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Abstract. We study multiple ergodic averages along IP sets, meaning
we restrict iterates in the averages to all finite sums of some infinite se-
quence of natural numbers. We give criteria for convergence and diver-
gence in mean of these multiple averages and derive sufficient conditions
for convergence to the projection onto the space of invariant functions.
For a class of sequences that, roughly speaking, only have rational ob-
structions to such a limit, we show that the behavior is controlled by
nilsystems. We also consider pointwise convergence, obtaining conver-
gence and a formula for a set of functions on nilsystems that are dense
in L2. Finally, we show that certain correlations have optimally large
intersections along an IP set.

1. Introduction

1.1. IP convergence. Since Furstenberg’s proof [20] of Szemerédi’s The-
orem [39] using ergodic theory, dynamical methods have been used to prove
numerous generalizations (some examples include [22, 9, 7, 23, 24]). Among
the many generalizations, we focus on the IP version of Szemerédi’s theo-
rem. An IP, short for infinite parallelepiped or idempotent depending on
the context, is defined as all the finite sums of some sequence (n j) j∈N and
an IP-set is a set containing an IP (for technical reasons, we deviate from
the standard definition and allow an IP to be a multiset). Furstenberg and
Katznelson [23] showed that for any IP-set, any set of natural numbers with
positive upper Banach density contains arbitrary long arithmetic progres-
sions whose common step lies in that IP. To prove this refinement, they
change the type of convergence studied, introducing taking a limit along
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IP-sets. This type of limit has been used in other contexts to obtain further
combinatorial and ergodic generalizations, including for example in [10].

In using ergodic methods to prove these results, one is naturally led to
study multicorrelation sequences, meaning sequences of the form

(1.1) a(n) =
∫

X

k∏
i=0

fi(T inx) dµ(x),

where X = (X,B, µ,T ) is an invertible measure preserving system and
f0, . . . , fk ∈ L∞(µ) (we defer precise definitions and further background
to Section 2). Taking all functions to be the indicator function of some
set with positive measure, showing that the lim inf of a multicorrelation
sequence is positive corresponds to proving a recurrence statement, and
such results have led to generalizations of Szemerédi’s theorem along sub-
sequences. Convergence in mean has been shown for many multicorrelation
sequences, including [30, 43, 25, 40]. Further refinements have been given,
such as large intersections for the indicator function of a set in a multicor-
relation [7, 16, 19, 15] (see also [2, 38, 37, 3, 1] for extensions to abelian
groups beyond Z).

For each of these types of results (recurrence, convergence, and large
intersections), it is natural to ask if there are IP versions, and this is our
focus. We start in Section 3 by giving necessary and sufficient conditions
for mean convergence of an average along an IP. Using spectral criteria, in
Theorem 3.3, we show when such an average for a function converges to its
projection onto the invariant σ-algebra. This allows us to deduce sufficient
conditions for convergence along an IP in Section 3.2 and an example of
divergence along an IP in Section 3.3. In particular, we show that for IP
sequences with rational spectrum (see Definition 3.7) we can describe the
limit (Theorem 3.8), and this is the class of IPs for which we can describe
more detailed behavior (Theorem 5.2).

In Section 4, we turn our attention to multiple ergodic averages along an
IP. Proving convergence for these multiple averages requires the develop-
ment of IP versions of the tools used for linear averages, including a version
of the van der Corput Lemma (Lemma 4.3), a version of Gowers-Host-Kra
seminorms (Definition 4.5), and IP cubic measures (Definition 4.6). This
allows us to show (Theorem 4.2) that for sequences with rational spectrum,
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the behavior of the multiple ergodic average along an IP is controlled by the
same factors that control the well understood case of linear averages.

We then use the tools developed to derive several applications. In Theo-
rem 5.2, we give a limit formula for certain multiple averages along IPs, and
this in turn is used to derive a large intersection property for progressions
of length three and four along an IP with rational spectrum. The ergodic
version of these results are given in Theorems 6.2 and 6.4, and via vari-
ant of Furstenberg’s correspondence principle for ergodic systems (see [7,
Proposition 3.1]), we immediately deduce an application in the integers (see
Definition 6.1 for the notion of IP density). To state the result, recall that if
E ⊆ Z, we define the upper Banach density d∗(E) by

d∗(E) = lim
N→∞

sup
M∈Z

|E ∩ {M + 1, . . . ,M + N}|
N

.

Theorem 1.1. Let (n j) j∈N be a sequence of natural numbers with rational
spectrum and let E ⊆ Z be a set with d∗(E) > 0. Then for all coprime
integers ℓ1, ℓ2 ∈ Z and all ε > 0, we have that both

dIPΦ

{
n ∈ IP

(
(n j) j∈N

)
: d∗

(
E ∩ (E − ℓ1n) ∩ (E − ℓ2n)

)
> d∗(E)3 − ε

}
and

dIPΦ

{
n ∈ IP

(
(n j) j∈N

)
: d∗

(
E ∩ (E − ℓ1n) ∩ (E − ℓ2n) ∩ (E − (ℓ1 + ℓ2)n)

)
> d∗(E)4 − ε

}
are positive for any increasing Følner sequence Φ = (ΦN)N∈N.

As a sample application (see Exmaple 2.4), this applies to the IP gener-
ated by 1, 10, 100, . . . , which generates the set of all numbers in base 10
that can be written only using the digits 0 and 1.

1.2. Open questions. It is natural to ask if the sets of large intersections in
Theorem 1.1 are large with respect to other measurements of largeness. One
phrasing of this question is the following syndetic version of this question.

Question 1.3. Let (n j) j∈N be a sequence of natural numbers with rational
spectrum, let E ⊆ Z be a set with positive upper Banach density d∗(E) > 0,
and let ε > 0. Do finitely many translates of the set

{n ∈ IP
(
(n j) j∈N

)
: d∗

(
E ∩ (E − n) ∩ (E − 2n)

)
> d∗(E)3 − ε}

cover IP
(
(n j) j∈N

)
? Does the analogous statement hold for four term arith-

metic progressions?
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From the example in Theorem B.1, we know that there exist IPs for which
the set of large intersections is trivial, and this leads to the next question.

Question 1.4. Are there IPs other than those with rational spectrum for
which the set of large intersections in Theorem 1.1 for three (or four) sets
is nonempty?

A related question on these intersections is if there is some other bound
for which the large intersection property holds for all IPs. It follows from
Furstenberg and Katznelson [23] that there exists a constant C > 0 such that

(1.2) {n ∈ IP
(
(n j) j∈N

)
: d∗

(
E ∩ (E − n) ∩ (E − 2n)

)
> C}

is nonempty, and it further follows from [8] that C = C(d∗(E)) is a constant
depending only on d∗(E). This leads to the next question.

Question 1.5. Let E ⊆ N with d∗(E) = δ for some δ > 0. What is the
optimal value of C = C(δ) in (1.2)?

We note that we phrase this as the optimal value, as in Theorem B.1 we
show that C(δ) ≤ δ−c log δ for some absolute constant c > 0.

A last question that we pose is on IP pointwise convergence.

Question 1.6. Let X = (X,B, µ,T ) be an ergodic invertible measure pre-
serving system, let (n j) j∈N be a sequence with rational spectrum, and let
f ∈ L∞(µ). Does the limit

lim
N→∞
E

n∈IPΦN

(
(n j) j∈N

)T n f (x)

exist for µ-almost every x ∈ X?

While such a result is of interest on its own, it would also simplify the
computations of the limit of an average along an IP in nilsystems, leading
to simplifications of the proofs in Section 5.

Acknowledgements. The first author was partially supported by the Na-
tional Science Foundation grant DMS-2348315. The second author was
partially supported by the National Science Foundation grant DMS-1926686.
We thank Ethan Ackelsberg for useful discussions during the preparation of
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2. Background and adaptations for IP sequences

2.1. Measure preserving systems. An invertible measure preserving sys-
tem X = (X,B, µ,T ) is a quadruple in which (X,B, µ) is a probability space
and T : X → X is an invertible, measurable, measure preserving trans-
formation (meaning that µ(A) = µ(T−1(A)) for all measurable A ⊆ X).
When the context is clear, we shorten this and refer to an invertible measure
preserving system as a system. Throughout, we assume that all systems
X = (X,B, µ,T ) are regular, meaning that X is a compact metric space, B is
the Borel-σ algebra, and µ is a regular measure.

Given a system X = (X,B, µ,T ), let L2(µ) denote the Hilbert space of all
complex valued square integrable functions on X modulo µ-almost every-
where equivalence. We make the usual abuse of notation, using T both
for the transformation on X and for the the associated unitary operator
T : L2(µ) → L2(µ) defined by f 7→ f ◦ T for f ∈ L2(µ). The measure
preserving system is ergodic if the only T -invariant functions are constant
µ-almost everywhere.

Let S1 denote the one dimensional circle. For t ∈ S1, the t-eigenspace is
the closed Hilbert space consisting of all f ∈ L2(µ) satisfying T f = t · f , and
any nonzero function f ∈ L2(µ) in the t-eigenspace is an eigenfunction with
eigenvalue t. For any t ∈ S1, we let Pt : L2(µ) → L2(µ) denote orthogonal
projection onto the t-eigenspace.

2.2. Factors and cocycles. If X = (X,B, µ,T ) and Y = (Y,D, ν, S ) are
systems, we say that Y is a factor of X (or equivalently X is an extension
of Y) if there exists a measurable map π : X → Y such that πµ = ν and
S ◦π = π◦T holds µ-almost everywhere. When the map π is also invertible
with a measurable inverse, we say that the systems X and Y are isomorphic.

If Y = (Y,Y, ν, S ) is a factor of the system X = (X,B, µ,T ) with fac-
tor map π : X → Y and f ∈ L2(µ), let E( f | Y) denote the conditional
expectation of f onto Y , defined as the unique function in L2(ν) such that∫
π−1(A)

f dµ =
∫

A
E( f | Y) dν for all measurable set A ⊂ Y. To avoid confu-

sion, we use E( f | Y) to denote the lift of E( f | Y) to L2(µ).
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Let X = (X,BX, µX,T ) be a system and K = (K,BK , µK) be a compact
abelian group equipped with the Borel σ-algebra and Haar measure. A co-
cycle on X with values in K is a measurable map ρ : X → K. The extension
defined by ρ is the system X ×ρ K = (X × K,BX × BK , µX × µK ,Tρ), where

Tρ(x, u) = (T x, ρ(x) + u).

A cocycle ρ : X → K gives rise to an extended map ρ : Z × X → K defined
by (IdK denotes the identity in K)

ρ(n, x) =


∑n−1

i=0 ρ(T ix) n ≥ 1
IdK n = 0
−

∑0
i=n+1 ρ(T ix) n ≤ −1

and
T n
ρ (x, u) = (T nx, ρ(n, x) + u).

Two cocycles ρ, ρ′ : X → K are cohomologous if there exists a measur-
able map F : X → K such that ρ(x) = ρ′(x) + F(T x) − F(x). We note that if
ρ, ρ′ are cohomologous then the systems X×ρ K and X×ρ′ K are isomorphic
and the isomorphism is given by (x, t) 7→ (x, t − F(x)).

Definition 2.1 (Continuous vertical characters). Let X = (X,BX, µX,T ) be
a system, let K be a compact abelian group, and let ρ : X → K be a cocycle.
A function f : X ×ρ K → C is a continuous vertical character if there exists
a character χ : K → S1 and a continuous function g : X → C such that
f (x, k) = g(x) · χ(k).

We note for use in the sequel that it follows from the Stone-Weierstrass
theorem that the space spanned by the continuous vertical characters is
dense in the continuous functions C(X ×ρ K).

Lemma 2.2. Let X = (X,BX, µX,T ) be a system, let K be a compact abelian
group and ρ : X → K a cocycle. The space spanned by the continuous
vertical characters on X ×ρ K is dense in C(X ×ρ K).

2.3. Definition of an IP.

Definition 2.3. If (n j) j∈N is a sequence of natural numbers, define IP
(
(n j) j∈N

)
to be the multiset containing all finite sums of the sequence (n j) j∈N, meaning

IP
(
(n j) j∈N

)
= {ni1 + · · · + niℓ : i1, . . . , iℓ are distinct},
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with the convention that the empty sum 0 is included. We refer to the num-
bers (n j) j∈N as the generators, and when the generators are clear from the
context we refer to this simply as an IP.

Our definition differs slightly from some uses in the literature, where
there is no assumption that 0 lies in the IP and an IP is defined as a set
rather, than a multiset. The assumption that an IP contains 0 is merely
for notational convenience, but the use of a multiset is necessary for our
analysis. We could avoid this by taking the generators to be a sequence
(n j) j∈N that grows sufficiently fast such that n j >

∑ j−1
i=1 ni for all j ∈ N, but

we prefer to work in the more general setting. We note that in the literature,
a set is sometimes called an IP-set if it contains an IP. However, as we also
prove convergence results, we can not adopt that convention.

Example 2.4. Set n j = 10 j−1 for all j ≥ 1. Then IP
(
(n j) j∈N

)
is the set of all

natural numbers that can be written in base 10 only using the digits 0 and 1,
meaning that

IP
(
(n j) j∈N

)
= {0, 1, 10, 11, 100, 101, 110, 111, 1000, . . . }.

Note that this IP is a set, not a multiset, as all finite sums are distinct. If
instead we take the generators n j = 2 j−1 for j ≥ 1, then IP

(
(n j) j∈N

)
= N.

It is easy to see that there are many subsets of integers that are not IPs.
For example, it is easy to check that an IP contains infinitely many multiples
of a given positive integer.

2.4. Averages along an IP. A Følner sequence Φ = (ΦN)N∈N in N is a
sequence of finite subsets of natural numbers satisfying

(2.1) lim
N→∞

|(a + ΦN)∆ΦN |

|ΦN |
= 0

for all a ∈ N, where ∆ denotes the symmetric difference. A standard ex-
ample of a Følner sequence is taking intervals, such as ΦN = [1,N] or
ΦN = [N2,N2 + N]. We say that a Følner sequence ΦN is increasing if
ΦN = [M, aN] for some fixed number M and a sequence aN tending to infin-
ity as N → ∞.

To define averages along an IP, we adapt Følner sequences to our context.
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Definition 2.5. Let (n j) j∈N be a sequence of natural numbers and Φ =
(ΦN)N∈N be a Følner sequence in N. The IP-Følner sequence associated
to (ΦN)N∈N is the sequence

IPΦN

(
(n j) j∈N

)
= {ni1 + · · · + niℓ : i1, . . . , iℓ ∈ ΦN are distinct}.

If the Følner sequence (ΦN)N∈N is increasing, we say that the IP-Følner se-
quence IPΦN

(
(n j) j∈N

)
is increasing. When the generating sequence (n j) j∈N

is clear from the context, we omit it from the notation.

Given a Følner sequence Φ = (ΦN)N∈N in N and sequence (an)n∈N, we use
the shorthand notation

E
n∈IPΦN

(
(n j) j∈N

)an =
1

|IPΦN

(
(n j) j∈N

)
|

∑
n∈IPΦN

(
(n j) j∈N

) an,

and when the generators are clear from the context, we write En∈IPΦN
an.

This allows us to define ergodic averages along IPs.

Definition 2.6 (The ergodic average). Let X = (X,B, µ,T ) be an invertible
measure preserving system, let (n j) j∈N be a sequence of natural numbers, let
(ΦN)N∈N be a Følner sequence, and let f ∈ L2(µ). The ergodic average of f
along the IP-Følner sequence IPΦN

(
(n j) j∈N

)
is defined to be the limit

(2.2) lim
N→∞
E

n∈IPΦN

(
(n j) j∈N

)T n f

taken in L2(µ).

Considering the ergodic average along IP[1,N]
(
(2 j−1) j∈N

)
, von Neumann’s

mean ergodic theorem states that this average exists for all f ∈ L2(µ) and
converges to the projection onto the T -invariant functions. In contrast, we
give examples of IP-Følner sequences where the ergodic averages do not
converge, and examples where the averages converge but the limit is not
projection onto the T -invariant functions.

3. Ergodic averages along an IP-sequence

3.1. Convergence along an IP-Følner sequence. In this section, we give
necessary and sufficient conditions in Theorem 3.3 for mean convergence
of ergodic averages along an IP-Følner sequence, with criteria for when the
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limit is the projection onto the T -invariant functions. We start by recalling
some standard definitions and setting notation.

Let δ1 denote the Dirac function on the circle S1, meaning

(3.1) δ1(α) =

1 α = 1
0 α , 1,

Our first condition for convergence is a consequence of the spectral theorem
for unitary operators.

Theorem 3.1. Let (n j) j∈N be a sequence of natural numbers and let Φ =
(ΦN)N∈N be a Følner sequence. The following are equivalent:

(1) For all invertible measure preserving systems X = (X,B, µ,T ) and
all f ∈ L2(µ), the ergodic averages (2.2) along IPΦN

(
(n j) j∈N

)
exists,

(2) The limit

(3.2) lim
N→∞
E

n∈IPΦN

(
(n j) j∈N

)αn

exists for all α ∈ S1.

Furthermore, the following are equivalent:

(3) For all invertible measure preserving systems X = (X,B, µ,T ) and
all f ∈ L2(µ), the ergodic averages (2.2) along IPΦN

(
(n j) j∈N

)
con-

verges to the projection onto the T-invariant functions.
(4) The limit in (3.2) is equal to δ1(α).

Proof. We start by proving the equivalence of (1) and (2). First suppose
that for every invertible measure preserving system X = (X,B, µ,T ) and all
f ∈ L2(µ), the ergodic averages along IPΦN

(
(n j) j∈N

)
exist. Given α ∈ S1,

take X to be the ergodic rotation on S1 by α and let f : X → S1 be the
natural embedding. Then,

(3.3) En∈IPΦN
T n f =

(
En∈IPΦN

αn
)
· f

and it follows immediately that the limit (3.2) exists. Conversely, suppose
that (3.2) exists for all α ∈ S1 and let dρ denote the projection valued
measure for T , meaning that

T n =

∫
S1

tn dρ(t)
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for all n ∈ N. Then by the Lebesgue dominated convergence theorem,

(3.4) lim
N→∞
En∈IPΦN

T n =

∫
S1

lim
N→∞
En∈IPΦN

tn dρ(t) =
∫
S1
ϕ(t) dρ(t),

where ϕ(t) = limN→∞ En∈IPΦN
tn is the pointwise limit which exists by as-

sumption. In particular, we see that the ergodic average converges for all
f ∈ L2(µ).

To check the equivalence of (3) and (4), note that iff α = 1, it is immediate
that the limit (3.2) equals 1. Supposing that (3) holds, assume that α , 1
and again take X to be the ergodic rotation by α and f : X → S1 to be
the natural embedding. Since

∫
X

f dµ = 0, it follows from (3.3) that the
limit (3.2) is 0. Conversely, suppose that (4) holds, meaning that the map ϕ
in (3.4) satisfies ϕ(t) = δ1(t). Using the same argument as in the first part,
the ergodic average converges to the projection ρ({1}). Observe that

Tρ({1}) =
∫

S 1
t · δ1(t) dρ(t) =

∫
S 1
δ1(t) dρ(t)

and similarly ρ({1})T = ρ({1}). It follows that ρ({1}) is the projection onto
the subspace of T -invariant functions. □

To refine this characterization of convergence, we use the next result to
rewrite averages as infinite products. This use also justifies our conventions
on the definition of an IP-set, defining it as a multiset and always including
0 in the set.

Proposition 3.2. Let (n j) j∈N be a sequence of natural numbers, let Φ =
(ΦN)N∈N be a Følner sequence in N, let α ∈ S1, and set z j =

1+αn j

2 for j ∈ N.
For every N ∈ N, we have

E
n∈IPΦN

(
(n j) j∈N

)αn =
∏
j∈ΦN

z j.

Proof. We have ∏
j∈ΦN

z j =
∏
j∈ΦN

(
1 + αn j

2

)
=

∏
j∈ΦN

(1 + αn j)
2|ΦN |

and by expanding the terms, we obtain∏
j∈ΦN

z j =

∑
n∈IPΦN

(
(n j) j∈N

) αn

2|ΦN |
= En∈IPΦN

αn. □
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Let arg : S1 → R/2πZ denote the inverse of the isomorphism t 7→ eit. We
have the following criteria for convergence.

Theorem 3.3 (Criteria for convergence). Let (n j) j∈N be a sequence of natu-
ral numbers and let Φ = (ΦN)N∈N be a Følner sequence in N.

(1) For all invertible measure preserving system X = (X,B, µ,T ), the
ergodic average (2.2) along IPΦN

(
(n j) j∈N

)
converges to the projec-

tion onto the T-invariant functions if and only if

lim
N→∞

∏
j∈ΦN

(1 + cos(arg(αn j))
2

= δ1(α)

for all α ∈ S1.
(2) For all invertible measure preserving system X = (X,B, µ,T ), the

ergodic average (2.2) along IPΦN

(
(n j) j∈N

)
converges if and only if

each α ∈ S1 satisfies either

lim
N→∞

∏
j∈ΦN

(1 + cos(arg(αn j))
2

= 0

or

lim
N→∞

∑
j∈ΦN

arctan
(

sin(arg(αn j))
1 + cos(arg(αn j))

)
exists.

Proof. Fixing j ∈ N and α ∈ S1, set z j = z j(α) = 1+αn j

2 . Rewriting, we have
that z j = r je(iθ j) for some r j ≥ 0 and θ j ∈ (−π2 ,

π
2 ). Using the identity

z j(α) =
1 + cos(arg(αn j))

2
+ i

sin(arg(αn j))
2

,

we can rewrite r j =

√
1+cos(arg(αn j ))

2 and θ j = arctan
(

sin(arg(αn j ))
1+cos(arg(αn j ))

)
. In particu-

lar, it follows from Proposition 3.2 that

En∈IPΦN
αn =

(∏
j∈ΦN

r j

)
· e(i

∑
j∈ΦN

θ j).

By Theorem 3.1, the ergodic average along IPΦN

(
(n j) j∈N

)
exists if and only

if this quantity converges as N → ∞. We use the general criterion that
a sequence of complex numbers converges if and only if either the norms
converge to zero or the norms converge and the arguments converge. In the
first case, if the norms converge to zero for all α , 1, then En∈IPΦN

αn = δ1(α)
and so Part (1) follows from Theorem 3.1. Otherwise, since z j is the average
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of two numbers in the unit circle, it follows that |z j| ≤ 1 and so the norm
of En∈IPΦN

αn always converges. If the limit is nonzero, then by Theorem 3.1
the limit exists if and only if the arguments converge, proving Part (2). □

3.2. Sufficient conditions for convergence. We start with a simple propo-
sition showing that for the average along an IP to converge to the projection
onto the T -invariant functions, it suffices that the average along the genera-
tors does so.

Proposition 3.4. Let (n j) j∈N be a sequence of natural numbers and let Φ =
(ΦN)N∈N be a Følner sequence in N. Assume that for all ergodic rotations
Z = (Z,C, ν,Ra) and all f ∈ L2(ν), we have

lim
N→∞
En∈ΦN f (anx) =

∫
Z

f dν

in L2(ν). Then for every ergodic system X = (X,B, µ,T ) and all f ∈ L2(µ),
we have

lim
N→∞
E

n∈IPΦN

(
(n j) j∈N

)T n f =
∫

X
f dµ.

Proof. The hypothesis of convergence in the proposition holds if and only
if limN→∞ E j∈ΦN tn j = δ1(t) for all t ∈ S1. Fix t , 1, and consider

AN := { j ∈ ΦN : |tn j − 1| < 1/10}.

Using the triangle inequality, we have that∣∣∣∣ 1
|ΦN |

∑
j∈AN

tn j

∣∣∣∣ ≤ ∣∣∣∣E j∈ΦN tn j

∣∣∣∣ + ∣∣∣∣ 1
|ΦN |

∑
j<AN

tn j

∣∣∣∣.
Since |tn j − 1| < 1/10 for all j ∈ AN , the left hand side is bounded from
below by 9|AN |

10|ΦN |
. Fixing arbitrary ε > 0, it follows that for sufficiently large

N we have that
9|AN |

10|ΦN |
≤ ε +

(
1 −
|AN |

|ΦN |

)
.

Choosing any 0 < ε < 9/10, it follows that lim supN→∞
|AN |

|ΦN |
< 1, and so

for all sufficiently large N, we have |AN |

|ΦN |
< 1 − c for some sufficiently small

c > 0. In particular, the number of j ∈ ΦN satisfying |tn j − 1| > 1/10 is
arbitrarily large as N → ∞. By Proposition 3.2, it follows that

lim
N→∞
En∈IPΦN

tn = lim
N→∞

∏
j∈ΦN

(1 + tn j

2

)
= 0.
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As this holds for all 1 , t ∈ S1, convergence follows from Theorem 3.1. □

This proposition applies to many sequences, including polynomial se-
quences (see for example [40]), the primes and polynomials in primes [41,
18], and many other sequences such as those in [11, 17].

A particular class of dynamical systems in which we can describe conver-
gence is when the eigenspaces generate L2(µ) and additionally all nontrivial
eigenspaces are associated to rational eigenvalues.

Definition 3.5. If X = (X,B, µ,T ) is an invertible measure preserving sys-
tem, let Krat(X) denote the minimal factor of X such that any eigenfunction
of X with rational eigenvalue is measurable with respect to Krat(X). The
system X is rational if X = Krat(X).

ThusKrat is the factor generated by the eigenfunctions that are associated
to the rational eigenvalues. It is immediate that any finite system is rational.
A more interesting example is obtained by taking X = Zp is the p-adic
numbers for some fixed prime p, equipped with the Borel σ-algebra, Haar
measure, and the transformation is translation by some fixed t ∈ Zp. Any
character χ of Zp is an eigenfunction whose eigenvalue χ(t) is a pm root of
unity for some m ∈ N, and these characters form an orthonormal basis for
Zp. Note that if the group generated by t is dense, then the system is also
ergodic.

Recall that a function f : X → C is 1-bounded if | f (x)| ≤ 1 for all x ∈ X
and we let Pt : L2(µ) → L2(µ) denote the projection onto the t-eigenspace
of T .

Theorem 3.6 (Convergence inKrat(X)). Let (n j) j∈N be a sequence of natural
numbers and letΦ = (ΦN)N∈N be an increasing Følner sequence. Then there
exists a 1-bounded function ωΦ : e2πiQ → C such that for every invertible
measure preserving system X = (X,B, µ,T ) and f ∈ L2(µ) measurable with
respect to Krat(X), we have

lim
N→∞
E

n∈IPΦN

(
(n j) j∈N

)T n f =
∑

t∈e2πiQ

ωΦ(t) · Pt( f )

in L2(µ).



14 B. KRA AND O. SHALOM

Proof. Let (n j) j∈N and Φ = (ΦN)N∈N be as in the statement. We first check
that the limit

(3.5) ωΦ(t) := lim
N→∞
En∈IPΦN

tn

exists for all t ∈ e2πiQ. By Proposition 3.2, this limit is equal to

lim
N→∞

∏
j∈ΦN

(
1 + tn j

2

)
.

We consider two cases. If tn j = 1 for all but finitely many values of j, then
this infinite product is eventually equal to∏

{ j : tn j,1}

(
1 + tn j

2

)
and so the limit exists. Otherwise, there are infinitely many j such that
tn j , 1. Then we can choose some ε0 > 0, depending only on t, such that∣∣∣∣( 1+tn j

2

)∣∣∣∣ < 1 − ε0. Since the Følner sequence Φ is increasing, it eventually
contains arbitrarily many such j and

lim
N→∞

∏
j∈ΦN

(
1 + tn j

2

)
= 0.

Thus the limit (3.5) exists.
Since f is measurable with respect to Krat(X), we can write

f =
∑

t∈e2πiQ

Pt( f ).

Since T (Pt( f )) = t · Pt( f ), we conclude that

lim
N→∞
E

n∈IPΦN

(
(n j) j∈N

)T n f =
∑

t∈e2πiQ

ωΦ(t)Pt( f ),

and the statement follows. □

This leads to the following definition.

Definition 3.7 (Spectrum of a sequence). The spectrum σ((n j)k∈N) of a se-
quence of natural numbers (n j) j∈N is defined to be the group generated by
the complement of the set⋂

m∈N

α ∈ S1 : lim
d→∞

d∏
j=m

(
1 + α n j

2

)
= 0

 .
We say that a sequence has rational spectrum if σ((n j) j∈N) ⊆ e2πiQ.
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The intersection over m is taken to ensure that for every α < σ((n j) j∈N),
and every increasing Følner sequence Φ = (ΦN)N∈N, the quantity

(3.6) ωΦ(α) := lim
N→∞

∏
j∈ΦN

(
1 + αn j

2

)
is zero.

The next result follows quickly from Theorem 3.6.

Corollary 3.8. Let X = (X,B, µ,T ) be an invertible measure preserving
system and let (n j) j∈N be a sequence with rational spectrum. Then for any
increasing Følner sequence Φ = (ΦN)N∈N, we have

E
n∈IPΦN

(
(n j) j∈N

)T n =
∑

t∈σ((n j) j∈N)

ωΦ(t) · Pt

in the strong operator topology.

For example, for every integer a ≥ 2, the sequence n j = a j−1 has rational
spectrum. To check this it suffices to show that for any irrational α, the
sequence αn j does not converges to 1 as j→ ∞. Considering the expansion
of arg(α) in base a, taking a power αn j shifts the digits ( j − 1) times to the
left. If αn j → 1, this implies that for sufficiently large j all entries in the
decimal expansion of arg(α) are 0, contradicting that α is irrational. On the
other hand, any sequence (n j) j∈N satisfying lim j→∞ n j+1/n j has uncountable
spectrum (see [6, Proposition 3.5]) and so in particular is not rational.

The next corollary is a direct application of Corollary 3.8.

Corollary 3.9. Let X = (X,B, µ,T ) be an invertible measure preserving
system, let a ≥ 2 be an integer, and set n j = a j−1.

(1) For all f ∈ L2(µ) and any increasing Følner sequenceΦ = (ΦN)N∈N,
the ergodic average (2.2) of f along IPΦN

(
(n j) j∈N

)
exists in L2(µ).

(2) Furthermore, if X is ergodic and the points e(m/pn) for m, n ∈ N
and p any prime divisor of a do not lie in the point spectrum of X,
then the ergodic average (2.2) of f along IPΦN

(
(n j) j∈N

)
converges to∫

X
f dµ.

Note that the hypothesis in Part (2) holds whenever the system X is totally
ergodic. We use this to deduce an equidistribution result along IP

(
(a j−1) j∈N

)
.
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Corollary 3.10 (Equidistribution). Let a ≥ 2 be an integer and let α ∈ S1

be either an irrational or be a root of unity whose order is coprime to a.
Then for every continuous function f : S1 → C, we have

(3.7) lim
N→∞
En∈IP

ΦN

(
(a j−1) j∈N

) f (αnx) =
∫
S1

f dµ

for all x ∈ S1.

Proof. By the Stone-Weierstrass theorem, any continuous function on a
compact abelian group is a uniform limit of linear combinations of char-
acters. Thus it suffices to prove (3.7) when f is a character. If f = 1, this
is immediate. Otherwise, choose 0 , ℓ ∈ Z such that f (x) = xℓ. It follows
that (recall that ωΦ is defined in (3.6))

lim
N→∞
En∈IPΦN

f (αnx) =
(

lim
N→∞
En∈IPΦN

(αℓ)n
)

f (x)

= ωΦ(αℓ) · f (x) = 0,

and since
∫
S1 f (x) dµ = 0, the statement follows. □

3.3. An example of non-convergence along an IP. To produce a sequence
such that convergence fails, fix some irrational α ∈ S1 and the standard
Følner sequence Φ = (ΦN)N∈N with ΦN = [1,N] for all N ∈ N. We use that
the orbit of α is dense to produce a sequence (n j) j∈N such that

(3.8) lim
N→∞

N∑
j=1

arctan
(

sin(arg(αn j))
1 + cos(arg(αn j))

)
diverges while

(3.9) lim
N→∞

N∏
j=1

1 + cos(arg(αn j))
2

converges to a nonzero value. It then follows from Theorem 3.3 the ergodic
average along IP generated by (n j) j∈N diverges.

To do so, set z j =
1+αn j

2 and write z j = r je(i · θ j) for some r j > 0 and θ j ∈

(−π2 ,
π
2 ). For each j ∈ N, choose n j such that 1

j < θ j <
1
j+

1
j2 .Comparing with

the harmonic series we see that
∑∞

j=1 θ j diverges, and it follows that (3.8)
diverges. Considering (3.9), we have that r j =

√
cos(θ j) and taking the

absolute value of the product we obtain limN→∞
∏N

j=1
1+cos(arg(αn j ))

2 =
∏∞

j=1 r j.



ERGODIC AVERAGES AND LARGE INTERSECTION PROPERTY ALONG IP SETS 17

Combining these facts, we have that

lim
N→∞

 N∏
j=1

r j


2

= exp
(

lim
N→∞

N∑
j=0

ln(cos(θ j))
)
.

Approximating via the Taylor expansion ln cos(θ j) = O(θ2
j ) = O(1/ j2) and

comparing to the convergent series
∑N

j=0
1
j2 , the limit limN→∞

∑N
j=0 ln(cos(θ j))

exists. It follows that (3.9) is nonzero.

4. Characteristic factors for multiple ergodic averages along an IP

4.1. Preliminaries on characteristic factors. Characteristic factors were
implicit in the work of Furstenberg [20], and were given this name by
Furstenberg and Weiss [26] in their study of some double averages. They
have been used to prove the convergence of multiple ergodic averages [30,
43], and though there are other methods to prove the convergence (such
as [40]), characteristic factors give more information that can be used to
derive limit formulas and combinatorial corollaries. We adapt these tech-
niques for IP averages, and start by recalling the precise definition.

Definition 4.1 (Characteristic factors). Let X = (X,B, µ,T ), let (AN)N∈N ⊆

N be finite subsets, and let k ≥ 1. A factor Y = (Y,Y, ν, S ) of X is charac-
teristic for the average

(4.1) En∈AN T n f1 · . . . · T kn fk

if the difference between this average and the average

En∈AN T nE( f1 | Y) · . . . · T knE( fk | Y)

where each function is replaced by its expectation on Y converges to 0 in
L2(µ) for all f1, . . . , fk ∈ L∞(µ).

Equivalently, the factor Y is characteristic for (4.1) if this average con-
verges to 0 in L2(µ) whenever there is some i ∈ {1, . . . , k} such that expec-
tation E( fi | Y) = 0.

In [30] (and later in [43]), characteristic factors for the average (4.1) with
(AN)N∈N being a Følner sequence inN are described, defining a factor Zk−1 =

Zk−1(X) (known as the Host-Kra factor) of the system X for each k ≥ 1. Our
next result shows that the same factors Zk−1 are characteristic along IPs.
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Theorem 4.2 (Characteristic factors for multiple ergodic averages along
IPs.). Let X = (X,B, µ,T ) be an invertible measure preserving system, let
(n j) j∈N be a sequence with rational spectrum, let ℓ1, . . . , ℓk be distinct and
let k ≥ 2. For any increasing Følner sequence Φ = (ΦN)N∈N, the factor
Zk−1(X) is characteristic for the average E

n∈IPΦN

(
(n j) j∈N

) ∏k
i=1 T ℓin fi.

When passing to a subsequence, there is no reason, apriori, that the fac-
tors Zk that are characteristic for the multiple average (4.1) taken along a
Følner in N are also characteristic for the multiple ergodic averages along
the subsequence. In particular, for an IP, this fails for even the simplest
case k = 1 that corresponds to the mean ergodic theorem, explaining the
assumption that k ≥ 2. To prove Theorem 4.2 in this case, we develop IP
versions of the tools used in the proof in [30], including IP versions of the
cubic systems, the Gowers-Host-Kra seminorms, and the associated factors.
A posteriori, we show that for k ≥ 2, the factors agree with the factors Zk.

4.2. An IP-version of the van der Corput lemma. We start with an IP
version of a standard tool for identifying characteristic factors for multiple
ergodic averages, the van der Corput Lemma. For a Følner sequence Φ =
(ΦN)N∈N and fixed M ∈ N, define the Følner sequence ΦM = (ΦM

N )N∈N by
setting ΦM

N = ΦN\ΦM. It follows immediately from the definitions that ΦM

is a Følner sequence for every M ∈ N and that if Φ is an increasing Følner
sequence then so is ΦM.

Lemma 4.3 (van der Corput lemma for increasing IP-Følner sequences).
Let H be a Hilbert space with norm ∥ · ∥ and inner product ⟨·, ·⟩, and let
(xn)n∈N be a sequence in H . For a sequence (n j) j∈N and increasing Følner
sequence Φ = (ΦN)N∈N, we have

lim sup
N→∞

∥E
n∈IPΦN

(
(n j) j∈N

)xn∥
2

≤ lim sup
M→∞

E
m1,m2∈IPΦM

(
(n j) j∈N

) lim sup
N→∞

E
n∈IP

ΦM
N

(
(n j) j∈N

) 〈xn+m1 , xn+m2

〉
.

Proof. Setting β(n,m) = n + m, we have a bijection

β : IPΦM

(
(n j) j∈N

)
× IPΦM

N

(
(n j) j∈N

)
→ IPΦN

(
(n j) j∈N

)
for all N,M ∈ N. It follows that for all M ∈ N, we have

En∈IPΦN
xn = En∈IP

ΦM
N
Em∈IPΦM

xn+m.
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By Jensen’s inequality, we have that∥∥∥∥∥En∈IP
ΦM

N
Em∈IPΦM

xn+m

∥∥∥∥∥2

≤ En∈IP
ΦM

N

∥∥∥Em∈IPΦM
xn+m

∥∥∥2

= En∈IP
ΦM

N
Em1,m2∈IPΦM

〈
xn+m1,n+m2

〉
.

Interchanging the order of summation and taking N → ∞, we obtain that
for all M ∈ N,

lim sup
N→∞

∥En∈IPΦN
xn∥

2 ≤ Em1,m2∈IPΦM
lim sup

N→∞
En∈IP

ΦM
N

〈
xn+m1 , xn+m2

〉
.

The statement follows as M → ∞. □

Combining this lemma and induction, we have the generalization of Corol-
lary 3.10 to polynomial sequences.

Corollary 4.4 (Equidistribution along polynomials). Let a ≥ 2 be an in-
teger and let α ∈ S1 be either an irrational or be a root of unity whose
order is coprime to a. Then for every k ≥ 1, integer valued (non-constant)
polynomial p : N→ N of degree k, and continuous function f : S1 → C, we
have

lim
N→∞
En∈IP

ΦN ((a j−1) j∈N)
f (αp(n)x) =

∫
S1

f dµ

for all x ∈ S1.

To control multiple ergodic averages along an IP associated to a sequence
with rational spectrum, we introduce the relevant version of the uniformity
seminorms, defined inductively analogous to the construction in [30].

Definition 4.5 (The (rational) IP Gowers-Host-Kra seminorms). Let X =
(X,B, µ,T ) be an invertible measure preserving system and f ∈ L∞(µ). For
k = 1, define the first seminorm ∥ · ∥U1

IP(X,T ) by setting

∥ f ∥U1
IP(X,T ) := sup

(n j) j∈N

sup
Φ

lim
N→∞

∥∥∥∥En∈IPΦN

(
(n j) j∈N

)T n f
∥∥∥∥

L2(µ),

where the supremums are taken over all sequences (n j) j∈N with rational
spectrum and all increasing IP-Følner sequences Φ. For k ≥ 1, define the
(k + 1)st seminorm ∥ · ∥Uk+1

IP (X,T ) by setting

∥ f ∥Uk+1
IP (X,T ) := sup

(n j) j∈N

sup
Φ

lim
N→∞

(
E

m1,m2∈IPΦN

(
(n j) j∈N

) ∥∥∥∥T m1 f · T m2 f
∥∥∥∥2k

Uk
IP(X,T )

)1/2k+1

,
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again taking the supremums over all sequences (n j) j∈N with rational spec-
trum and all increasing IP-Følner sequences Φ.

As in the case of a Følner sequence in N, these seminorms are charac-
terized in terms of certain measures, inductively constructed analogously to
how the cubic measures are constructed in [30]. Using notation of [30], set
Vk = {0, 1}k to be the k-dimensional cube. We write a vertex ϵ ∈ Vk without
commas and set |ϵ | =

∑k
i=1 ϵi. If ϵ ∈ Vk and η ∈ Vℓ, we concatenate them

to obtain an element ϵη ∈ Vk+ℓ. Let C : C → C denote complex conjuga-
tion. In [30], joinings are built inductively over the invariant factor, and
in our inductive construction the invariant factor is replaced by the rational
Kronecker factor.

Definition 4.6 (The (rational) IP cubic measures). Let X = (X,B, µ,T ) be
an invertible measure preserving system, set X[0] = X, and set µ̃[0] = µ. For
k ≥ 1, identifying X[k+1] with X[k] × X[k], we define the cubic measure µ̃[k+1]

on X[k+1] to be the relatively independent joining of X[k] with itself over the
factor Krat(X[k]).

This means that if ( fϵ)ϵ∈Vk+1 are 2k+1 bounded functions on X, the measure
µ̃[k+1] is defined by∫

X[k+1]

⊗
ϵ∈Vk+1

fϵ dµ̃[k+1] =

∫
X[k]
E
(⊗
η∈Vk

fη0 | Krat

)
· E

(⊗
η∈Vk

fη1 | Krat

)
dµ̃[k].

We check that rational IP-cubic measures control IP-semirnorms.

Proposition 4.7. Let X = (X,B, µ,T ) be an invertible measure preserving
system and let k ≥ 1. For every f ∈ L∞(µ), we have

∥ f ∥2
k

Uk
IP(X,T )
≤

∫
X[k]

⊗
ϵ∈Vk

C|ϵ| f dµ̃[k].

Proof. We proceed by induction on k. For k = 1, Corollary 3.8 implies that

(4.2) ∥ f ∥2U1
IP(X,T ) = sup

(n j) j∈N

sup
Φ

∥∥∥∥ ∑
t∈σ((n j) j∈N)

ωΦ(t) · Pt( f )
∥∥∥∥2

L2(µ)
,

where ωΦ(t) = limN→∞
∏

j∈ΦN
1+tn j

2 . Since eigenspaces corresponding to dif-
ferent eigenvalues are orthogonal and |ωΦ(t)| ≤ 1 for all t independently
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both of the sequence (n j) j∈N and of the increasing Følner sequence Φ =
(ΦN)N∈N, the quantity in (4.2) is bounded by∥∥∥∥ ∑

{t=e2πir:r∈Q}

Pt( f )
∥∥∥∥2

L2(µ)
= ∥E( f | Krat(X))∥2L2(µ).

On the other hand,∫
X[1]

f⊗ f dµ̃[1] =

∫
X
E( f | Krat(X))·E( f | Krat(X)) dµ = ∥E( f | Krat(X))∥2L2(µ),

completing the base case.
For k ≥ 2, by the inductive hypothesis, Corollary 3.8 and the same argu-

ment used in the base case, we have

∥ f ∥2
k

Uk
IP(X,T ) = sup

(n j) j∈N

sup
Φ

lim
N→∞

(
E

m1,m2∈IPΦN

(
(n j) j∈N

) ∥∥∥∥T m1 f · T m2 f
∥∥∥∥2k−1

Uk−1
IP (X,T )

)
≤ sup

(n j) j∈N

sup
Φ

lim
N→∞
E

m1,m2∈IPΦN

(
(n j) j∈N

) ∫
X[k−1]

⊗
ϵ∈Vk−1

C|ϵ |T m1 f · T m2 f dµ̃[k−1]

= sup
(n j) j∈N

sup
Φ

lim
N→∞

∫
X[k−1]

∣∣∣∣En∈IPΦN

(
(n j) j∈N

) ⊗
ϵ∈Vk−1

C|ϵ|T n f
∣∣∣∣2 dµ̃[k−1]

= sup
(n j) j∈N

sup
Φ

lim
N→∞

∫
X[k−1]

∣∣∣∣En∈IPΦN

(
(n j) j∈N

)(T [k−1])n(
⊗
ϵ∈Vk−1

C|ϵ | f )
∣∣∣∣2 dµ̃[k−1]

≤

∫
X[k−1]
E
( ⊗
ϵ∈Vk−1

C|ϵ | f | Krat(X[k−1]
)
· E

( ⊗
ϵ∈Vk−1

C|ϵ| f | Krat(X[k−1]
)
dµ̃[k−1]

=

∫
X[k]

⊗
ϵ∈Vk

C|ϵ | f dµ̃[k],

completing the argument. □

We state a simple lemma on rational spectrum.

Lemma 4.8. If the spectrum of a sequence (n j) j∈N is rational, then for every
integer a ∈ N, the spectrum of the sequence (a · n j) j∈N is also rational.

Proof. If α ∈ σ(a · (n j) j∈N), then αa ∈ σ((n j) j∈N) and so α is rational. □

We check that IP-seminorms control multiple ergodic averages along an
IP, and note that it then follows immediately from Proposition 4.7 that ra-
tional IP cubic measures control multiple ergodic averages along an IP.
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Proposition 4.9. Let (n j) j∈N be a sequence with rational spectrum. Let
X = (X,B, µ,T ) be an invertible measure preserving system, let k ≥ 1, let
f1, . . . , fk ∈ L∞(µ) with ∥ fi∥L∞(µ) ≤ 1 for i = 1, . . . , k, and let ℓ1, . . . , ℓk be
distinct integers. For any increasing Følner sequence Φ = (ΦN)N∈N, we
have

(4.3) lim sup
N→∞

∥∥∥∥En∈IPΦN

(
(n j) j∈N

)T ℓ1n f1 · . . . · T ℓkn fk

∥∥∥∥
L2(µ)
≤ min

1≤i≤k
∥ fi∥Uk

IP(X,T ).

Proof. We proceed by induction on k, noting that the case k = 1 follows
from Lemma 4.8 and Theorem 3.8. Fixing k ≥ 2 and changing the order of
the functions f1, . . . , fk if needed, it suffices to show that the left hand side
of (4.3) is bounded by ∥ f1∥Uk+1

IP (X,T ). Setting

xn = T ℓ1n f1 · . . . · T ℓkn fk

and applying Lemma 4.3, we have that

lim sup
N→∞

∥∥∥∥ E
n∈IPΦN

xn

∥∥∥∥2

L2(µ)

≤ lim sup
M→∞

E
m1,m2∈IPΦM

lim sup
N→∞

E
n∈IP

ΦM
N

∫
X

k∏
i=1

T ℓi(n+m1) fi ·

k∏
i=1

T ℓi(n+m2) fi dµ

= lim sup
M→∞

E
m1,m2∈IPΦM

lim sup
N→∞

E
n∈IP

ΦM
N

∫
X

(
T ℓkm1 fkT ℓkm2 fk

) k−1∏
i=1

T (ℓi−ℓk)n
(
T ℓim1 fi · T ℓim2 f i

)
dµ,

where the last equality follows from T -invariance of µ. Applying the Cauchy-
Schwartz Inequality and using that ∥ fk∥L∞(µ) ≤ 1, this last quantity is bounded
by

lim sup
M→∞

Em1,m2∈IPΦM
lim sup

N→∞

∥∥∥∥En∈IP
ΦM

N

k−1∏
i=1

T (ℓi−ℓk)n
(
T ℓim1 fi · T ℓim2

) ∥∥∥∥
L2(µ)

.

By the induction hypothesis, we bound this by

lim sup
M→∞

Em1,m2∈IPΦM
∥T ℓ1m1 f1 · T ℓ1m2 f1∥Uk−1

IP (X,T )

and by convexity of the map x 7→ x2k−1
, this is bounded by

lim sup
M→∞

(
Em1,m2∈IPΦM

∥T ℓ1m1 f1 · T ℓ1m2 f1∥
2k−1

Uk−1
IP (X,T )

)1/2k−1
≤ ∥ f1∥

2
Uk

IP(X,T ).

Thus we shown that

lim sup
N→∞

∥E
n∈IPΦN

(
(n j) j∈N

)T ℓ1n f1 · . . . · T ℓkn fk∥
2
L2(µ) ≤ min

1≤i≤k
∥ f1∥

2
Uk

IP(X,T ),
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and taking square roots, the statement follows. □

Lemma 4.10. Let X = (X,B, µ,T ) be an invertible measure preserving
system, let k ≥ 2, and let ( fϵ)ϵ∈Vk ∈ L∞(µ) be 2k functions. If ∥ fϵ∥Uk(X,T ) = 0
for some ϵ ∈ Vk, then ∫

X[k]

⊗
ϵ∈Vk

C|ϵ | fϵ dµ̃[k] = 0.

Proof. Let Y = (Y,C, ν, S ) be an invertible measure preserving system. For
each eigenfuction f ∈ L2(Y) with rational eigenvalue, there exists some ℓ
such that f is S ℓ-invariant. Letting Iℓ denote the σ-algebra of ℓ-invariant
functions, the sequence of σ-algebras Iℓ! is increasing andKrat(Y) is a sub-
σ-algebra of the join

∨
ℓ∈N Iℓ!.

Conversely, for each ℓ ∈ N, taking f to be an S ℓ-invariant function and
letting ξℓ be the first root of unity of order ℓ, we have that the functions

f j =

ℓ−1∑
i=0

ξ
i· j
ℓ · T

i f

are eigenfunctions for all 1 ≤ j ≤ ℓ. Since
∑ℓ−1

i=0 ξ
i· j
ℓ = 0 for all 1 ≤ j ≤ ℓ−1,

we deduce that f = 1
ℓ

∑ℓ
j=1 f j. Thus theσ-algebraIℓ of ℓ-invariant functions

is a sub-σ-algebra of Krat(Y), and Krat(Y) =
∨

ℓ∈N Iℓ!. In particular, for any
function f ∈ L∞(Y), we have that

E( f | Krat(Y)) = lim
ℓ→∞
E( f | Iℓ!).

Taking the Host-Kra measure µ[k]
ℓ on X = (X,B, µ,T ℓ!) (see [30, Section

3]), then it follows from this and the definition of µ̃[k] that for any function
f ∈ L∞(µ) we have∫

X[k]

⊗
ϵ∈Vk

C|ϵ| f dµ̃[k] = lim
ℓ→∞

∫
X[k]

⊗
ϵ∈Vk

C|ϵ| f dµ[k]
ℓ .

By a theorem of Leibman [35, Theorem 2], it follows that ∥ f ∥Uk(X,T ) = 0 is
equivalent to ∫

X[k]

⊗
ϵ∈Vk

C|ϵ| f dµ[k]
ℓ = 0

for all ℓ ∈ N. It follows that∫
X[k]

⊗
ϵ∈Vk

C|ϵ| f dµ̃[k] = 0 □
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We have now assembled the tools to complete the proof of Theorem 4.2.

Proof of Theorem 4.2. Let f1, . . . , fk ∈ L∞(µ) and assume E( f j | Zk−1(X)) =
0 for some 1 ≤ j ≤ k. It follows from this assumption that ∥ f j∥Uk(X,T ) = 0
(see for example [30, Lemma 4.3]). By Propositions 4.7 and 4.9, we have
that

lim
N→∞

∥∥∥∥En∈IPΦN

k∏
i=1

T ℓin fi

∥∥∥∥2k

L2(µ)
≤

∫
X[k]

⊗
ϵ∈Vk

f j dµ̃[k].

By Lemma 4.10, we deduce that

lim
N→∞

∥∥∥En∈IPΦN

k∏
i=1

T ℓin fi

∥∥∥2k

L2(µ)
= 0

and therefore

lim
N→∞
En∈IPΦN

k∏
i=1

T ℓin fi = 0. □

5. Limit formula in nilsystems

5.1. Limits for systems in which the spectrum has no nontrivial eigen-
values. Nilsystems are the natural class that arise in understanding unifor-
mity norms and cubes in [30] and generalizations have been to understand
combinatorial structures associated to arithmetic progressions and cubes,
including work in [12, 13, 14, 28, 27, 29, 32, 33].

Recall that X = (X,B, µ,Tτ) is a k-step nilsystem if X = G/Γ for a k-
step nilpotent Lie group G with discrete, cocompact subgroup Γ, B is the
Borel σ-algebra, µ is the unique Borel probability measure on X invariant
under the action of G on X by left translation, and Tτ : X → X is the action
x 7→ τ · x for some fixed element τ ∈ G. In case of ambiguity, we include
the space on the measure and write µ = µX = µG/Γ.

As with the ergodic average, the limit formula in a nilsystem depends
crucially on the spectrum of Tτ. We start with the special case of a 1-
step nilsystem whose spectrum is disjoint from σ

(
(n j) j∈N

)
. Recall that Z =

(Z,B, µ,Ra) is a 1-step nilsystem means that Z is a compact abelian group,
B is the Borel σ-algebra, µ is the Haar measure, and Ra is the rotation by a
fixed element a ∈ Z. This system is ergodic if and only if the orbit of the
element a is dense.
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Theorem 5.1 (Limit formula for two terms). Let Z = (Z,B, µ,Ra) be an
ergodic 1-step nilsystem, let (n j) j∈N be a sequence whose spectrum contains
no nontrivial eigenvalue of Z, and let Φ = (ΦN)N∈N be an increasing Følner
sequence. Then for all f1, . . . , fk ∈ L∞(µ) and integers ℓ1, . . . , ℓk ∈ N, we
have

lim
N→∞
E

n∈IPΦN

(
(n j) j∈N

) k∏
i=1

fi(T ℓinx) =
∫

Z

k∏
i=1

fi(x + ℓit) dµ(t)

in L2(µ).

Proof. Since linear combinations of characters are dense in L2(µ), it it suf-
fices to establish the formula when f1, . . . , fk are characters of Z. Further-
more, since Z is an abelian group, it suffices to assume that they are eigen-
functions with eigenvalues α1, . . . αk respectively. Recall that ωΦ is defined
in (3.6) and δ1 in (3.1). Since the spectrum of (n j) j∈N contains no nontriv-
ial eigenvalue of Z, we have that ωΦ(α) = δ1(α) for all eigenvalues of the
system. By Theorem 3.8, and Fourier analysis it follows that

lim
N→∞
En∈IPΦN

k∏
i=1

fi(T ℓinx) = lim
N→∞
En∈IPΦN

( k∏
i=1

αℓi
i

)n
·
( k∏

i=1

fi(x)
)

= ωΦ
( k∏

i=1

αℓi
i

)
·
( k∏

i=1

fi(x)
)
= δ1

( k∏
i=1

αℓi
i

)
·
( k∏

i=1

fi(x)
)

=

∫
Z

k∏
i=1

fi(x + ℓit) dµ(t),

completing the proof. □

For a nilsystem X = (G/Γ,B, µ,Ra) and integers ℓ1, . . . , ℓk, set

G̃ = G̃ℓ1,...,ℓk =
{( k−1∏

i=1

g(ℓ j
i )

i u j

)
j∈{1,...,k}

: gi ∈ Gi, u j ∈ Gk, 1 ≤ i, j ≤ k
}
≤ Gk,

where
(

n
m

)
= 0 if m > n. (As ℓ1, . . . , ℓk are fixed, we simplify the notation

and write G̃ = G̃ℓ1,...,ℓk .) Setting Γ̃ = G̃ ∩ Γk, it is shown in [34] that G̃
is a closed subgroup of Gk. The discrete subgroup Γ̃ is cocompact and so
X̃ = G̃/Γ̃ is a nilmanifold endowed with a Haar measure µ̃.

The main goal of this section is prove the following limit formula.
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Theorem 5.2. Let k ≥ 1, let X = (G/Γ,B, µG/Γ,Tτ) be an ergodic k-step
nilsystem, let (n j) j∈N be a sequence whose spectrum contains no nontrivial
eigenvalue of Tτ, and let (ΦN)N∈N be an increasing Følner sequence. For all
f1, . . . , fk ∈ L∞(µ) and distinct integers ℓ1, . . . , ℓk ∈ N, we have

lim
N→∞
E

n∈IPΦN

(
(n j) j∈N

) k∏
i=1

fi(T ℓin
τ x) =

∫
X̃

k∏
i=1

fi(xyi) dµ̃(yΓ̃)

in L2(µ), where y = (y1, . . . , yk) ∈ G̃.

For general (non-IP) multiple averages Ziegler [42] derived a limit for-
mula, and a different method for doing so was given in [7]. Both proofs
rely on the unique ergodicity of nilsystems and the existence of the limit of
the mean ergodic average everywhere for continuous functions on nilsys-
tems. In our context of evaluating the averages along IP-Følner sequences,
we need a different approach. Instead, we identify a class of functions that
is dense and for which we can show convergence everywhere, and this class
suffices to prove for convergence in L2(µ) for all bounded functions.

We start with the case where the set of eigenvalues of the nilsystem is
disjoint from the spectrum of (n j) j∈N.

Theorem 5.3 (Pointwise convergence along IPs for nilsystems with disjoint
spectrum). Let k ≥ 1 and let X = (G/Γ,B, µ,Tτ) be an ergodic k-step
nilsystem. There exists an ergodic system Y = (Y,C, ν,T ) on a compact
metric space Y such that the set of T-periodic points has ν-measure zero
and there exists a measure theoretic isomorphism π : X → Y such that for
any sequence (n j) j∈N whose spectrum contain no nontrivial eigenvalue of
Tτ and every increasing Følner sequence Φ = (ΦN)N∈N, we have that

(5.1) lim
N→∞
E

n∈IPΦN

(
(n j) j∈N

) f (T n
τ y) =

∫
Y

f dµ

for any continuous function f ∈ C(Y) and y ∈ Y.

In general, the isomorphism π : X → Y need not be continuous. The
hypotheses, and in particular the assumption that the T -periodic points have
ν-measure zero, is used to apply a theorem of Lindenstrauss [36, Theorem
3.1].
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Proof. We proceed by induction on the step k. When k = 1, X is an ergodic
rotation on a compact abelian group Z = G/Γ and we can take Y = X and
π : X → Y to be the identity map. In this case, there are at most finitely
many T -periodic points in Y . Let p : Z → C be a linear combination of
characters in Z and write

p =
n∑

i=1

biξi

for some bi ∈ C and ξi ∈ Ẑ. Letting a ∈ Z denote the rotation induced by
Tτ, we then have that for all y ∈ Y ,

lim
N→∞
E

n∈IPΦN

(
(n j) j∈N

)p(T ny) =
n∑

i=0

bi

(
lim

N→∞
E

n∈IPΦN

(
(n j) j∈N

)ξi(a)n
)
ξi(y).

By assumption, no nontrivial eigenvalue of Z lies in the spectrum of (n j) j∈N,
and so for each i, the limit on the right hand side is zero unless ξi = 0 and
in this case the limit is 1. In both cases, the limit exists and is equal to
b0 =

∫
Y

p(y) dµ. Taking f ∈ C(Y) and ε > 0, there exists a finite linear
combination of characters p : Z → C such that ∥ f − p∥∞ < ε/2. Fixing
some y ∈ Y , using this approximation of f by p, and noting that by choice
we have X = Y and T is the rotation induced by a ∈ Z, we have

lim sup
N→∞

∣∣∣∣En∈IPΦN
f (T ny) −

∫
Y

f dµ
∣∣∣∣

≤ lim sup
N→∞

∣∣∣En∈IPΦN
f (any) − En∈IPΦN

p(any)
∣∣∣

+ lim sup
N→∞

∣∣∣∣En∈IPΦN
p(any) −

∫
Z

p dµ
∣∣∣∣ + ∣∣∣∣ ∫ f dµ −

∫
p dµ

∣∣∣∣
≤2∥ f − p∥∞ < ε.

Since ε > 0 is arbitrary, we deduce that

lim
N→∞
E

n∈IPΦN

(
(n j) j∈N

) f (T ny) =
∫

Y
f dµ,

completing the case k = 1.
Fix some k ≥ 2. Combining [30, Theorem 10.3 and Section 11], since

X is an ergodic k-step nilsystem, it is measure theoretically isomorphic to a
k-step toral system, meaning that we can assume that the Kronecker factor
Z1(X) is a compact abelian Lie group and each nilfactor Z j+1(X) is an exten-
sion of Z j(X) by a torus for 1 ≤ j < k. Thus we can write X = Zk−1(X)×ρUk,
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for some torus Uk and cocycle ρ : Zk−1(X) → Uk. Applying the induction
hypothesis to Zk−1(X), there exists a system Yk−1 = (Yk−1,Ck−1, νk−1,Tk−1)
that is isomorphic to Zk−1(X) satisfying the properties of the theorem, mean-
ing that X is measure theoretically isomorphic to an abelian extension of
Yk−1 by a torus Uk via a cocycle ρ : Yk−1 → Uk. Using a theorem of Lin-
denstrauss [36, Theorem 3.1], ρ is cohomologous to a continuous cocycle.
As cohomologous cocycles give rise to isomorphic extensions, without loss
of generality we may assume that ρ is continuous and write Y = Yk−1 ×ρ Uk

and let T : Y → Y denote the action induced by the cocycle ρ. Letting Pk−1

denote the set of periodic points in the system Yk−1, then the set of periodic
points in the system Y is a subset of Pk−1 × Uk and is therefore of measure
0. We are left with showing that Y satisfies the remaining properties in the
statement.

By Lemma 2.2, the space of continuous vertical characters on Y is dense
with respect to the uniform norm. Thus it suffices to prove the limit formula
for functions of the form fχ(y, u) = g(y)χ(u) for some character χ : Uk → S

1

and continuous function g : Yk−1 → C. If χ is trivial, then the convergence
follows from the induction hypothesis. Otherwise, we have

lim sup
N→∞

∣∣∣En∈IPΦN
fχ(T n(y, t))

∣∣∣ = lim sup
N→∞

∣∣∣En∈IPΦN
g(T n

k−1y)χ ◦ ρ(n, y) fχ(y, t)
∣∣∣ .

By the van der Corput inequality (Lemma 4.3), we can bound the square of
the right hand side by

(5.2) lim sup
M→∞

Em1,m2∈IPΦM
lim sup

N→∞
En∈IP

ΦM
N

g(T n+m1
k−1 y)·

g(T n+m2
k−1 y) · ρ(m1,T ny) · ρ(m2,T ny),

where ΦM
N = ΦN\ΦM and we have used the cocycle identity ρ(n + m, y) =

ρ(n, y)ρ(m,T ny) for all m, n ∈ N and y ∈ Y . Since ρ and g are continuous,
using the inductive assumption applied to the convergence in (5.1), we can
rewrite the quantity in (5.2) as

lim sup
M→∞

Em1,m2∈IPΦM

∫
Yk−1

g(T m1
k−1(y))g(T m2

k−1y)ρ(m1, y) · ρ(m2, y) dµ(y)

= lim sup
M→∞

∥∥∥Em∈IPΦM
g(T m

k−1·)ρ(m, ·)
∥∥∥2

L2(Yk−1)
.
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Applying the mean ergodic theorem in Y to the function fχ, the right hand
side of this equation converges to 0 as M → ∞. We conclude that whenever
χ , 1,

lim
N→∞
E

n∈IPΦN

(
(n j) j∈N

) fχ(T n(y, t)) = 0

for all (y, t) ∈ Y , completing the proof. □

We are set to prove Theorem 5.2.

Proof. With the preliminaries adapted to the setting of IPs, we now follow
the argument in [7]. For every x ∈ G/Γ, let gx ∈ G be a lift of x and set Γ̃x =

{(gxγ1g−1
x , . . . , gxγkg−1

x ) : (γ1, . . . , γk) ∈ Γ̃}. We consider the nilmanifold
X̃x = G̃/Γ̃x endowed with the Haar measure µ̃x. By [7, Corollary 5.5], the
action of T ℓ1

τ × · · · × T ℓk
τ on X̃x is ergodic for µ-almost every x ∈ X.

Let Y be as in Theorem 5.3 and let f1, . . . , fk : X → C be the lifts of some
continuous functions g1, . . . , gk : Y → C (thus fi = gi ◦ π where π : X → Y
is an isomorphism). By Theorem 5.3 applied to the point (x, x, . . . , x), we
deduce that

lim
N→∞
En∈IPΦN

k∏
i=1

fi(T ℓin
τ x)

converges everywhere. By ergodicity, it must converge to the integral with
respect to the Haar measure µ̃x. This holds for all f1, . . . , fk that arise as
such lifts, and since the continuous functions are dense in L∞(µY), the lifts
of such functions are dense in L∞(µX). Thus, we have convergence in L2(µX)
to the desired limit for all f1, . . . , fk ∈ L∞(µX). □

5.2. Limit formulae for weighted averages. In Theorems 5.1 and 5.2, we
assumed that the spectrum of (n j) j∈N contains no nontrivial eigenvalues.
To address settings where this does not hold, we study certain weighted
averages.

Lemma 5.4 (Characteristic factors for multiple weighted averages.). Let
X = (X,B, µ,T ) be an ergodic system, (n j) j∈N be a sequence with rational
spectrum, k ≥ 2, f1, . . . , fk ∈ L∞(X), ℓ1, . . . , ℓk ∈ N, and let a ∈ Z1(X)
denote the rotation induced on the Kronecker factor Z1(X) by T . If ℓ1, ℓ2 ∈ N

are coprime, η : Z1(X) → R is a non-negative continuous function with
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E
n∈IPΦN

(
(n j) j∈N

)η(na) = 1, and δ > 0, there exists a (k − 1)-step nilsystem
factor Y = (Y,Y, ν,T ) such that

∥∥∥E
n∈IPΦN

(
(n j) j∈N

)η(na)
k∏

i=1

fi(T ℓinx)−

E
n∈IPΦN

(
(n j) j∈N

)η(na)
k∏

i=1

E( fi | Y)(T ℓinx)
∥∥∥

L2(µ)
< δ

for all increasing Følner sequences and sufficiently large N.

Proof. We start with the case that η is a character. Since ℓ1, ℓ2 are coprime,
we can choose s, t ∈ Z such that s · ℓ1 + t · ℓ2 = 1. Letting π : X → Z1(X)
denote the factor map, set η̃ = η ◦ π and write f ′1 = f1 · η̃

s, f ′2 = f2 · η̃
t, and

f ′i = fi for all i ≥ 3. Then

E
n∈IPΦN

(
(n j) j∈N

)η(na)
k∏

i=1

fi(T ℓinx) = E
n∈IPΦN

(
(n j) j∈N

) k∏
i=1

f ′i (T ℓinx).

By Theorem 4.2, this limit is zero if at least one function f ′i is orthogonal
to Zk−1(X). Since η is measurable with respect to Z1(X), the function f ′i
is orthogonal to the factor Zk−1(X) if and only if fi is orthogonal to Z1(X).
For general η, using the Stone-Weierstrass Theorem we can approximate
η uniformly by linear combinations of characters of Z1(X). Thus, we may
assume without loss of generality that all fi are all measurable with respect
to Zk−1(X).

Let δ > 0. Since the factor Zk−1(X) is an inverse limit of nilsystems [30,
43], there is a (k − 1)-step nilsystem Y such that ∥ fi − E( fi | Y)∥ < δ/2k. By
the Cauchy-Schwartz and triangle inequalities, we have that∥∥∥∥∥∥∥

k∏
i=1

fi ◦ T ℓin −

k∏
i=1

E( fi | Y) ◦ T ℓin

∥∥∥∥∥∥∥
L2(µ)

< δ/2.

Since limN→∞ En∈IPΦN
η(na) = 1, it follows that for N sufficiently large we

have that

∥∥∥En∈IPΦN
η(na)

k∏
i=1

fi(T ℓin(x)) − En∈IPΦN
η(na)

k∏
i=1

E( fi | Y)(T ℓin(x))
∥∥∥

L2(µ)

< En∈IPΦN
η(na) · δ/2 ≤ δ. □
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We make use of various results about nilmanifolds, and refer to [31] for
further details and background. For an ergodic nilsystem X = (G/Γ,B, µ,Tτ),
we let G0 denote the connected component of G and set Γ0 = G0 ∩ Γ. The
nilmanifold G0/Γ0 can be embedded as a subnilmanifold of G/Γ, and since
the quotient G/G0Γ is finite, there is some r ∈ N such that τr maps G0/Γ0 to
itself and we have

G/Γ =
r−1⊔
i=0

τiG0/Γ0.

Let X0 denote the associated system (endowed with the Borel σ-algebra,
Haar measure µ0, and transformation T r

τ = Tτr ).

Definition 5.5. An ergodic nilsystem X = (G/Γ,B, µ,Tτ) is synchronized
on G0/Γ0, or synchronized if the context is clear, if there exist some b ∈ G
and r ∈ N such that

(1) Tb : G/Γ→ G/Γ maps G0/Γ0 to itself;
(2) The action of Tb on G0/Γ0 is ergodic;
(3) The elements b, τ ∈ G satisfy br = τr.

We note that for general nilsystems, property (1) does not imply that
b ∈ G0. For instance, any totally ergodic nilsystem X is synchronized, as
then X = G0/Γ0 and we can take b = τ and r = 1. Moreover, all ergodic
1-step nilsystems are synchronized, as seen by projecting the rotation τ of
a compact abelian Lie group Z to the torus part of Z. We show that this
extends to 2-step nilsystems.

Lemma 5.6. Let k = 1 or k = 2. Then every ergodic k-step nilsystem
X = (G/Γ,B, µ,Tτ) is synchronized on G0/Γ0 for some choice of G,Γ.

The proof is technical and relies on results from [30] not directly relevant
to this paper, and so we defer it to Appendix C. While it is not needed
for our current work, it would be interesting to know if all nilsystems are
synchronized.

For r ∈ N, let 1rN : N → {0, 1} denote the function which assigns 1
to any integer divisible by r and 0 otherwise. Given a Følner sequence
Φ = (ΦN)N∈N, set

1r,Φ(n) =
1rN(n)

limN→∞ En∈IPΦN

(
(n j) j∈N

)1rN(n)
.
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This is well defined: the limit in the denominator exists because 1rN(n) =
1
r

∑r−1
i=0 ξ

n
r , where ξr is the first root of unity of degree r, and so is a periodic

function.

Proposition 5.7. Let X = (G/Γ,B, µ,Tτ) be a nilsystem and suppose that X
is synchronized on G0/Γ0. Let (n j) j∈N be a sequence with rational spectrum
and let Φ = (ΦN)N∈N be an increasing Følner sequence. Then there exists
some r ∈ N and a set of bounded functions F that are dense in L2(µ) such
that for all f ∈ F , we have

lim
N→∞
E

n∈IPΦN

(
(n j) j∈N

)1r,Φ(n) f (τnx) =
∫

X0
f (xy) dµ0(yΓ0)

for µG-almost every x ∈ G, where X0 = G0/Γ0 is the connected component
of the identity in X and is endowed with the Haar measure µ0.

Proof. Since the system X is synchronized, we can find some r and τ ∈ G
such that τr = br and b maps the connected component of X to itself. Since
1r,Φ(n) , 0 if and only if τn = bn, it suffices to compute the limit

lim
N→∞
E

n∈IPΦN

(
(n j) j∈N

)1r,Φ(n) f (bnx).

Decompose X =
⊔r′−1

i=0 Xi into connected components and note that by
increasing r if necessary we may assume without loss of generality that
r′ divides r. The translation by b induces an ergodic action on each Xi.
Thus the function f can be written as a sum of functions on each of these
components. Therefore, without loss of generality, it suffices to find a dense
set of bounded functions f : X0 → C such that

(5.3) lim
N→∞
En∈IPΦN

1r,Φ(n) f (bnx) =
∫

X0
f (x) dµ0(x).

We proceed by induction on k. For k = 1, the system X0 = (X0,BX0 , µ0,Rb)
is an ergodic rotation on a connected compact abelian group Z. Linear com-
binations of characters are dense in C(Z), and so it suffices to prove the re-
sult for a character f . If f = 1, then it follows from the definition of 1r,Φ that
the limit in (5.3) is 1. Otherwise, since X0 is connected, f (bnx) = αn f (x)
for some irrational α. On the other hand 1r,Φ(n) = c ·

∑r−1
i=0 ξ

in
r where ξr is the

first root of unity of degree r and c ∈ R is a constant. We have

lim
N→∞
En∈IPΦN

1r,Φ(n) f (bnx) = c
r−1∑
i=0

ωΦ(ξi
r · α) · f (x)
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where ωΦ is defined as in (3.6). However, since ξi
rα is irrational, and (n j) j∈N

has rational spectrum this quantity is zero, completing the case k = 1.
To proceed inductively, we use a similar argument to that in the proof

of Theorem 5.3. Namely, the system X0 is isomorphic to a system Y and
Y = Yk−1 ×ρ U for some connected group U and a continuous cocycle ρ.
We then consider a nilcharacter fχ(y, t) = g(y)χ(t), where χ : U → S1 is
a nontrivial character and g : Yk−1 → C is continuous. Once again write
1r,Φ(n) = c ·

∑r−1
i=0 ξ

in
r , fix some 0 ≤ i ≤ r − 1, and set s = ξi

r. Using the same
notation as in the proof of Theorem 5.3 (so Tk−1 denotes the action on Yk−1

and T the action on Y), we have

lim sup
N→∞

∣∣∣En∈IPΦN
sn · fχ(T n(y, t))

∣∣∣
= lim sup

N→∞

∣∣∣En∈IPΦN
sng(T n

k−1y)χ ◦ ρ(n, y) fχ(y, t)
∣∣∣ .

By the van der Corput inequality (Lemma 4.3) and the induction hypothesis,
this is bounded by

lim sup
M→∞

∥Em∈IPΦM
smg(T m

k−1y)ρ(m, y)∥2L2(µk−1) = 0

Since X0 is connected, it is totally ergodic and so the spectrum is supported
on the irrational elements in S1. Therefore, we have the L2-convergence
of the average limN→∞ En∈IPΦN

sn fχ(T n(y, t)) = 0 for all rational s ∈ S1Th,
completing the proof. □

As a corollary, we obtain a formula for weighted averages on synchro-
nized nilsystems.

Corollary 5.8. Let X = (G/Γ,B, µ,Tτ) be an ergodic k-step nilsystem that
is synchronized on G0/Γ0. Let η : Z1(X) → R be a non-negative continu-
ous function such that limN→∞ En∈IPΦN

(
(n j) j∈N

)η(na) = 1 where a denotes the
rotation induced on the Kronecker factor Z1(X), let f1, . . . , fk ∈ L∞(µ) be
bounded functions, and let ℓ1, . . . , ℓk ∈ N be distinct integers such that ℓ1, ℓ2

are coprime. Then there exists r ∈ N such that for every increasing Følner
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sequence Φ = (ΦN)N∈N, we have

lim
N→∞
E

n∈IPΦN

(
(n j) j∈N

)η(na)1r,Φ(n)
k∏

i=1

fi(T ℓinx)

=

∫
X̃0
η(y1)

k∏
i=1

fi(xyi) dµ̃(yΓ̃ℓ1,...,ℓk),

where X̃0 denotes the connected component of X̃ and µ̃0 the Haar measure
on X̃0.

Proof. As in the proof of Lemma 5.4, we can absorb η into f1, f2 and so
without loss of generality we assume that η = 1. As in the proof of Propo-
sition 5.7, we can reduce to the case that the functions are defined on the
connected component of the identity (note that all of these component are
isomorphic). Using the proof of Theorem 5.2, the limit is obtained by ap-
plying a pointwise convergence result for an ergodic average of a single
function on a particular nilsystem. We therefore obtain the required for-
mula using the same proof as in Theorem 5.2, only replacing the use of
Theorem 5.3 by Proposition 5.7. □

6. The large intersection property

6.1. Notions of largeness. Depending on the choice of sequence, different
notions of size are relevant.

Definition 6.1 (IP-density). Let (n j) j∈N be a sequence of natural numbers,
let Φ = (ΦN)N∈N be an increasing sequence, and let A ⊆ IP((n j) j∈N) be a
subset. We define the lower IP-density of A with respect toΦ as the quantity

dIPΦ
(A) := lim inf

N→∞

|A ∩ IPΦN

(
(n j) j∈N

)
|

|IPΦN

(
(n j) j∈N

)
|
.

Other notions of largeness for subsets ofN also have counterparts for IPs,
and we include a discussion in Appendix A.

6.2. Lower bounds for three terms.

Theorem 6.2. Let X = (X,B, µ,T ) be an ergodic invertible measure pre-
serving system, let (n j) j∈N be a sequence with rational spectrum, and let
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A ⊆ X be a measurable set. Then for all ε > 0, increasing Følner sequence
Φ = (ΦN)N∈N, and coprime and nonzero integers ℓ1, ℓ2 ∈ Z, we have

dIPΦ
{n ∈ IP

(
(n j) j∈N

)
: µ(A ∩ T−ℓ1nA ∩ T−ℓ2nA) > µ(A)3 − ε} > 0.

Proof. The factor Z1(X) is (measurably isomorphic to) a rotation on a com-
pact abelian group and we let a ∈ Z1(X) denote the rotation. Let η : Z1(X)→
R be a non-negative continuous function (yet to be specified) such that
limN→∞ En∈IPΦN

η(na) = 1. For contradiction, suppose that the statement is
false for some 0 < ε < 1. Then there exists an increasing Følner sequence
Φ = (ΦN)N∈N so that

(6.1) lim
N→∞

|Rε,N |

|IPΦN

(
(n j) j∈N

)
|
= 1,

where

Rε,N = {n ∈ IPΦN

(
(n j) j∈N

)
: µ(A ∩ T−ℓ1nA ∩ T−ℓ2nA) ≤ µ(A)3 − ε}.

Since η is continuous and Z1(X) is compact, it is bounded by a constant
(not depending on N), and so we have

En∈IPΦN
η(na)µ(A ∩ T−ℓ1nA∩T−ℓ2nA)

≤
1
|IPΦN |

∑
n∈Rε,N

η(na)(µ(A)3 − ε) + ∥η∥∞ · oN→∞(1)

≤ En∈IPΦN
η(na) · (µ(A)3 − ε) + ∥η∥∞ · oN→∞(1).

Passing to a subsequence of ΦN if necessary and taking N → ∞, we
conclude that

(6.2) lim
N→∞
En∈IPΦN

η(na)µ(A ∩ T−ℓ1nA ∩ T−ℓ2nA) < µ(A)3 − ε.

Choosing δ > 0 sufficiently small with respect to ε, it follows from Lemma 5.4
that there exists a 1-step nilsystem factor Y such that if f is the projection
of 1A onto Y, then

(6.3)
∣∣∣ lim

N→∞

(
En∈IPΦN

η(na)µ(A ∩ T−ℓ1nA ∩ T−ℓ2nA)

− En∈IPΦN
η(na)

∫
Y

f (x) f (T ℓ1nx) f (T ℓ2nx) dµY(x)
)∣∣∣ < ε/2.

As a 1-step nilsystem is a rotation on a compact abelian Lie group, we can
write Y = Tm × D for some finite dimensional torus Tm = (R/Z)m for some
m ≥ 1 and finite cyclic group D, with the rotation by the element a = (a1, a2)
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for some a1 ∈ T
m and a2 ∈ D. Let η : Y → R be a function of the form

η(t, d) = η1(t) · c−11{0}(d), where η1 : Tm → R is a non-negative continuous
function still to be chosen, 1{0}(d) takes the value 1 if d = 0 and the value
0 otherwise, and c := limN→∞ En∈IPΦN

1{0}(na2). Then equation (6.3) holds
for this η. Note that 1{0}(na2) = 1r(n) where r = |D| and so c is nonzero
and c−1 · 1{0}(na2) = 1r,Φ(n). Lifting η to the Kronecker factor of X, by
equation (6.3) and Corollary 5.8, we have that the left hand side of (6.2) is
ε/2-close to the quantity∫

Y

∫
T

η(t) f (x) f (x + ℓ1t) f (x + ℓ2t) dµT(t) dµY(x).

Let V be small neighborhood of identity in Tm and assume that η1 is a
continuous function supported on V such that

∫
Tm η1 dµ = 1. Since the

action of a1 on Tm is totally ergodic, we have that

lim
N→∞
En∈IPΦN

η1(na1) · c−11{0}(na2) =
∫
T

η(t) dt = 1.

It follows that by taking the neighborhood V to be sufficiently small, the left
hand side of Equation (6.2) is ε-close to∫

Z
f (x) f (x) f (x) dµZ(x) ≥

(∫
Z

f (x) dµZ(x)
)3

= µ(A)3.

In other words,

lim
N→∞
En∈IPΦN

η(na)µ(A ∩ T−ℓ1nA ∩ T−ℓ2nA) > µ(A)3 − ε,

a contradiction of the inequality in (6.2). □

6.3. Four terms. Before extending the lower bounds to four terms, we
derive a result that follows from Frantzikinakis [16, Proof of Theorem C].

Lemma 6.3. Let X = (G/Γ,B, µ,T ) be an ergodic 2-step nilsystem, f ∈
L∞(µ) be a bounded function, ℓ1, ℓ2 be coprime and nonzero integers, and
set ℓ0 = 0 and ℓ3 = ℓ1 + ℓ2. Then∫

X

∫
G2

∫
G2

3∏
i=0

f (xyℓi
1 y(ℓi2)

2 ) dµG2(y2) dµG2(y1) dµ(x) ≥
(∫

X
f dµ

)4

.
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Proof. Since G2 commutes with all elements in G, we can rewrite the inte-
gral on the left hand side as∫

X

∫
G2×G2

3∏
i=0

f (yℓi
1 y(ℓi2)

2 x) dµG2×G2(y1, y2) dµX(x).

Taking the integral over G2, this becomes

(6.4)
∫

X

∫
G2×G2×G2

3∏
i=0

f (yyℓi
1 y(ℓi2)

2 x) dµG2×G2×G2(y, y1, y2) dµX(x).

Reparameterizing the set

{(y, yyℓ1
1 y(ℓ12 )

2 , yyℓ2
1 y(ℓ22 )

2 , yyℓ1+ℓ2
1 y(ℓ1+ℓ22 )

2 : y, y1, y2 ∈ G2}

as

{(h1, h2, h3, h4) ∈ G4
2 : hℓ2−ℓ1

1 hℓ1+ℓ2
3 = hℓ2−ℓ1

4 hℓ1+ℓ2
2 },

we can rewrite (6.4) as∫
X

∫
G2

∫
{hℓ2−ℓ11 hℓ1+ℓ23 =h}

f (h1x) f (h3x) dµG2×G2(h1, h3)
2

dµG2(h) dµX(x).

By the Cauchy-Schwartz Inequality and a change of variables, this last ex-
pression is greater than or equal to∫

X

(∫
G2

f (hx) dµG2(h)
)4

dµX(x).

This, in turn, is greater or equal than(∫
X

∫
G2

f (hx) dµG2(h) dµX(x)
)4

=

(∫
X

f (x) dµX(x)
)4

,

as required. □

Theorem 6.4. Let X = (X,B, µ,T ) be an ergodic invertible measure pre-
serving system, let (n j) j∈N be a sequence with rational spectrum, and let
A ⊆ X be a measurable set. Then for all ε > 0, increasing Følner sequence
Φ = (ΦN)N∈N, and coprime and nonzero integers ℓ1, ℓ2 ∈ Z, we have

dIPΦ
{n ∈ IP

(
(n j) j∈N

)
: µ(A∩ T−ℓ1nA∩ T−ℓ2nA∩ T−(ℓ1+ℓ2)nA) > µ(A)4 − ε} > 0.
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Proof. We start as in the proof of Theorem 6.2, identifying Z1(X) with a
compact abelian group and letting a ∈ Z1(X) denote the rotation. Again let
η : Z1(X)→ R be a continuous non-negative function such that

lim
N→∞
En∈IPΦN

η(na) = 1

and suppose by contradiction that the statement does not hold. Then, as in
the proof of Theorem 6.2, for can find some 0 < ε < 1 such that

(6.5) lim
N→∞
En∈IPΦN

η(na)µ(A ∩ T−ℓ1nA ∩ T−ℓ2nA ∩ T−(ℓ1+ℓ2)n) ≤ µ(A)4 − ε.

Taking δ > 0 sufficiently small with respect to ε > 0, it follows from
Lemma 5.4 that there exists a factor isomorphic to an ergodic 2-step nil-
system Y such that letting f denote the projection of 1A onto this factor, we
have that the left hand side of (6.5) is ε/2-close to

(6.6) lim
N→∞
En∈IPΦN

η(na)
∫

Y
f (x) f (T ℓ1nx) f (T ℓ2nx) f (T (ℓ1+ℓ2)nx) dµ(x).

By Lemma 5.6, the system Y is synchronized. Let r be as in Lemma 5.6
and let Z(Y) denote the Kronecker factor of Y. Again write Z = Tm × D for
some finite dimensional torus Tm and a finite cyclic group D, and we write
the translation by T as a = (a1, a2) ∈ Z(Y) with a1 ∈ T

m and a2 ∈ D. For
convenience, we assume that r divides |D|, and otherwise we can pass to
an extension such that this holds. Take η : Z(Y) → R to be in the proof of
Theorem 6.2, meaning that it is a function the form η(t, d) = η1(t) ·c−11{0}(d)
where η1 : Tm → R is a non-negative continuous function yet to be specified
and c := limN→∞ En∈IPΦN

1{0}(na2), and lift this function to the Kronecker
factor of X. Let Y0 = N/Λ denote the connected component of Y . For
notational simplicity, set ℓ0 = 0 and ℓ3 = ℓ1 + ℓ2. Then, by (6.6) and
Proposition 5.8, the left hand side of (6.5) is ε/2 close to

(6.7)
∫

Y

∫
N/Λ

∫
N2/Λ2

η1(y1Λ)
3∏

i=0

f (xyℓi
1 y(ℓi2)

2 ) dµN2/Γ2(y2) dµN/Γ(y1) dµY(x).

Let V = B(G2, r) be an open ball with radius r > 0 and choose r to be suf-
ficiently small with respect to ε > 0 and such that V has trivial intersection
with the group D. Let η1 : Tm → R be a function supported on the projec-
tion of V onto Tm and such that the lift to Z satisfies

∫
T
η1(t) dµ(t) = 1. Since
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the action of a1 on Tm is totally ergodic, it follows that

lim
N→∞
En∈IPΦN

η1(na1) · c−11{0}(d) =
∫
T

η1(t) dµT(t) = 1.

Using (6.7), it follows that the left hand side of equation (6.5) is ε-close to∫
Y

∫
N2/Λ2

∫
N2/Λ2

3∏
i=0

f (xyℓi
1 y(ℓi2)

2 ) dµN2/Λ2(y1, y2) dµY(x).

By Lemma 6.3, this is bounded below by µ(A)4, a contradiction of (6.5). □

Appendix A. On different notions of largeness

There are several other notions of largeness that are appropriate for IP-
sequences, and we discuss relations among some of them. Let (n j) j∈N be a
sequence of natural numbers and let A ⊆ IP

(
(n j) j∈N

)
.

(1) The set A has positive lower IP-density if for any increasing Følner
sequence (ΦN)N∈N, we have dIPΦ

(A) > 0. Replacing the lim inf in the
definition of dIPΦ

with the limit or with lim sup, we define positive
IP-density and positive upper IP-density of the set A.

(2) The set A is syndetic in IP
(
(n j) j∈N

)
if finitely many translations of A

cover IP
(
(n j) j∈N

)
.

(3) The set A is IP-syndetic if it has nontrivial intersection with every
IP-Følner sequence.

We check that none of these density notions are equivalent.

Lemma A.1. For each of the density conditions (1), (2), and (3), there exists
a set satisfying that condition but not the other two.

Proof. Let (n j) j∈N be a sequence such that all of its finite sums are distinct
(for example, we can take n j = 10 j−1).

To construct a set that has positive IP-density but is neither syndetic in
IP

(
(n j) j∈N

)
nor is IP-syndetic, set ΦN = [N2,N2 + N], let Φ =

⋃
N∈NΦN ,

and take A = IP
(
(n j) j∈N

)
\IPΦ((n j) j∈N). The set A is not IP-syndetic because

it has trivial intersection with IPΦN

(
(n j) j∈N

)
and is not syndetic as infinitely

many translates are needed to cover IP
(
(n j) j∈N

)
. By construction of the

sequence ΦN , the set A has positive IP-density.
The set A = {n j : j ∈ N} is easily checked to be IP-syndetic, but does not

have positive lower IP-density and is not syndetic in IP
(
(n j) j∈N

)
.



40 B. KRA AND O. SHALOM

Taking the set A ⊆ IP
(
(n j) j∈N

)
to be the sequence which contains all sum-

mands which include n1, then we have that this set avoids the IP-Følner
sequence ΦN = [2,N] and is therefore not IP-large nor IP-syndetic. How-
ever, since A ∪ A − n1 = IP

(
(n j) j∈N

)
, this set is syndetic. □

We note that it follows immediately from the definitions that for any se-
quence (n j) j∈N of natural numbers, if a set A intersects every IP set, then
A ∩ IP

(
(n j) j∈N

)
is IP-syndetic in IP

(
(n j) j∈N

)
.

Appendix B. Failure of the large intersection property for non-rational
sequences

We show that Theorem 6.2 does not hold for arbitrary sequences, even
when the notion of IP-largeness is replaced by some other notions of large-
ness, including stronger ones. A set of integers is central if it is an element
in a minimal idempotent in the Stone-Čech compactification βN of the inte-
gers (see [21] for more on central sets and [4] for this equivalent definition).

It was established in [4] that a central set I contains all finite sums of a
sequences (n j) j∈N however, without multiplicities. Throughout we assume
that all central sets contains 0 by default. Though our notion of IP differs
from that used in [21], given IP generated by a sequence of distinct elements
(n j) j∈N, we can always find a sub-IP by passing to a subsequence (n ji)i∈N

satisfying that n ji >
∑i−1

t=1 n jt for all i > 1. Thus the IP generated by this
subsequence is a set, rather than a multiset, and a central set contains an IP.

Theorem B.1. There exists an ergodic invertible measure preserving system
X = (X,B, µ,T ), a constant c > 0, and a set A ⊆ X of positive measure such
that any central set I contains a central subset I′ ⊆ I with the property that

{0 , n ∈ I′ : µ(A ∩ T−nA ∩ T−2nA) ≥ µ(A)−c log µ(A)} = ∅.

Proof. Consider the space X = T2, where T = R/Z, equipped with the
action T (x, y) = (α+ x, y+ x) for some irrational α ∈ T. Since α is irrational,
this system is ergodic and it is easy to check that the iterates of a point (x, y)
are given by

T n(x, y) = (nα + x, y + nx +
(
n
2

)
α).
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Set A = T×B for a subset B yet to be chosen. Writing 1A(x, y) =
∑

n∈Z anyn

in terms of the Fourier series for 1A (note that 1A does not depend on the
first coordinate), we have that

µ(A∩T−nA ∩ T−2nA) =
∫

X
1A · T n1A · T 2n1A dµ

=
∑

m0,m1,m2∈Z

am0am1am2α
m1(n

2)+m2(2n
2 )

∫
X

ym0+m1+m2 xn(m1+2m2) dµ(x, y).

The last integral is zero unless m0 + m1 + m2 = 0 and m1 + 2m2 = 0 (note
that n , 0). In this case, the integral is 1. It follows that m0 = m1 = −2m2,
and so

(B.1) µ(A ∩ T−nA ∩ T−2nA) =
∑
m∈Z

a2
ma2mα

mn.

Let I be a central set and let p be a minimal idempotent containing I.
For an ultrafilter p ∈ βN, we write p- limn∈N xn = x to mean that for every
neighborhood U of x we have {n : xn ∈ U} ∈ p . Bergelson [5] showed
that p- limn∈N T n = PK converges weakly to the projection onto the Kro-
necker factor. In particular, we have that p- limn∈N(αmn) = 1 for all m ∈ Z.
Therefore, applying p- lim to (B.1), we deduce that

p- lim
n∈N

µ(A∩T−nA ∩ T−2nA) =
∑
m∈Z

a2
ma2m

=

∫
R/Z×R/Z

1B(t)1B(t + s)1B(t + 2s) ds dt.
(B.2)

In [7, Proof of Theorem 2.1], it is shown that for every integer L ≥ 1 there is

a set BL of measure
exp(−c

√
log L)

4 , where c is the constant from Behrend’s con-
struction of a set of of integers of size L containing no three term arithmetic

progressions, for which the quantity in (B.2) is bounded by
exp(−c

√
log L)

16L .

Taking L sufficiently large, this implies that

p- lim
n∈N

µ(A ∩ T−nA ∩ T−2nA) < µ(A)−c log µ(A).

It follows that there exists a central set I′ ⊆ I such that µ(A∩T−nA∩T−2nA) ≤
µ(A)−c log µ(A) for all n ∈ I′, completing the proof. □
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Appendix C. Proof of Lemma 5.6

To prove Lemma 5.6, we freely make use of notation and results from [30],
giving precise references but omitting the details.

We start with the following structure theorem for cocycles of type 2
(see [30, Section 7] for definitions).

Lemma C.1. Assume that U1 is a finite dimensional torus, K is a finite
cyclic group, and let Z = U1 × K be a 1-step nilsystem with the rotation
given by some a = (a1, b) ∈ Z for some generator b ∈ K and irrational
a1 ∈ U1. For a finite dimensional torus U, any cocycle ρ : Z → U of type 2
is cohomologous to a sum of a K-invariant cocycle ρ0 and a homomorphism
ϕ : K → U.

Proof. Set r = |K|. For z ∈ Z, write z = (x, t) for x ∈ U1 and t ∈ K. For
s ∈ Z and f : Z → U, we write ∂s f (x) = f (x + s) − f (x). By [30, Lemma
8.1], we have that

∂bρ = c − ∂aF

for some c ∈ U and measurable function F : Z → U. Combining this
equation with the telescoping identity

∑r−1
i=0 ∂bρ(x, t+ ib) = 0, it follows that

r · c = ∂a

( r−1∑
i=0

F(x, t + ib)
)
.

Thus rc is an eigenvalue of a b-invariant eigenfunction. Since any eigen-
function is of the form ψ : U1 → U for some affine map ψ (meaning that
ψ(x) − ψ(0) is a homomorphism from U1 to U), we can write

(C.1) ψ(x) =
r−1∑
i=0

F(x, t + ib).

We claim that ψ determines F up to a coboundary with respect to the
action of K. More precisely, the claim is that

F(x, t) = ∂bF′(x, t) +
(
|t|

r − 1

)
ψ(x)

for some measurable map F′ : Z → U, where
(
|t|

r−1

)
maps all cosets of rZ to

0 other than the coset (r − 1) + rZ, which is mapped to 1.
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To check the claim, note that
∑r−1

i=0

(
|t+ib|
r−1

)
ψ(x) = ψ(x) and so by (C.1) it

follows that

(C.2)
r−1∑
i=0

F(x, t + ib) −
(
|t + ib|
r − 1

)
ψ(x) = 0.

Defining F′(x, jb) =
∑ j−1

i=0 F(x, 0 + jb) −
(
| jb|
r−1

)
ψ(x) for all 0 ≤ j ≤ r − 1,

we have that (C.2) implies that ∂bF′(x, t) = F(x, t) −
(
|t|

r−1

)
ψ(x), proving the

claim.
Thus by the claim, we may modify ρ by the cohomologous cocycle ρ −

∂aF′. Therefore, we can assume without loss of generality that F(x, t) =(
|t|

r−1

)
ψ(x) for some affine map ψ : Z → U. In this case

∂bρ = c − ∂b

((
|t|

r − 1

)
ψ(x)

)
= c −

(
|t + b|
r − 1

)
ψ(x + a1) +

(
|t|

r − 1

)
ψ(x)

and rc = ∂a1ψ(x). This equation determines ρ up to a b-invariant function.
Indeed, let σ : Z → U be the cocycle defined by

σ(x, jb) := ∂ jbρ(x, 0) = j · c −
(
| jb|

r − 1

)
ψ(x + a1).

Then ∂bσ(x, t) = ∂bρ(x, t) and so there is a map f : U1 → U such that
ρ(x, t) = σ(x, t) + f (x). Since ρ(x, t) is of type 2, for every s ∈ U1 there is a
constant cs ∈ U and a measurable map Fs : Z → U such that

∂sσ(x, t) + ∂s f (x) = ∂sρ(x, t) = cs − ∂aFs(x, t).

When t = 0, we have that σ(x, 0) = 0 and so

∂s f (x) = cs − ∂aFs(x, t.)

Choosing t0 such that t0b = r − 1, we have σ(x, t0b) = t0 · c − ψ(x + a1).
From this it follows that,

∂sψ(x + a1) + ∂s f (x) = cs − ∂aFs(x, t0).

It follows that ∂sψ(x + a1) = ∂sψ(x) is a coboundary for all s ∈ U1, but this
can not happen unless ψ = 0.

In this case, ∂bρ = c, and again using the telescoping identity
∑r−1

i=0 ∂bρ(x, t+
ib) = 0, we deduce that rc = 0. Hence, we can define a homomorphism
ϕ : K → U taking b to c, and then ρ0 := ρ − ϕ is a b-invariant cocycle and ρ
is cohomologous to ρ0 + ϕ. □
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We use this to complete the proof of the lemma.

Proof of Lemma 5.6. Let k = 1 or k = 2 and let X = (G/Γ,B, µ,Tτ) be an
ergodic k-step nilsystem.

Suppose first that k = 1. Then X is isomorphic to a rotation on a compact
abelian Lie group Z and we can write Z = U1 × K for some torus U1 and
finite abelian cyclic group K, with the rotation a = (a1, b), where a1 ∈

U1 and b ∈ K. Taking r = |K|, we have that ra = r(a1, 0) and so X is
synchronized.

Now suppose that k = 2, and write X = G(X)/Γ where G(X) is the Host-
Kra group of X (see [30, Section 5]). By [30, Section 8], we have that
X = Z ×ρ U where Z, U, and ρ are as in Lemma C.1. Thus, without loss
of generality we may assume that ρ = ρ0 + ϕ, where ρ0 is a K-invariant
cocycle for a finite cyclic group K and ϕ : K → U is a homomorphism.
Since K has some finite order, it follows from the cocycle identity that there
exists some r ∈ N such that ρ(r, x) = ρ0(r, x). The translation Tτ on X is
given by the element τ = S (a,ρ) ∈ G(X). On the other hand we also have
b := S (a1,0,ρ0) ∈ G(X) since ∂a1ρ = ∂aρ

0 (see [30, Lemma 8.7]) and the latter
maps the connected component of X to itself. Furthermore, it follows from
the construction that br = S r

((a1,0),ρ0) = S r
(a,ρ) = τ

r, as required. □
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