
POINCARÉ RECURRENCE AND NUMBER THEORY:
THIRTY YEARS LATER

BRYNA KRA

Hillel Furstenberg’s 1981 article in the Bulletin gives an elegant intro-
duction to the interplay between dynamics and number theory, summa-
rizing the major developments that occurred in the few years after his
landmark paper [21]. The field has evolved over the past thirty years,
with major advances on the structural analysis of dynamical systems
and new results in combinatorics and number theory. Furstenberg’s
article continues to be a beautiful introduction to the subject, drawing
together ideas from seemingly distant fields.

Furstenberg’s article [21] gave a general correspondence between reg-
ularity properties of subsets of the integers and recurrence properties in
dynamical systems, now dubbed the Furstenberg Correspondence Prin-
ciple. He then showed that such recurrence properties always hold,
proving what is now referred to as the Multiple Recurrence Theorem.
Combined, these results gave a new proof of Szemerédi’s Theorem [45]:
if S ⊂ Z has positive upper density, then S contains arbitrarily long
arithmetic progressions. This proof lead to an explosion of activity in
ergodic theory and topological dynamics, beginning with new proofs of
classic results of Ramsey Theory and ultimately leading to significant
new combinatorial and number theoretic results. The full implications
of these connections have yet to be understood.

The approach harks back to the earliest results on recurrence, in the
measurable setting and in the topological setting. A measure preserving
system is a quadruple (X,B, µ, T ), where X denotes a set, B is a σ-
algebra on X, µ is a probability measure on (X,B), and T : X → X is a
measurable transformation such that µ(T−1(A)) = µ(A) for all A ∈ B.
Poincaré Recurrence states that if (X,B, µ, T ) is a measure preserving
system and A ∈ B with µ(A) > 0, there exists n ∈ N such that µ(A ∩
T−nA) > 0. A (topological) dynamical system is a pair (X, T ), where
X is a compact metric space and T : X → X is a continuous map. One
can show that any such topological space admits a Borel, probability
measure that preserves T . In particular, Poincaré Recurrence implies
recurrence in the topological setting. Birkhoff [13] gave a direct proof of
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this, showing that in any dynamical system (X, T ), there exists x ∈ X
such that T nkx→ x for some sequence of integers nk →∞.

Birkhoff’s recurrence was generalized by Furstenberg and Weiss [26],
who showed that given a dynamical system (X, T ) and an integer ` ≥ 1,
there exists x ∈ X such that T nkx→ x, T 2nkx→ x, . . . , T `nkx→ x for
some sequence of integers nk →∞. Using an analog of the Furstenberg
Correspondence Principle adapted to topological dynamical systems,
this in turn implies van der Waerden’s Theorem: in any finite par-
tition of the integers, some piece contains arbitrarily long arithmetic
progressions. Topological methods were then used to prove numerous
other partition results, including Schur’s Theorem, a multidimensional
version of van der Waerden’s Theorem, and the Hales-Jewett Theo-
rem. As a sample of these techniques, Furstenberg gives a proof of a
polynomial result, shown independently by Sàrkőzy [44]: in any finite
partition of the integers, some piece contains two integers which differ
by a square. Vast generalizations of such polynomial results were given
by Bergelson and Leibman ([7] and [8]).

In the measure theoretic setting, Furstenberg proved a far reaching
generalization of the Poincaré Recurrence Theorem in his Multiple Re-
currence Theorem: if (X,B, µ, T ) is a measure preserving system, ` ≥ 1
is an integer, and A ∈ B has positive measure, then there exists n ∈ N
such that

(1) µ(A ∩ T−nA ∩ T−2nA ∩ . . . ∩ T−`nA) > 0.

The study of which iterates n are possible has received significant at-
tention, with polynomial iterates [7], generalized polynomials [12], se-
quences arising from Hardy-Fields [17], shifts of the primes ([?] and [18]),
and this result has been generalized in numerous other ways (see for
example [25] and [40]). Many of these results have yet to be proved
using methods that do not rely on dynamics.

Via the Furstenberg Correspondence Principle, the analog of Equa-
tion (1) with the transformations T, T 2, . . . , T ` replaced by commuting
transformations T1, T2, . . . , T` leads to a multidimensional Szemerédi
Theorem, and this and generalizations were proven by Furstenberg and
Katznelson ([23] and [24]). This too has been studied further, includ-
ing restrictions on iterates (see [7], [11], and [19]) and generalizations
to other groups (for example [41]). Again, many of these results have
yet to be proven via combinatorial methods.

Using ergodic theory, the natural approach to prove positivity of
an expression such as that in Equation (1) is to take the average for
1 ≤ n ≤ N and show that the lim inf of this average is positive as
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N →∞. More generally, one can consider convergence of averages

(2)
1

N

N∑
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where (X,B, µ) is a probability space, T1, T2, . . . , T` : X → X are com-
muting, measure preserving transformations, f1, f2, . . . , f` ∈ L∞(µ),
and the exponents a1(n), a2(n), . . . , a`(n) are sequences of integers. The
existence of the limit in L2(µ), and the study of the structures control-
ling the limiting behavior of such averages, has received much attention
within ergodic theory and has more recently lead to new number the-
oretic results. The case when all the transformations Ti are equal with
linear exponents is fully understood, with partial results, for example
in [21] and [15], and the complete convergence in [32]. These results
have been generalized and viewed in other ways, with further studies
of the linear case [49], polynomial iterates ([27], [33] and [41]), com-
muting transformations ([16] and [46]), restrictions on the iterates for
commuting transformations (see for example [36], [14], [1], and [2]),
nilpotent group actions [9], and the corresponding average for flows
(see [43], [10] and [3]). For a single transformation, we have a complete
understanding in [32] of the structures controlling convergence (with
a topological analog in [35]). The general convergence and associated
structures controlling such averages are yet to be understood.

The connections to number theoretic and combinatorial problems
continue to grow, particularly with the spectacular breakthrough of
Green and Tao [28] showing that the primes contain arbitrarily long
arithmetic progressions. While there is no explicit use of ergodic the-
ory in Green and Tao’s proof, the methods used by Furstenberg [21]
influence the approach. In more recent work on asymptotics of the
number of progressions in the primes ([29], [30], and [31]) and other
connections between ergodic theory and number theory (see, for exam-
ple [6], [34], and [20]), the structures controlling the averages of the
form in Equation (2) play a prominent role.

This is only a brief overview of current areas of research with ori-
gins in the work surveyed in Furstenberg’s Bulletin article. An exten-
sive introduction to the field is contained in Furstenberg’s book [22].
There are more recent surveys on recurrence, ergodic Ramsey The-
ory, convergence problems, and connections to number theory (see for
example [4], [5], [42], [37], [38], [39], [47], and [48]), that are natural
continuations of the topics reviewed in the accompanying article.
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