, u2 | w, 4] : {1, . . . , 9|w|}2 → {0, 1}

Examples of postcards in dimensions 1 and 2 are given in Figures 1 and 2.
We define N (u, v) to be the number of times u occurs as a subword of v. A

useful feature of the postcard function is that if u never occurs as a subword of
w(2), then for all 1 ≤ i ≤ k we have

lim
e→∞

N (u,P[u1, . . . , uk | w, e])
|P[u1, . . . , uk | w, e]|

= 0.

5.2. The construction. This construction proceeds recursively, in levels, and is
highly reminiscent of the construction of a Z-CAM subshift. The alphabet is A =
{0, 1}, and again, all parameters are tuned after the fact to give the resulting
system its properties. The first three levels are special and so we construct them
explicitly, and the recursive formula starts with level four. As previously, the second
coordinate of a subscript always denotes the level.

5.2.1. The frequency sequence. Pick a sequence {εk}∞k=1 of non-negative real num-
bers that satisfy

∞∑
k=N

εk <
1

3d+N−1
.

for all N ∈ N. We use this sequence throughout our construction.

5.2.2. Level 1 (introduction of the words w). There are 2 words on this level which
are both functions from {1}d to A, and we set

w(1,1)(1, . . . , 1) = 0 and w(2,1)(1, . . . , 1) = 1

5.2.3. Level 2 words (introduction of the words a and b). There are 4 words on this
level, playing two distinct roles as distinguished by two types: we have periodic
words w and density words a, b. This level also introduces a parameter n2 > 1 that
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controls the densities (we explain the meaning of this momentarily). All words at
this level are functions {1, 2, . . . , n2}d → A. We define:

w(1,2) = w
(n2)
(1,1) self-concatenation of copies of w(1,1)

w(2,2) = w
(n2)
(2,1) self-concatenation of copies of w(2,1)

a2 = P[w(2,1)|w(1,1), n2] all w(1,1) except a single copy of w(2,1)

b2 = P[w(1,1)|w(2,1), n2] all w(2,1) except a single copy of w(1,1)

The parameter n2 is chosen sufficiently large such that N (1, a2)/|a2| < ε1 and
N (0, b2)/|b2| < ε1. In other words, a2 consists almost entirely of 0’s and b2 al-
most entirely of 1’s. More explicitly, a2, b2 : {1, 2, . . . , n2}d → A and the only
point (x1, . . . , xd) in the domain of a2 where a2(x1, . . . , xd) = 1 is (x1, . . . , xd) =
(3, 3, . . . , 3). Similarly for b2(x1, . . . , xd) = 0.

We call the four words introduced at this point the level-2 words and we write
W2 = {w(1,2), w(2,2), a2, b2}. For use in verifying properties of the words constructed
at higher levels, we describe the basic properties of the words constructed at level
2.

Proposition 5.1. For all distinct words u, v ∈ W2, the word u does not occur as
a subword of v(2).

Proof. First we establish the statement when v ∈ {w(1,2), w(2,2)} and u ∈ W2 is

distinct from v. Neither a2 nor b2 occurs as a subword of w
(2)
(i,2) for i = 1, 2, because

w
(2)
(i,2) is a constant function, whereas a2 and b2 are not. The word w(1,2) does not

occur as a subword of w
(2)
(2,2), since the symbol 0 does not occur in w(2,2) but does

occur in w(1,2) and similarly w(2,2) does not occur as a subword of w
(2)
(1,2). This

establishes the statement when v ∈ {w(1,2), w(2,2)}.
Next we establish the statement when v ∈ {a2, b2} and u ∈ W2 is distinct

from v. Neither w(1,2) nor w(2,2) occurs as a subword of a
(2)
2 , as the largest m for

which there is a constant subword of shape {1, 2, . . . ,m}d in a
(2)
2 satisfies m < n2,

whereas any occurrence of w(i,2) forces a constant subword of shape {1, 2, . . . , n2}d.
Similarly, neither can occur as a subword of b

(2)
2 . We claim that the word a2 does

not occur as a subword of b
(2)
2 (the argument that b2 does not occur as a subword

of a
(2)
2 is analogous). By construction, N (1, a2)/|a2| < ε1 and so N (1, a2) < ε1|a2|.

Therefore N (0, a2) ≥ (1 − ε1)|a2|. Similarly, using the fact that b
(2)
2 consists of

concatenated copies of b2, we get N (1, b
(2)
2 ) ≥ (1 − ε1)|b(2)2 |. If a2 occurs as a

subword of b
(2)
2 then, using the fact that |a2| = 1

2d
|b(2)2 |, we obtain

N (0, b
(2)
2 ) ≥ N (0, a2) ≥ (1− ε1)|a2| =

1− ε1
2d
|b(2)2 |.

This implies that N (1, b
(2)
2 ) ≤

(
1− 1−ε1

2d

)
|b(2)2 | = 2d−1+ε1

2d
|b(2)2 |. Combined with

our earlier observation that N (1, b
(2)
2 ) ≥ (1 − ε1)|b(2)2 |, we have that 1 − ε1 ≤

2d−1+ε1
2d

. However, this contradicts our assumption that ε1 <
∑∞
k=1 εk <

1
3d
≤

1
2d+1

. Therefore the statement holds when v ∈ {a2, b2}. �
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5.2.4. Level 3 words (recursive definitions of periodic and density words). There
are 6 words on this level, again playing distinct roles distinguished by two types:
periodic words w and density words a, b. Again we introduce a parameter n3 > 1
to control the densities. Define the words by setting

w(1,3) = w
(5n3+4)
(1,2)

w(2,3) = w
(5n3+4)
(2,2)

w(3,3) = a
(5n3+4)
2

w(4,3) = b
(5n3+4)
2

a3 = P[w(1,2), w(2,2), a2, b2|a2, n3]

b3 = P[w(1,2), w(2,2), a2, b2|b2, n3],

meaning that the first four words periodize the words w(1,2), w(2,2), a2, and b2 (in
order), the second to last word is mostly concatenated a2’s with the words W2 as
a stamp, and the last word is mostly concatenated b2’s with the words W2 as a
stamp. We choose n3 such that N (1, a3)/|a3| < ε1 + ε2 and N (0, b3)/|b3| < ε1 + ε2
(we note that this is possible because N (1, a2)/|a2| < ε1 and a3 is mainly made of
concatenated copies of a2, similarly N (0, b2)/|b2| < ε1). We further assume that
n3 has been chosen sufficiently large such that for u ∈ {w(1,2), w(2,2), b2}, we have

(16)
N (u, a

(2)
3 )

|a(2)3 |
<

ε2
|u|(2|u| − 1)d

,

and note that this can be done since a
(2)
3 is mainly made of concatenated copies

of a
(2)
2 and u does not arise as a subword of a

(2)
2 . Using the same reasoning, this

choice of n3 ensures that if u ∈ {w(1,2), w(2,2), a2}, then we have

(17)
N (u, b

(2)
3 )

|b(2)3 |
<

ε2
|u|(2|u| − 1)d

.

Finally note that by choosing n3 sufficiently large, we can guarantee that |a2|/|a3|
is as small as desired, and for use in the proof of the next proposition describing

occurrences of words and subwords, we need a specific bound. Let a
(∞)
2 : Zd → A

be the infinite self-concatenation of a2 given by:

a
(∞)
2 (x1, . . . , xd) := a2(x1 (mod n2), . . . , xd (mod n2)).

Let V ⊆ Zd be the set of all period vectors of a
(∞)
2 : (v1, . . . , vd) ∈ V if and only if

a
(∞)
2 (x1, . . . , xd) = a∞2 (x1 + v1, . . . , xd + vd) for all (x1, . . . , xd) ∈ Zd. Then V is a

finite-index subgroup of Zd; let p be the index of V in Zd. Note that at any location

where a2 occurs as a subword of a
(2)
2 , say on the set

∏d
i=1{yi+1, yi+2, . . . , yi+n2},
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we get (y1, . . . , yd) ∈ V. Therefore, the number of times a2 occurs as a subword of

a
(2)
2 satisfies:

(18)
nd2
p
≤
∣∣{1, . . . , 2n2}d ∩ V∣∣ ≤ ∣∣{1, . . . , 2n2 − 1}d ∩ V

∣∣+ dnd−12

=
nd2
p

+ dnd−12 = nd2 ·
(

1

p
+

d

n2

)
.

We call the words constructed on this level the level-3 words and set W3 to be the
set of all level-3 words.

Proposition 5.2. For any choice of distinct words u, v ∈ W3, the word u does not
occur as a subword of v(2).

Proof. We check that for each v ∈ W3 and u ∈ W3 \{v}, the word u does not occur
as a subword of v(2), checking cases depending on the type of word v.

First consider when v = w(i,3) for some i ∈ {1, 2}. We consider two cases,
depending on the choice of u. First suppose that u ∈ {w(3,3), w(4,3), a3, b3}. By

Proposition 5.1, neither a2 nor b2 occurs as a subword of w
(2)
(i,2). The word v(2) =

w
(2)
(i,3) is the self-concatenation of a large number of copies of w(i,2) and so neither

a2 nor b2 occurs as a subword of v(2). But at least one of a2 and b2 occurs as a
subword of u, and so u cannot be a subword of v(2). Next suppose u = w(j,3) where

j ∈ {1, 2} and j 6= i. The word u = w(j,3) is not a subword of v(2) = w
(2)
(i,3) because

w(j,2) is not a subword of w
(2)
(i,2) and, as noted, v(2) is the self-concatenation of copies

of w(i,2) while w(j,3) is the self-concatenation of copies of w(j,2). We deduce that

u does not occur as a subword of v(2) for any u ∈ W3 \ {v}. Thus the statement
holds when v ∈ {w(1,3), w(2,3)}.

Next consider when v = w(i,3) for some i ∈ {3, 4}. Again we have two cases,
depending on the choice of u. First suppose u ∈ {w(1,3), w(2,3), a3, b3}. By Propo-

sition 5.1, neither w(1,2) nor w(2,2) occurs as a subword of a
(2)
2 or of b

(2)
2 . The word

v(2) = w
(2)
(i,3) is the self-concatenation of a large number of copies of a2 or of b2, and

so neither w(1,2) nor w(2,2) occurs as a subword of v(2). However at least one of

w(1,2) and w(2,2) occurs in u, and so u is not a subword of v(2). We next consider
when j ∈ {3, 4} \ {i} and let u = w(j,3). Then one of the words u and v is the
self-concatenation of many copies of a2 and the other is the self-concatenation of

many copies of b2. By Proposition 5.1, a2 is not a subword of b
(2)
2 and b2 is not a

subword of a
(2)
2 , and so u is not a subword of v(2). This establishes the statement

when v ∈ {w(3,3), w(4,3)}.
Finally consider when v ∈ {a3, b3}. We give the argument when v = a3, and

the argument for b3 is similar. Again, we have two cases, depending on the
choice of u. First suppose u ∈ {w(1,3), w(2,3), w(4,3), b3}. By (16), we know that

N (x, a
(2)
3 )/|a(2)3 | < ε2/|x|(2|x| − 1)d for x ∈ W2 \ {a2}. For any such x and any

particular occurrence of x in a
(2)
3 , there are (2|x| − 1)d subwords of a

(2)
3 that have

the shape [x] and partially (or completely) overlap this occurrence of x. This means

that, for any x ∈ W2 \ {a2}, if we look at the collection of all locations within a
(2)
3
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where x occurs, we have

# of subwords with shape [x] in a
(2)
3 that overlap an occurrence of x

|a(2)3 |
<
ε2
|x|
.

Recall that p is the index, in Zd, of the stabilizer subgroup of a
(∞)
2 : Zd → {0, 1}

(when acted on by Zd translations) and the number of occurrences of a2 as a

subword of a
(2)
2 satisfies (18). Since all four words in W2 have the same size, we

deduce from (16) that

(19)
N (a2, a

(2)
3 )

|a(2)3 |
≥ 1

p
− 3 · ε2

|a2|

because a
(2)
3 is made by concatenating words in W2. On the other hand, we claim

that N (a2, u) ≤ 3 · (2|a2| − 1)d. To check this, note that if u = b3, any occurrence
of a2 in u must partially overlap w(1,2), w(2,2) or a2 in the definition of b3, because

it does not occur as a subword of b
(2)
2 , and there are only 3 · (2|a2| − 1)d locations

that have such overlaps. If u 6= b3 then a2 does not occur in u, by Proposition 5.1
and the claim follows.

Now we return to showing that u does not occur as a subword of a
(2)
3 . For con-

tradiction, suppose u does occur as a subword of a
(2)
3 . Recall, from the definition,

that a
(2)
3 is primarily made of concatenated copies of a2 and there are three spe-

cific locations where the words w(1,2), w(2,2), b2 occur instead. Since u occurs as a

subword of a
(2)
3 this means u is primarily made of concatenated copies of a2. In

fact, allowing for the possibility that u occurs within a
(2)
3 in a location that overlaps

the copies of w(1,2), w(2,2), b2 and that there may be no copies of a2 that partially
overlap these words, we can still use (18) to estimate that

N (a2, u) ≥ ((n2n3 − 2n2)d · 1

p
− 3 · (2n2 − 1)d.

In more detail, recall that u : {1, 2, . . . , n2n3}d → {0, 1} has a domain which is a
cube in dimension d. The number (n2n3 − 2n2)d is the volume of the subcube
obtained by removing the border of length n2 from each side. Then, using (18),
((n2n3 − 2n2)d · 1

p gives the minimum number of occurrences of a2 within this

subcube if we assume that the subcube is entirely populated by occurrences of a
(2)
2 .

Finally we subtract off 3 · (2n2 − 1)d to account for the fact that this occurrence
of u might overlaps the words w(1,2), w(2,2), b2 in the definition of a3 and that no
word of size |a2| that partially overlaps these occurrences could be a2. Nonetheless,
note that this lower bound on N (a2, u) is larger than our previous upper bound of
3 ·(2|a2|−1)d provided |a2|/|a3| is sufficiently small (and we make this assumption).

Lastly, suppose that u = w(3,3). By construction, u is the self-concatenation of

many copies of a2. If u occurred within v(2) = a
(2)
3 then it would either contain

or partially overlap an occurrence of w(1,2) which is used in the definition of a3.

Since w(1,2) does not occur as a subword of a
(2)
2 , this occurrence of u cannot contain

w(1,2) as a subword so it can only occur in a location that partially overlaps w(1,2).
But |u| = |v| and u is the periodic concatenation of copies of a2, so this occurrence
of u overlaps the copy of w(1,2) in all 2d copies of a3 that appear in the definition

of a
(2)
3 . By periodicity of u, w(1,2) occurs as a subword of a

(2)
2 , which is impossible.
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This establishes the statement when v = a3. The argument for v = b3 is similar,
with the roles played by a2 and b2 switched. �

5.2.5. Preparing to build the level k + 1 words (inductive assumptions). For k ≥ 3,
we construct the words on level k + 1 using the words on level k. Again they
come in two varieties (periodic words and density words), and again we have a
parameter nk+1 > 1 chosen to guarantee that the words have the desired properties.
Inductively, we assume that we have constructed the level-k words: these are words
w(i,k) for all 1 ≤ i ≤ 2k − 2, words ak and bk, with all of these words having the

same domain: {1, 2, . . . ,
∏k
i=1 ni}d, where n1, . . . , nk ∈ N are parameters we assume

have been defined already, and we denote the collection of all level-k words by Wk.
We further assume that these constructions satisfy the following properties:

(1) For 1 ≤ i ≤ 2k − 4, we have

w(i,k) = w
(nk)
(i,k−1).

(2) We have

w(2k−3,k) = a
(nk)
k−1 .

(3) We have

w(2k−2,k) = b
(nk)
k−1 .

(4) We have

ak = P[w(1,k−1), w(2,k−1), . . . , w(2k−4,k−1), ak−1, bk−1|ak−1, nk].

(5) We have

bk = P[w(1,k−1), w(2,k−1), . . . , w(2k−4,k−1), ak−1, bk−1|bk−1, nk].

We further assume that for any word u constructed on some level m with m < k,
other than when u = am, we have

(20)
N (u, a

(2)
k )

|a(2)k |
<

1

|u|(2|u| − 1)d

k−1∑
j=m

εj

and that for any m < k and any level-m word u other than u = bm, we have

N (u, b
(2)
k )

|b(2)k |
<

1

|u|(2|u| − 1)d

k−1∑
j=m

εj .

Finally we assume that
(21)

for any u, v ∈ Wk with u 6= v, the word u does not occur as a subword of v(2).

5.2.6. Level-(k+1) words (recursive definition). We apply the analogous procedure
used for level 3 and construct the periodic and density words, this time assuming the
properties given in (1) through (5). We define a parameter, nk+1, whose properties
are discussed below and we set the following notation.

(1) For 1 ≤ i ≤ 2k − 2, define the first group of periodic words by setting

w(i,k+1) = w
(nk+1)
(i,k) .

(2) Define the next periodic word by setting

w(2k−1,k+1) = a
(nk+1)
k .
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(3) Define the last periodic word by setting

w(2k,k+1) = b
(nk+1)
k .

(4) Define the first type of density word by setting

ak+1 = P[w(1,k−1), w(2,k−1), . . . , w(2k−2,k−1), ak, bk|ak, nk+1].

(5) Define the second type of density word by setting

bk+1 = P[w(1,k−1), w(2,k−1), . . . , w(2k−2,k−1), ak, bk|bk, nk+1].

We choose the parameter nk+1 sufficiently large such that for every m < k+ 1 and
every word u ∈ Wm \ {am}, we have

(22)
N (u, a

(2)
k+1)

|a(2)k+1|
<

1

|u|(2|u| − 1)d

k∑
j=m

εj .

When m < k, recall that N (u, a
(2)
k )/|a(2)k | < (

∑k−1
j=m εj)/|u|(2|u| − 1)d by (20).

Therefore it is possible to satisfy (22) because, for nk+1 large, the word ak+1 pri-
marily consists of concatenated copies of ak and so we can make the left hand side

of (22) as close as we want to (
∑k−1
j=m εj)/|u|(2|u| − 1)d; in particular we can make

it less than the right hand side of (22). When m = k it is possible to satisfy (22)

because u does not occur as a subword of a
(2)
k and, again, ak+1 is primarily made

of concatenated copies of ak. Similarly we choose nk+1 sufficiently large such that
if u ∈ Wm \ {bm}, then we have

(23)
N (u, b

(2)
k+1)

|b(2)k+1|
<

1

|u|(2|u| − 1)d

k∑
j=m

εj .

For our next estimate, let pk be the index, in Zd, of the group of periods of the

word a
(∞)
k defined by

a
(∞)
k (x1, . . . , xd) := ak(x1 (mod nk), . . . , xd (mod nk)).

We finally require that nk+1 is sufficiently large such that

(24)
|ak|
|ak+1|

<
1

(4k − 2)pk
− 1

3k · |ak|
This is possible as long as the right-hand side of the inequality is positive. Note
that pk ≤ |ak| and that 4k − 2 < 3k because k ≥ 3. Note that all of the words

constructed on level k+ 1 have the same domain: {1, 2, . . . ,
∏k+1
i=1 ni}d. We call the

words constructed in (1) through (5) the level-(k + 1) words and let Wk+1 denote
the set of all level-(k + 1) words. Therefore, the only thing that is required to
complete our inductive construction is to prove the following proposition.

Proposition 5.3. For any choice of distinct words u, v ∈ Wk+1, the word u does
not occur as a subword of v(2).

Proof. The proof of this proposition is analogous to that of Proposition 5.2. Fixing
some v ∈ Wk+1, we argue that for all u ∈ Wk+1 \ {v}, the statement holds. Again,
we split the argument into cases depending on the type of the word v.

First consider when v ∈ {w(i,k+1) : 1 ≤ i ≤ 2k − 2}. We consider two cases, de-
pending on the choice of u. First suppose that u ∈ {w(2k−1,k+1), w(2k,k+1), ak+1, bk+1}.
By Proposition 5.1, neither ak nor bk occurs as a subword of w

(2)
(i,k). The word
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v(2) = w
(2)
(i,k+1) is the self-concatenation of a large number of copies of w(i,k) and so

neither ak nor bk occurs as a subword of v(2). But at least one of ak and bk occurs
as a subword of u, and so u cannot be a subword of v(2). Next suppose u = w(j,k+1)

where j ∈ {1, 2, . . . , 2k − 2} and j 6= i. The word u = w(j,k+1) is not a subword

of v(2) = w
(2)
(i,k+1) because w(j,k) is not a subword of w

(2)
(i,k) and, as noted, v(2) is

the self-concatenation of copies of w(i,k) while w(j,k+1) is the self-concatenation of

copies of w(j,k). Thus u does not occur as a subword of v(2) for any u ∈ Wk+1 \{v}.
Thus the statement holds when v ∈ {w(i,k+1) : 1 ≤ i ≤ 2k − 2}.

Next consider when v = w(i,k+1) for some i ∈ {2k − 1, 2k}. Again we have
two cases, depending on the choice of u. First suppose u ∈ {w(j,k+1) : 1 ≤ j ≤
2k−2}∪{, ak+1, bk+1}. By Proposition 5.1, none of the words in the set {w(j,k) : 1 ≤
j ≤ 2k − 2} occurs as a subword of a

(2)
k or of b

(2)
k . But by construction, the

word w
(2)
(i,k+1) is the self-concatenation of a large number of copies of ak or of

bk, whereas at least one of the words in {w(j,k) : 1 ≤ j ≤ 2k − 2} occurs as a

subword of u. Therefore u occurs as a subword of v(2). We next consider when
j ∈ {2k − 1, 2k} \ {i} and let u = w(j,k+1). Then one of the words u and v is the
self-concatenation of many copies of ak and the other is the self-concatenation of

many copies of bk. By Proposition 5.1, ak is not a subword of b
(2)
k and bk is not a

subword of a
(2)
k , and so u is not a subword of v(2). This establishes the statement

when v ∈ {w(2k−1,k+1), w(2k,k+1)}.
Finally consider when v ∈ {ak+1, bk+1}. We give the argument when v = ak+1,

and the argument for bk+1 is similar. Again, we have two cases, depending on the
choice of u. First suppose u ∈ Wk+1 \ {w(2k−1,k+1), ak+1}. By (22), we know that

N (x, a
(2)
k+1)/|a(2)k+1| <

1
|x|(2|x|−1)d

∑k
j=m for x ∈ Wk \ {ak}. For any such x and any

particular occurrence of x in a
(2)
k+1, there are (2|x|− 1)d subwords of a

(2)
k+1 that have

shape |x| and partially (or completely) overlap this occurrence of x. This means

that, for any x ∈ Wk \ {ak}, if we look at the collection of all locations within a
(2)
k+1

where x occurs, we have

# of subwords of shape |x| in a
(2)
k+1 that overlap an occurrence of x

|a(2)k+1|
<

1

|x|

k∑
j=m

.

Recall that pk is the index, in Zd, of the stabilizer subgroup of a
(∞)
k : Zd → {0, 1}

(when acted on by Zd translations) and the number of occurrences of ak as a

subword of a
(2)
k satisfies (18). Since all 2k − 2 words in Wk have the same size, we

deduce from (16) that

(25)
N (ak, a

(2)
k+1)

|a(2)k+1|
≥ 1

pk
− (2k − 2) · 1

|x|

k∑
j=m

because a
(2)
k+1 is made by concatenating words in Wk. On the other hand, we claim

that N (ak, u) ≤ (2k − 1) · (2|ak| − 1)d. To check this, note that if u = bk+1,
any occurrence of ak in u must partially overlap elements of {w(i,k) : 1 ≤ i <
2k − 2} ∪ {ak}, in the postcard function definition of bk+1, because it does not

occur as a subword of b
(2)
k , and there are only (2k − 1) · (2|ak| − 1)d locations that
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have such overlaps. If u 6= bk+1 then ak does not occur in u, by Proposition 5.1
and the claim follows.

Now we return to showing that u does not occur as a subword of a
(2)
k+1. For

contradiction, suppose u does occur as a subword of a
(2)
k+1. Recall, from the defini-

tion, that a
(2)
k+1 is primarily made of concatenated copies of ak and there are 2k− 1

specific locations where the words in the set {w(i,k) : 1 ≤ i < 2k − 2} ∪ {bk} occur

instead. Since u occurs as a subword of a
(2)
k+1 this means u is primarily made of

concatenated copies of ak. In fact, allowing for the possibility that u occurs within

a
(2)
k+1 in a location that overlaps the copies of {w(i,k) : 1 ≤ i < 2k − 2} ∪ {bk} and

that there may be no copies of ak that partially overlap these words, we can still
use (18) to estimate that

N (ak, u) ≥ ((nk+1 − 2)

k∏
i=2

ni)
d · 1

pk
− (2k − 1) · (2nk − 1)d.

The reasoning for this is analogous to that of Level 3.
Lastly, suppose that u = w(2k−3,k+1). By construction, u is the self-concatenation

of many copies of ak. If u occurred within v(2) = a
(2)
k+1 then it would either contain

or partially overlap an occurrence of w(1,k) which is used in the postcard function

definition of ak+1. Since w(1,k) does not occur as a subword of a
(2)
k , this occurrence

of u cannot contain w(1,k) as a subword so it can only occur in a location that
partially overlaps w(1,k). But |u| = |v| and u is the periodic concatenation of copies

of ak, so this occurrence of u overlaps the copy of w(1,k) in all 2d copies of ak+1 that

appear in the definition of a
(2)
k+1. By periodicity of u, w(1,k) occurs as a subword

of a
(2)
k , which is impossible. This establishes the statement when v = ak+1. The

argument for v = bk+1 is similar, with the roles played by ak and bk switched. �

5.2.7. Summarizing the construction and its properties. The remainder of the con-
struction is parallel to that given in the case when d = 1. We have built a unique

function x : Zd → {0, 1} whose restriction to the cube {1 −
∏k
i=1 ni,

∏k
i=1 ni}d is

a
(2)
k , and the Zd-subshift we define is the orbit closure of this function in {0, 1}Zd

.
The proof that this system is a weakly CAM system is parallel to that given when
d = 1: any element of this system is either periodic (meaning has finite orbit under
the action of Zd) or contains ak as a subword for all k, and so has dense orbit.
The fact that it is CAM again follows from Proposition 2.19 because the system is
expansive and weakly CAM. The argument that this system has two non-atomic,
ergodic measures is again parallel to that for d = 1: passing to a weak*-convergent
subsequence of the empirical measures associated to the function x, and doing

the same with the analogous function {1 −
∏k
i=1 ni,

∏k
i=1 ni}d is b

(2)
k . As in the

case when d = 1, almost every ergodic component of each of these measures are
nonatomic and these measures are distinct because they give different measure to
the cylinder set {x ∈ X : x(0, 0, . . . , 0) = 0}.

6. Further directions

We conclude with several questions about properties of CAM systems.

Question 6.1. What are the automorphisms of a CAM G-system (X,T ), meaning
what are all homeomorphsisms S : X → X such that S ◦ Tg = Tg ◦ S for all g ∈ G?
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As an example, for the Z-system defined in 4.1.7, we can easily check that the au-
tomorphism group of this particular system contains the bit flip map (interchanging
the letters 0 and 1). However, we have little further insight into the automorphism
group and its properties for this system or, more generally, whether there exist
nontrivial constraints on the automorphism group of a CAM system.

Question 6.2. What are the possible entropies for a CAM system? What are the
possible growth rates of complexity for CAM Zk-subshifts?

In particular, this question is of interest for Z-CAM systems and we do not know
the entropy of the system defined in 4.1.7. This leads to a related question about
chaotic systems:

Question 6.3. Does every chaotic system with positive entropy have a proper
infinite subsystem?

If there exists a positive entropy CAM system, then the answer is no, in contrast
to the behavior along subsequences as shown in [13]. However, we do not know if
any of our examples have positive entropy.

If a group G admits a faithful action with dense periodic points, then we show
in Proposition 3.1 that the group is necessarily residually finite. It seems plausible
that this condition is in fact sufficient, and so we propose the following:

Conjecture 6.4. Every residually finite group is CAM.

In Proposition 2.19, we show that an expansive and weakly CAM system is a
CAM system. However the converse we show is only that a CAM system is weakly
CAM, and we ask if this can be improved:

Question 6.5. Is every CAM system expansive?

Note that it is shown in [1, 10] that any Z-CAM system satisfies sensitivity to
initial conditions. Still, we suspect that the answer to the above question is no, but
do not have a counterexample.
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