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Abstract. For a subshift over a finite alphabet, a measure of the complexity

of the system is obtained by counting the number of nonempty cylinder sets
of length n. When this complexity grows exponentially, the automorphism

group has been shown to be large for various classes of subshifts. In contrast,

we show that subquadratic growth of the complexity implies that for a topo-
logically transitive shift X, the automorphism group Aut(X) is small: if H is

the subgroup of Aut(X) generated by the shift, then Aut(X)/H is periodic.

For sublinear growth, we show the stronger result that Aut(X)/H is a group
of finite exponent.

1. Introduction

In this note, we study the group of automorphisms of a topologically transitive
subshift. More precisely, if A is a finite alphabet with the discrete topology and
we endow AZ with the product topology, a closed set X ⊆ AZ is called a subshift
it is invariant under the left shift map σ : AZ → AZ that acts on x ∈ AZ by
(σx)(i+ 1) := x(i) for all i ∈ Z. A subshift if topologically transitive if there exists
x0 ∈ X such that the set {Tnx0 : n ∈ Z} is dense in X. An automorphism of (X,σ)
is a homeomorphism ϕ : X → X that commutes with σ. We denote the group of
automorphisms of (X,σ) by Aut(X).

There are numerous theorems showing that the automorphism group can be ex-
tremely large for different classes of subshifts. The first such result was proven by
Curtis, Hedlund and Lyndon (see Hedlund [7]), who showed that Aut(AZ) contains
isomorphic copies of any finite group and also contains two involutions whose prod-
uct has infinite order. For mixing one dimensional subshifts of finite type (of which
AZ is an example), Boyle, Lind and Rudolph [2] showed that the automorphism
group contains the free group on two generators, the direct sum of countably many
copies of Z, and the direct sum of every countable collection of finite groups. These
theorems show that Aut(X) is large, and are proven by constructing automorphisms
that generate subgroups with prescribed properties. In contrast, we are interested
in placing restrictions on Aut(X), showing that for certain classes of subshifts, the
automorphism group can not contain certain structures, and so we need a different
approach.

There are cases in which the automorphism group can be characterized. For
example, Host and Parreau [5] gave a complete description for primitive substitu-
tions of constant length and this was generalized in Salo and Törmä [15]. Olli [11]
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described the automorphism group of Sturmian shifts, and generalizations are given
in [4].

For each result showing that the automorphism group is large, there is a notion of
complexity associated with the system and this complexity is large. More precisely,
for a shift system, let PX(n) denote the number of nonempty cylinder sets of length
n. For the full shift and for mixing subshifts of finite type, this complexity grows
exponentially and this growth is an important ingredient in the constructions. We
study the opposite situation, where the complexity has slow growth and we show
that this places strong restrictions on Aut(X). In particular, we are interested in
shifts (X,σ) for which PX(n) grows linearly or subquadratically (see Section 2 for
the precise definition of the growth). To state our main theorem, recall that a
(possibly infinite) group is periodic if every element has finite order. We show:

Theorem 1.1. Suppose (X,σ) is a topologically transitive shift of subquadratic
growth and let H be the subgroup of Aut(X) generated by σ. Then Aut(X)/H is a
periodic group.

The collection of shifts of subquadratic growth includes many examples that arise
naturally in symbolic dynamics and in the combinatorics of words. The theorem
applies to Sturmian shifts, and more generally to Arnoux-Rauzy shifts [1] (which
have linear complexity) and linearly recurrent systems [3]. A theorem of Pansiot [12]
shows that for a purely morphic shift X, PX is one of Θ(1), Θ(n), Θ(n log log n),
Θ(n log n), or Θ(n2), where Θ is the asymptotic growth rate, and all but the last
class have subquadratic growth. For more extensive literature on shift systems, see
for example [6].

In addition, we have an analogous result for topologically transitive shift (X,σ)
of linear growth (Theorem 3.3), in which we show that if H is the subgroup of
Aut(X) generated by σ, then Aut(X)/H is a group of finite exponent. (By finite
exponent, we mean that all elements have finite order with a bound on the maximum
order.)

We note that Theorem 1.1 does not hold without some assumption such as
transitivity. With an alphabet of four symbols 0, 1, 2, 3, we can produce a coloring of
Z which is 1 at the origin and 0 elsewhere and produce a second coloring of Z which
is 3 at the origin and 2 elsewhere. Taking X to be the smallest subshift of {0, 1, 2, 3}
that contains both of these colorings, set ϕ : X → X to be the automorphism that
shifts all points in the letters 0 and 1 to the left shifts all points in the letters 2 and
3 to the right. Then ϕaσb = Id if and only if a = b = 0 and so ϕ projects to an
element of infinite order in Aut(X)/H.

We conclude with a brief comment on the ideas in the proof of Theorem 1.1.
Instead of working in the one dimensional setting, we use the one dimensional
automorphisms to produce colorings of Z2. By the complexity assumption on X,
we can apply a theorem of Quas and Zamboni showing that these colorings are
simple. We then use this information on the two dimensional colorings to deduce
the one dimensional result.

Remark 1.2. Recently, Salo [14] has shown that there exists a Toeplitz shift whose
complexity function satisfies PX(n) = O(n1.757) for which Aut(X)/H is an infinite,
periodic group. This complements our main theorem, showing even among minimal
shifts of subquadratic growth the group Aut(X)/H need not be finite.
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2. Complexity

2.1. One dimensional shifts. Throughout we assume that A is a finite set. For
x ∈ AZ, we write x = (x(i) : i ∈ Z) and let x(i) denote the element of A that x
assigns to i ∈ Z . The shift map σ : AZ → AZ is defined by (σx)(i) := x(i + 1).
With respect to the metric

d(x, y) := 2−min{|i| : x(i)6=y(i)},

AZ is compact and σ is a homeomorphism.
If F ⊂ Z is a finite set and β ∈ AF , then the cylinder set [F ;β] is defined as

[F ;β] := {x ∈ AZ : x(i) = β(i) for all i ∈ F}.

The collection of all cylinder sets is a basis for the topology of AZ.
A closed, σ-invariant set X ⊆ AZ is called a subshift. The group of all home-

omorphisms from X to itself that commute with σ is called the automorphism
group of X and is denoted Aut(X). A classical result of Hedlund [7] says that
if ϕ ∈ Aut(X), then ϕ is a sliding block code, meaning that there exists Nϕ ∈
N such that for all x ∈ X and all i ∈ Z, (ϕx)(i) is determined entirely by
(xi−Nϕ

, xi−Nϕ+1, . . . , xi+Nϕ−1, xi+Nϕ
) ∈ A2Nϕ+1. An automorphism ϕ has range

N if Nϕ can be chosen to be N .
As a measure of the complexity of a given subshift X, the block complexity

function PX : N→ N is defined by

PX(n) =
∣∣{β ∈ ABn : [β,Bn] ∩X 6= ∅}

∣∣,
where Bn := {x ∈ Z : 0 ≤ x < n}. Defining the complexity Px(n) to be the number
of configurations in a window of size n in some fixed x ∈ X, we have that

PX(n) ≥ sup
x∈X

Px(n),

and equality holds when the subshift X is transitive.
It is well-known that PX(n) is sub-multiplicative and so the topological entropy

htop(X) of X defined by

htop(X) := lim
n→∞

log(PX(n))

n
,

is well-defined (see, for example [8]). For subshifts whose topological entropy is
zero, one can study the upper polynomial growth rate of (X,σ) defined by

P (X) := lim sup
n→∞

log(PX(n))

log(n)
∈ [0,∞]

and the lower polynomial growth rate of (X,σ) given by

P (X) := lim inf
n→∞

log(PX(n))

log(n)
∈ [0,∞].

The classical Morse-Hedlund Theorem [9] states that x ∈ X is periodic if and
only there exists some n ∈ N such that Px(n) ≤ n. It follows immediately that if
X contains at least one aperiodic element (that is, at least one x ∈ X for which
σix 6= σjx for any i 6= j), then P (X) ≥ 1.
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2.2. Two dimensional shifts. With minor modifications, these notions extend
to higher dimensions. We only need the results in two dimensions and so only state
the generalizations in this setting.

If η ∈ AZ2

, let η(i, j) denote the entry η assigns to (i, j) ∈ Z2. With respect to
the metric

d(η1, η2) = 2−min{‖~v‖ : η1(~v)6=η2(~v)},

the space AZ2

is compact. If F ⊂ Z2 is finite and β : F → A, then the cylinder set
[F ;β] is defined as

[F ;β] := {η ∈ AZ2

: η(i, j) = β(i, j) for all (i, j) ∈ F}.

As for AZ, the cylinder sets form a basis for the topology of AZ2

. We define the

left-shift S : AZ2 → AZ2

by

(Sη)(i, j) := x(i+ 1, j)

and the down-shift T : AZ2 → AZ2

by

(Tη)(i, j) := x(i, j + 1).

These maps commute and both are homeomorphisms of AZ2

.

For η ∈ AZ2

, we denote the Z2-orbit of η by

O(η) := {SaT bη : (a, b) ∈ Z2}

and let O(η) denote the closure of O(x) in AZ2

(note that the Z2 action by the

shifts S and T is implicit in this notation). A closed subset Y ⊆ AZ2

is a subshift of

AZ2

if it is both S-invariant and T -invariant. In particular, for any fixed η ∈ AZ2

the set O(η) is a subshift.

2.3. Automorphisms and Z2 configurations. Suppose ϕ ∈ Aut(X) and x ∈ X.

We define an element of AZ2

by:

(1) ηϕ,x(i, j) := (ϕjx)(i).

For fixed ϕ ∈ Aut(X), the inclusion map ıϕ : X → AZ2

given by ıϕ(x) := ηϕ,x is a
homeomorphism from X to ıϕ(X) and satisfies ıϕ ◦ σ = S ◦ ıϕ and ıϕ ◦ ϕ = T ◦ ıϕ.
That is, ıϕ is a topological conjugacy between the Z2-dynamical system (X,σ, ϕ)
and the Z2-dynamical system (ıϕ(X), S, T ). Note that the joint action of σ and ϕ
on X is a Z2-dynamical system, as σ commutes with ϕ. Furthermore, note that
transitivity of the system (X,σ) implies transitivity of the system Z2-dynamical
system (ıϕ(X), S, T ).

For a subshift Y ⊆ AZ2

, the rectangular complexity function PY : N× N→ N is
defined by

PY (n, k) :=
∣∣{β ∈ ARn,k : [β;Rn,k] ∩ Y 6= ∅}

∣∣
where Rn,k := {(x, y) ∈ Z2 : 0 ≤ x < n and 0 ≤ y < k}. (Again, we could
have defined this for elements y ∈ Y and taken a supremum and equality of these
complexities holds for transitive systems.)

For x ∈ X, the crucial relationship between the (one-dimensional) block complex-
ity PX and the (two-dimensional) rectangular complexity PO(ıϕ(x)) is the following:
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Lemma 2.1. Suppose X is a shift and ϕ,ϕ−1 ∈ Aut(X) are block codes of range
N . Then for any x ∈ X, we have

(2) PO(ηϕ,x)
(n, k) ≤ PX(2Nk − 2N + n).

Proof. Suppose [β;Rn,k] ∩ ıϕ(X) 6= ∅. Since ıϕ is a topological conjugacy between
(X,σ, ϕ) and (ıϕ(X), S, T ), there exists x ∈ X such that the restriction of ηϕ,x to
Rn,k is β. Since ϕ is a block code of range N , the word

(x−N−i1 , x−N−i1+1, . . . , xN+i2−1, xN+i2)

determines (ϕx)j for all −i1 ≤ j ≤ i2. It follows inductively that the word

(x−tN−i1 , x−tN−i1+1, . . . , xtN+i2−1, xtN+i2)

determines (ϕrx)j for 1 ≤ r ≤ t and (t−r)N− i1 ≤ j ≤ (t−r)N+ i2. In particular,
the word

(x−(k−1)N , x−(k−1)N+1, . . . , x(k−1)N+n−1, x(k−1)N+n−1)

determines (ϕrx)j for all 0 ≤ r < k and all 0 ≤ j < n.
This means that the restriction of ηϕ,x to the set Rn,k is determined by the

restriction of ηϕ,x to the set {(x, 0) ∈ Z2 : − (k − 1)N ≤ x ≤ (k − 1)N + n − 1}.
By definition of ηϕ,x, this is determined by the word

(x−(k−1)N , x−(k−1)N+1, . . . , x(k−1)N+n−1, x(k−1)N+n−1).

The number of distinct colorings of this form is PX(2(k−1)N+n) and so the number
of distinct β : Rn,k → A for which [β;Rn,k] 6= ∅ is at most PX(2Nk− 2N + n). �

It follows from Lemma 2.1 that if

(3) lim inf
n→∞

PX(n)

n2
= 0,

then

(4) lim inf
n→∞

PO(ıϕ(x))(n, n)

n2
= 0.

Definition 2.2. We say that a shift X ⊆ AZ satisfying (3) is a shift of subquadratic
growth.

Remark 2.3. We remark that the condition that the shift X has subquadratic growth
is related to a statement about the lower polynomial growth rate of X. If P (X) < 2,
then X has subquadratic growth. On the other hand, if X has subquadratic growth,
then P (X) ≤ 2. If P (X) = 2, then X may or may not have subquadratic growth.

3. Shifts of subquadratic growth

If ϕ ∈ Aut(X), then as x ∈ X varies, our main tool to study the Z2-configurations
that arise as ηϕ,x (as defined in (1)) is the following theorem of Quas and Zamboni:

Theorem 3.1 (Quas and Zamboni [13]). Let n, k ∈ N. Then there exists a finite

set F ⊆ Z2 \ {(0, 0)} (which depends on n and k) such that for every η ∈ AZ2

satisfying Pη(n, k) ≤ nk/16, there exists a vector ~v ∈ F such that η(~x + ~v) = η(~x)
for all ~x ∈ Z2.

Although this is not the way their theorem is stated, by checking through the
cases in the proof, this is exactly what they show in Theorem 4 in [13].

We first use this to prove a lemma needed to study linear complexity:
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Lemma 3.2. Suppose X is a topologically transitive shift for which

lim inf
n→∞

PX(n)

n
=: c̃ <∞

and let c be the smallest integer larger than c̃. Then there exists b ∈ N (which
depends only on c) such that for any ϕ ∈ Aut(X), there is an integer aϕ ∈ N such
that for all x ∈ X we have σaϕϕbx = x.

Proof. Suppose ϕ ∈ Aut(X) is fixed and has range N and let x0 ∈ X be a point
with a dense orbit. If x0 is periodic, then X is finite and the period of every x ∈ X
divides the period of x0. Thus, in this case, Aut(X) is a finite group and the lemma
is trivial. Thus without loss we can assume that x0 is an aperiodic coloring of Z.

By Lemma 2.1,

PO(ηϕ,x0
)(n, k) ≤ PX(2Nk − 2N + n)

where N is the range of ϕ. By definition of c, there exists ε > 0 such that

PX(2Nc− 2N + n) ≤ (c− ε) · (n+ 2Nc− 2N)

for infinitely many n. Combining this with (2), we have that there are infinitely
many n for which

PO(n,c) ≤
n · c
16

.

Set nϕ ∈ N to be the smallest integer for which this holds.
Since x0 is aperiodic, it follows that ıϕ(x0) is not a doubly periodic coloring

of Z2 (since its restriction to the x-axis is the horizontally aperiodic coloring x0).
By Theorem 3.1, ıϕ(x0) is periodic and so it must be singly periodic. It follows
from the proof of Theorem 3.1 that for n, k ∈ N, there is a bound B(k) ∈ N which

depends only on k (and not on n) such that if η ∈ AZ2

is not doubly periodic but
Pη(n, k) ≤ nk/16, then η has a nonzero period vector whose y-component is at
most B(k). Therefore, ıϕ(x0) has a period vector whose y-component is exactly
B(c)! and we set B(c)! := b. Let aϕ ∈ N be the x-component of this period vector.
Then SaϕT bıϕ(x0) = ıϕ(x0).

Since ıϕ is a topological conjugacy between (X,σ, ϕ) and (ıϕ(X), T, S), it follows

that σaϕϕbx0 = x0. Therefore σaϕϕb acts trivially on the orbit of x0. Since σaϕϕb

is continuous, it acts trivially on the orbit closure of x0, namely on all of X. By
construction, the exponent b is independent of ϕ. �

Theorem 3.3. Suppose X is a topologically transitive subshift such that

lim inf
n→∞

PX(n)

n
<∞.

If H is the subgroup of Aut(X) generated by σ, then Aut(X)/H is a group of finite
exponent.

Proof. By Lemma 3.2, there exists b ∈ N (which depends only lim inf PX(n)/n)
such that for all ϕ ∈ Aut(X), there is an integer aϕ ∈ N satisfying σaϕϕbx = x
for all x ∈ X. It follows that σaϕϕb is the identity automorphism. Therefore ϕb

projects to the identity in Aut(X)/H. Since b depends only on lim infn→∞ PX(n)/n
(and not on ϕ), it follows that Aut(X)/H has (not necessarily minimal) exponent
b. �

We now turn to subquadratic growth:
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Lemma 3.4. Suppose X is a shift of subquadratic growth and ϕ ∈ Aut(X). Then
there exists a finite set F ⊂ Z2\{(0, 0)} (which depends only on ϕ and X) such that
for all x ∈ X, there exists (a(ϕ,x), b(ϕ,x)) ∈ F such that Sa(ϕ,x)T b(ϕ,x) ıϕ(x) = ıϕ(x).

Proof. Suppose

lim inf
n→∞

PX(n)

n2
= 0.

Let N be the range of the block code ϕ. Find the smallest n1 ∈ N for which

PX(2N(n1 − 1) + n1) ≤ n21/16.

By Theorem 3.1, there exists a finite set F ⊂ Z2\{(0, 0)} (which depends only on n1
and hence only on the subshift X) such that if η ∈ AZ2

satisfies Pη(n1, n1) ≤ n21/16,
then there exists ~v ∈ F for which η(~x+ ~v) = η(~x) for all ~x ∈ Z2.

Let x ∈ X be fixed. By (2),

PO(ıϕ(x))(n1, n1) ≤ n21/16.

Thus for some (aϕ,x, bϕ,x) ∈ F , we have that Saϕ,xT bϕ,x ıϕ(x) = ıϕ(x). �

Lemma 3.5. Suppose X is a topologically transitive shift of subquadratic growth
and let ϕ ∈ Aut(X). Then there exists a vector (aϕ, bϕ) ∈ Z2 \ {(0, 0)} such that
for all x ∈ X, SaϕT bϕ ıϕ(x) = ıϕ(x).

Proof. By Lemma 3.4 there exists a finite set F ⊆ Z2 \ {(0, 0)} such that for all
x ∈ X there exists ~v ∈ F such that ıϕ(x) is periodic with period vector ~v. For each
x ∈ X let

Vx := {~v ∈ F : ~v is a period vector of ıϕ(x)}.
Since Vx ⊆ F and F is finite, there exists M ∈ N such that whenever Vx contains
two linearly independent vectors (so that ıϕ(x) is doubly periodic) the vertical
period of ıϕ(x) is at most M . Therefore, if Vx contains two linearly independent
vectors for all x ∈ X, then ıϕ(x) is vertically periodic with period vector (0,M !)
for all x ∈ X. In this case, the vector (aϕ, bϕ) = (0,M !) satisfies the conclusion of
the lemma.

We are left with showing that if there exists x ∈ X such that all of the vectors
in Vx are collinear, then there exists (aϕ, bϕ) ∈ F such that ıϕ(x) is periodic with
period (aϕ, bϕ) for all x ∈ X. Let

B := {x ∈ X : dim(Span(Vx)) = 1}

be the set of “bad points” in X. For each x ∈ B let v(x) be a shortest nonzero
integer vector that spans Span(Vx) (there are two possible choices). Fix some
x0 ∈ B and let ~v = v(x0). There are two cases to consider:

Case 1: Suppose that v(x) is collinear with v(y) for any x, y ∈ B. Fix x0 ∈ B and
let ~v ∈ Z2 \ {(0, 0)} be a shortest integer vector parallel to v(x0) (there are two
possible choices). Then for all x ∈ B, there exists nx ∈ Z such that v(x) = nx · vx0

.
Since v(x) ∈ F and F is finite, {nx : x ∈ B} is bounded. For all y ∈ X \ B the
coloring ıϕ(y) is doubly periodic. For each such y, choose ny ∈ Z such that ny ·~v is
a shortest nonzero period vector for ıϕ(y) parallel to ~v. Since ıϕ(y) has two linearly
independent period vectors in F , the set {ny : y ∈ X \B} is bounded. Therefore if
N is the least common multiple of {|nz| : z ∈ X}, then N · ~v is a period vector for
ıϕ(z) for all z ∈ X. In this case, set (aϕ, bϕ) := N · ~v.
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Case 2: Suppose there exist x1, x2 ∈ B such that v(x1) is not collinear with v(x2).
We obtain a contradiction in this case, thereby completing the proof of the lemma.
Since dim(Span(Vx1)) = 1, for any ~w ∈ F \ Vx1 there exists ~y~w ∈ Z2 such that

(5) ηϕ,x1(~y~w) 6= ηϕ,x1(~y~w + ~w).

Choose N1 ∈ N such that the restriction of ηϕ,x1 to the set {(x, 0) : −N1 ≤ x ≤ N1}
determines ηϕ,x1(~y~w) and ηϕ,x1(~y~w+ ~w) for all ~w ∈ F \Vx1 . Similarly, for ~w ∈ F \Vx2 ,
there exists ~z~w ∈ Z2 such that

(6) ηϕ,x2
(~z~w) 6= ηϕ,x2

(~z~w + ~w).

Choose N2 ∈ N such that the restriction of ηϕ,x2
to the set {(x, 0) : −N2 ≤ x ≤ N2}

determines ηϕ,x2
(~z~w) and ηϕ,x2

(~z~w + ~w) for all ~w ∈ F \ Vx2
.

By topological transitivity of (X,σ), there exists ξ ∈ X and a, b ∈ Z such that

ξ(i− a) = x1(i) for all −N1 ≤ i ≤ N1;

ξ(i− b) = x2(i) for all −N2 ≤ i ≤ N2.

Therefore for any ~w ∈ F \ Vx1
we have

ηϕ,ξ(~y~w − (a, 0)) = ηϕ,x1
(~y~w);(7)

ηϕ,ξ(~y~w + ~w − (a, 0)) = ηϕ,x1
(~y~w + ~w),(8)

and for any ~w ∈ F \ Vx2 we have

ηϕ,ξ(~y~w − (b, 0)) = ηϕ,x1(~y~w);(9)

ηϕ,ξ(~y~w + ~w − (b, 0)) = ηϕ,x1(~y~w + ~w).(10)

By Lemma 3.4, ηϕ,ξ is periodic and its period vector lies in F . Combining equa-
tions (5), (7), and (8) we see this vector is not an element of the set F \ Vx1 .
Similarly, by combining equations (6), (9), and (10), we see this vector is not in the
set F \ Vx2

. Since Vx1
∩ Vx2

= ∅, we obtain the desired contradiction. �

We use this lemma to complete the proof of Theorem 1.1:

Proof of Theorem 1.1. Suppose X is a shift of subquadratic growth and let ϕ ∈
Aut(X). By Lemma 3.5, there exists (aϕ, bϕ) ∈ Z2\{(0, 0)} such that SaϕT bϕ ıϕ(x) =
ıϕ(x) for all x ∈ X. Since ıϕ is a topological conjugacy between (X,σ, ϕ) and
(ıϕ(X), S, T ), we have that σaϕϕbϕx = x for all x ∈ X and so ϕbϕ = σ−aϕ . Thus if
H is the subgroup of Aut(X) generated by the powers of σ, the projection of ϕbϕ

to Aut(X)/H is the identity.
Since this argument can be applied to any ϕ ∈ Aut(X) (where the parameters

aϕ and bϕ depend on ϕ), it follows that Aut(X)/H is a periodic group.
�
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