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Abstract. We consider the problem of when a symbolic dynamical system

supports a Borel probability measure that is invariant under every element of
its automorphism group. It follows readily from a classical result of Parry that

the full shift on finitely many symbols, and more generally any mixing subshift

of finite type, supports such a measure. Frisch and Tamuz recently dubbed
such measures characteristic, and further showed that every zero entropy sub-

shift has a characteristic measure. While it remains open if every subshift

over a finite alphabet has a characteristic measure, we define a new class of
shifts, which we call language stable subshifts, and show that these shifts have

characteristic measures. This is a large class that is generic in several senses

and contains numerous positive entropy examples.

1. Introduction

Suppose X is a compact metric space and T : X → X is a homeomorphism. The
Krylov-Bogolioubov Theorem says that there exists a Borel probability measure µ
that is supported on X and is invariant under T , meaning that T∗µ = µ. Using
tools of ergodic theory to study the measure-preserving system (X,T, µ), we can
often obtain information about the topological dynamical system (X,T ). While
the homeomorphism σ determines a Z-action on X, there is another (often larger)
action on X determined by the automorphism group

Aut(X) := {ψ ∈ Homeo(X) : ψT = Tψ}

of all self-conjugacies of (X,T ). This is a natural approach for studying when
two topological systems (X,T ) and (Y, S) are topologically conjugate: if (X,T )
and (Y, S) are conjugate as Z-systems, then Aut(X) ∼= Aut(Y ) as groups, and
(X,Aut(X)) and (Y,Aut(Y )) are topologically conjugate as Aut(X)-systems. Sys-
tems that can be distinguished as Aut(X)-systems can therefore also be distin-
guished as Z-systems.

With this in mind, it is natural to ask if there is an analog of the Krylov-
Bogolioubov Theorem for the action of the automorphism group of a dynamical
system. Using terminology introduced by Frisch and Tamuz [19], if (X,T ) is a
topological dynamical system and Aut(X) denotes its automorphism group, a Borel
probability measure µ is characteristic for (X,σ) if ψ∗µ = µ for all ψ ∈ Aut(X).
They [19, Question 1.3] ask: does every subshift (over a finite alphabet) have a
characteristic measure?
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It is natural to restrict this question to studying particular systems, rather than
consider an arbitrary topological dynamical system; for example, given a Cantor
set it is easy to check that there is no Borel probability measure that is invariant
under all self homeomorphisms of the space to itself. However, for the broad class
of subshifts, the question remains open. For these systems, the classical theorem of
Curtis, Hedlund, and Lyndon (see [22]) states that every automorphism is given as
a sliding block code, and in particular it follows that there are only countably many
automorphisms. However, the group of automorphisms can be quite complicated:
for example (see [22, 5]), the automorphism group of any mixing shift of finite
type contains isomorphic copies of any finite group, the free group on any number
of generators, along with copies of many other known groups. A natural way to
attempt to answer Frisch and Tamuz’s question is to find all of the automorphisms
of a subshift and all of the ergodic measures, and then check if any of these measures
is a characteristic measure. Unfortunately, this is not a practical method, as many
easy to state questions even about full shifts remain open. For example, we do not
have enough information about the automorphism group of a full shift to determine
whether the automorphism group of the full shift on two symbols is isomorphic to
that on three symbols. While this type of strategy is doomed to failure with current
tools, there are other methods for showing the existence of a characteristic measure
without knowing either what all of the automorphisms are, or much about the
simplex of invariant measures, M(X).

We defer the precise definitions and explanations of these results until Section 2,
but give a quick summary of four currently known methods for proving that a
subshift (X,σ) has a characteristic measure:

(1) If Aut(X) is amenable, this follows from the Krylov-Bogolioubov
Theorem.

(2) When the topological entropy htop(X) is 0, this is the main result in Frisch
and Tamuz [19].

(3) If there exists a σ-invariant probability measure µ supported on X such
that

{ν ∈M(X) : (X,σ, µ) is measurably isomorphic to (X,σ, ν)}

is finite, then X has a characteristic measure.
(4) If there exists a subshift Y ⊆ X that supports an Aut(Y )-characteristic

measure and there are only finitely many Z ⊆ X such that (Y, σ) is topo-
logically conjugate to (Z, σ), then X has a characteristic measure.

We discuss the first two methods further in Section 2; properties (3) and (4) are
implicit in the literature and are described in Lemmas 3.1 and 3.4. In light of
Frisch and Tamuz’s theorem, listed as the method (2), determining whether every
symbolic system has a characteristic measure comes down to developing techniques
for finding characteristic measures in symbolic systems of positive entropy.

Our main result gives a large class of symbolic systems, containing numerous
systems of positive entropy, that admit characteristic measures. To define this class,
we introduce a new condition called language stability (see Section 4). An arbitrary
shift can be approximated from the outside by shifts of finite type, and the class of
language stable shifts are those that are approximated, infinitely often, faster than
the expected rate. This definition is characterized by considering the words that do
not appear in the language of the system, and placing restrictions on the frequency
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with which such new forbidden words arise. The class of language stable systems
includes many well-studied systems, including numerous zero entropy systems such
as the Sturmian systems, and numerous positive entropy systems, such as the shifts
of finite type. However this class also contains many more systems: in Section 5
we show that the set of language stable subshifts is generic, in a strong sense. We
show that the language stable shifts are a dense Gδ, with respect to the Hausdorff
topology, in both the space of all subshifts with a fixed alphabet and in the subspace
of positive entropy subshifts with a fixed alphabet.

Our first main result is to show that language stability guarantees the existence
of a characteristic measure:

Theorem 1.1. Every language stable subshift supports a characteristic measure.

In fact we deduce (see Corollary 4.2) that the characteristic measure we find is
a measure of maximal entropy for the subshift.

The class of language stable shifts has numerous properties that are interesting
in their own right, and in this work we focus on their relevancy to finding a char-
acteristic measure on a subshift. In addition to showing that language stable shifts
are a generic class of subshifts with characteristic measures, we explicitly construct
examples of systems with characteristic measures that were not previously known
to exist. More precisely, in Section 6 we build an example of a language stable
subshift, which thus has a characteristic measure by our theorem, but none of the
four previously known methods of proving the existence of characteristic measures
applies in this case. This example is a product of three systems, and the prop-
erties of these systems are of independent interest. The first component system
X is a language stable, positive entropy, minimal subshift, and this is constructed
by inductively defining systems that approximate the system X from the outside
while controlling the the language of the system. The second component system
Y is a full shift, which by a result of Boyle, Lind, and Rudolph [5] has a unique
characteristic measure of positive entropy (and this is the measure of maximal en-
tropy). The third component Z is a language stable shift with countably many
ergodic measures, all of which are isomorphic, and it is constructed by coding a
fixed rotation with respect to different partitions that converge to the coding that
gives rise to the Sturmian coding.

In our example, the automorphism group of this system is not amenable, the sys-
tem has positive entropy, and every measure supported on the system is measurably
isomorphic to infinitely many other measures on the system, ensuring that none of
the first three conditions is satisfied. The fourth condition is more subtle. We do
not rule out the possibility that it could be used to show that our example carries
some characteristic measure. However, Corollary 4.2 guarantees that our example
carries a characteristic measure of maximal entropy and we show that this measure
could not arise by applying the fourth condition to our example. More specifically,
we show that any proper subshift of our example that has full topological entropy
is topologically conjugate to infinitely many other proper subshifts of our example.
This ensures that, if the fourth condition does apply to our example, it can only
produce characteristic measures with less than maximal entropy. Therefore our
result guarantees the existence of a characteristic measure of maximal entropy that
could not have been seen to exist by any of the four previously described methods.
Further, we emphasize that our theorem shows the existence of a characteristic
measure in our system without having to either determine the algebraic structure
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of its group of automorphisms or describe all of its invariant measures. This is
highly advantageous: even if we could describe the automorphism group of each of
the three systems, the automorphism group of their product may be significantly
more complicated than just the product of their individual automorphism groups.
By way of example, we mention a recent theorem of Salo and Schraudner [31] that
if X ⊆ {0, 1}Z is the “sunny side up shift” consisting of all elements of {0, 1}Z that
have at most one 1, then Aut(X) ∼= Z while Aut(X×X) ∼= (Z∞oS∞)o (Z2 oS2).

We conclude this introduction with an application to further motivate the study
of characteristic measures. Beyond existence of a characteristic measure for a sub-
shift, it is a natural question whether knowledge of such a measure gives practical
information about the subshift. There has been significant interest in determining
the algebraic properties of Aut(X) for different subshifts X. Most of these advances
begin with assumptions on X, such as a constraint on some type of complexity of
the shift, like the growth rate of the block complexity function or the visiting com-
plexity for recurrence, or structure in the dynamics of the shift, such as being a shift
of finite type or being a Toeplitz shift. One then uses these constraints to show that
Aut(X) either must have or cannot have certain algebraic properties. Another, less
explored, way to study Aut(X) on some explicitly given shift is to find small range
block codes that define automorphisms and study the relations in the subgroup
of Aut(X) that they generate. This approach seems fruitful both because of its
computational nature and because there are many natural questions about Aut(X)
that, so far, have resisted being answered with previously developed approaches.
As a specific example, it is unknown whether there exists a subshift whose auto-
morphism group contains a finitely generated, nonabelian, infinite, nilpotent group.
One could imagine a computational approach to this problem where a specific sub-
shift (X,σ) is selected, the block codes of small range are checked to see which
ones determine automorphisms, and it is checked whether, among them, there exist
ϕ,ψ ∈ Aut(X) of infinite order such that

θ = [ϕ,ψ] = ϕψϕ−1ψ−1 6= Id, ϕθ = θϕ, and ψθ = θψ.

Then the group generated by these relations would be an infinite, nonabelian, quo-
tient of the discrete Heisenberg group. For explicitly given block codes, we note
that these relations can be checked easily simply by finding the block code each
of these group elements defines and checking to see if it is the identity (a different
approach would be needed to check if ϕ and ψ have infinite order). A challenge
to investigating the structure of Aut(X) in this way, however, is that we must find
block codes that determine automorphisms of X. This leads to the question:

Question 1.2. Given a subshift X and a block code ϕ defined on X, determine
whether ϕ determines an automorphism of X.

In Section 7, we explain how a characteristic measure gives rise to a set of
nontrivial conditions on a block code that are necessary for it to be invertible. We
give an example where they can be used to show a certain block code does not have
an inverse. Although these conditions are not sufficient for a block code to have an
inverse, they do allow one to eliminate many block codes as candidates for being
automorphisms.

Acknowledgment. We thank Anthony Quas for helpful conversations during the
preparation of this article.
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2. Preliminaries and Notation

2.1. Upper Banach density. If S ⊆ N, then the upper Banach density d∗(S) of
S is defined to be

d∗(S) := lim sup
n→∞

max
k

|S ∩ {k, k + 1, k + 2, . . . , k + n− 1}|
n

.

A set S has upper Banach density 1 if and only if there are arbitrarily long runs of
consecutive integers that are all elements of S, meaning that the set S is thick.

2.2. Symbolic systems. Let A be a finite set and let AZ be the set of functions
x : Z → A, and denote x ∈ AZ as x = (xi)i∈Z. The space AZ is a compact metric
space when endowed with the metric

d
(
(xi), (yi)

)
:= 2− inf{|i| : xi 6=yi}.

The left-shift map σ : AZ → AZ defined by (σx)i := xi+1 for all i ∈ Z is a homeo-
morphism. Set A=

⋃
nAn. For each w = w0 . . . wn−1 ∈ An the cylinder set is

[w]+0 := {x ∈ AZ : xi = wi for all 0 ≤ i < n}

and the collection of sets {σi[w]+0 : w ∈ A∗, i ∈ Z} gives a basis for the topology of
AZ (when no confusion can arise, we use the simpler notation [w] to mean [w]+0 ).
If X ⊂ AZ is closed and σ-invariant, then (X,σ) is a subshift, and when the shift σ
is understood from the context, we omit the transformation from the notation and
refer to X ⊂ AZ as a subshift.

The language of a subshift (X,σ) is

L(X) := {w ∈ A∗ : [w]+0 ∩X 6= ∅}

and any w ∈ L(X) is called a word in the language (w ∈ L(X) is sometimes referred
to as a factor in the literature). The complexity PX(n) counts the number of words
of length n in the language L(X).

Homeo(X) forms a group under composition and Aut(X) is the centralizer of
σ in Homeo(X). A map ψ : X → AZ is called a sliding block code if there exists
R ∈ N and a map Ψ: L2R+1(X)→ A such that for all x ∈ X and i ∈ Z, we have

(ψx)i = Ψ(xi−R, . . . , xi, . . . , xi+R).

In this case the number R is called a range for ψ. A classical result characterizes
the automorphisms of a subshift:

Theorem 2.1 (Curtis-Hedlund-Lyndon Theorem [22]). Every element of Aut(X)
is a sliding block code. Conversely, any sliding block code from X to X that has a
sliding block code inverse is an element of Aut(X).

Following Frisch and Tamuz [19], we define the central object of study:

Definition 2.2. Let (X,T ) be a topological dynamical system and let

Aut(X) := {ψ ∈ Homeo(X) : ψT = Tψ}

be its automorphism group. A Borel probability measure µ is characteristic for
(X,T ) if ψ∗µ = µ for all ψ ∈ Aut(X), where ψ∗µ denotes the pushforward of the
measure µ.

We study this notion for a subshift (X,σ).
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2.3. Coding of orbits. Assume (X,T ) is an invertible topological dynamical sys-
tem and let P be a partition of the space X into finitely many sets, meaning that
P = {P1, . . . , Pn} for some sets Pi ⊂ X satisfying

⋃n
i=1 Pi = X. Note that we make

no assumption that the sets Pi are open and require that their union cover all of
X. If x ∈ X, then the coding of the orbit of x is the sequence (xj)j∈Z defined by
xj = i if and only if T jx ∈ Pi. The coding of the system (X,T ) is the symbolic
system obtained by taking the closure of the codings of all x ∈ X, and it is easy to
check that this is a subshift of {1, . . . , n}Z.

2.4. The forbidden word construction. We recall how to construct subshifts
by specifying a list of forbidden words. Let F ⊆ A∗ be a (finite or infinite) set of
words. Define

YF := {y ∈ AZ : σiy /∈ [w]+0 for all w ∈ F and all i ∈ Z}.
It is immediate that YF is a subshift and we say that F is a list of forbidden words
in YF . If X is a subshift, define

F(X) := {w ∈ A∗ : w /∈ L(X)}.
It follows immediately from the definitions that X ⊆ YF(X) and it follows from
the compactness of X that YF(X) ⊆ X. Thus X = YF(X). In other words, every
subshift can be obtained by specifying an appropriate set of forbidden words.

On the other hand, if F is a set of forbidden words and

M = {w ∈ F : no proper subword of w lies in F}
then YM = YF . Thus different sets can present the same subshift through the
forbidden words construction. But there is a canonical “minimal” set of forbidden
words that presents a subshift. If we define the minimal forbidden wordsM(X) by
setting

M(X) := {w ∈ F(X) : no proper subword of w is in F(X)}
then X = XM(X). For each n ∈ N we define Mn(X) := M(X) ∩ An to be the
set of minimal forbidden words of length n in X. The growth rate of the minimal
forbidden words was shown to be a conjugacy invariant in Béal, Mignosi, and
Restivo [7], and properties of the subshift that can be deduced from its presentation
via the minimal forbidden words is further studied in [6, 28].

2.5. Subshifts of finite type and the cover of a subshift. A subshift X is
called a subshift of finite type (SFT) ifM(X) is finite. Bowen [8] gave an equivalent
formulation (see [26, Theorem 2.1.8] for a proof):

Proposition 2.3. The shift (X,σ) is a subshift of finite type if and only if there
exists g ≥ 0 such that whenever uw,wv ∈ L(X) and |w| ≥ g then we also have
uwv ∈ L(X).

For any subshift X there is a well-known way to write it as the intersection of a
descending chain of subshifts of finite type: for each n ∈ N, define

Xn := Y⋃n
k=1Mk(X)

to be the subshift of finite type using the forbidden words up to length n in X.
Then

X1 ⊇ X2 ⊇ X3 ⊇ · · · ⊇ Xn ⊇ . . .
and X =

⋂∞
n=1Xn. This sequence {Xn}∞n=1 is called the SFT cover of X.
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A subshift X is topologically transitive if there exists some x ∈ X such that

X = {σix : i ∈ Z}.
It is forward transitive if there exists some x ∈ X such that

X = {σix : i ∈ N}.
Parry [29] showed that any forward transitive subshift of finite type is intrinsically
ergodic, meaning there is a unique σ-invariant measure µ, supported on X, such
that hµ(X) = htop(X) (in other words, the system has a unique measure of maximal
entropy). For general (not necessarily transitive) subshifts of finite type, we record
the following elementary lemma:

Lemma 2.4. Every subshift of finite type supports at most finitely many ergodic
measures of maximal entropy.

Proof. Let X be a subshift of finite type whose forbidden words all have length at
most n. For any u, v ∈ Ln(X), say that u ∼ v if there exist m1,m2 > 0 such that
[u] ∩ σm1 [v] 6= ∅ and [v] ∩ σm2 [u] 6= ∅. Let

W := {w ∈ Ln(X) : w ∼ w}.
Since X is a subshift of finite type whose forbidden words have length at most n,
note that ∼ is an equivalence relation on the set W (it would not necessarily be a
transitive relation for more general shifts).

Let µ be an ergodic measure of maximal entropy. For any u, v ∈ Ln(X), by
ergodicity it follows that for µ-almost every x ∈ X

lim
m→∞

1

m

m−1∑
k=0

1[u](σ
kx) = µ([u]) and lim

m→∞

1

m

m−1∑
k=0

1[v](σ
kx) = µ([v])

and also

lim
m→∞

1

2m+ 1

m−1∑
k=−m+1

1[v](σ
kx) = µ([v]).

It follows from the first two equalities that either µ([u]) ·µ([v]) = 0 or u ∼ v. Using
the third equality, it follows that if µ([v]) > 0 then for µ-almost every x ∈ X and
for every m ∈ Z we have v ∼ xmxm+1 . . . xm+n−1. There must be at least one
v ∈ Ln(X) for which µ([v]) > 0, and for this v we have

µ

(⋃
u∼v

[u]

)
= 1.

Furthermore, the measure µ is supported on the subshift of finite type X(v), defined
by forbidding all words forbidden in X and forbidding all words of length n that are
not equivalent to v. Note that X(v) is a forward transitive subshift of finite type
and so by Parry’s Theorem [29], X(v) has a unique measure of maximal entropy.
But µ is an example of such a measure, since hµ(X(v)) ≤ htop(X(v)) ≤ htop(X) =
hµ(X) = hµ(X(v)) (since µ is supported on X(v) and is a measure of maximal
entropy on X) and so all of the inequalities are actually equalities.

Thus every ergodic measure of maximal entropy on X is supported on (and
is a measure of maximal entropy on) a forward transitive subshift of finite type
obtained by forbidding words of length n in X. Since Ln(X) is finite, there can
only be finitely many such forward transitive subshifts of finite type that arise from
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this construction, each of which supports a unique measure of maximal entropy.
Thus X supports only finitely many measures of maximal entropy. �

3. Previously known criteria implying the existence of
characteristic measures

3.1. Finitely many measurably isomorphic systems. Suppose (X,σ) is a sub-
shift and µ is a σ-invariant measure supported on X. A key tool that underlies
most of the cases where it is known how to prove that characteristic measures ex-
ist, is the following: if ψ ∈ Aut(X), then (X,σ, µ) and (X,σ, ψ∗µ) are conjugate
as measure-preserving systems. This gives the following criterion (which is used
implicitly in the literature, for example in [19]) for establishing the existence of
characteristic measures:

Lemma 3.1. Let (X,σ) be a subshift and suppose there exists a σ-invariant mea-
sure µ supported on X for which the set

I(µ) := {ν : ν is a σ-invariant measure supported on X and (X,σ, µ) ∼= (X,σ, ν)}
is finite. Then X supports a characteristic measure.

Proof. Define

ξ :=
1

|I(µ)|
∑

ν∈I(µ)

ν.

Then ξ is a σ-invariant measure supported on X. For any ψ ∈ Aut(X), note
that ψ∗ induces a permutation on I(µ) by finiteness of I(µ) and the fact that
(X,σ, ν) ∼= (X,σ, ϕ∗ν) for any ν ∈ I(µ). Thus ψ∗ξ = ξ. �

This gives the existence of a characteristic measure for any full shift, and more
generally any shift of finite type:

Proposition 3.2. Any subshift with finitely many ergodic measures of maximal
entropy has a characteristic measure.

Proof. Let X be a subshift of finite type. The entropy map, µ 7→ hµ(σ), is upper
semi-continuous (see [33, Theorem 8.2]), and by [33, Theorem 8.7, Part (v)], the
set of measures of maximal entropy is nonempty, and using Part (iii) of the same
theorem, there is an ergodic measure of maximal entropy. By Lemma 2.4, there are
only finitely many ergodic measures of maximal entropy. Since the properties of
being ergodic and being a measure of maximal entropy are preserved under measure
theoretic isomorphism, Lemma 3.1 guarantees that X supports a characteristic
measure. �

The special case that the subshift of finite type is forward transitive is not a
new result (we did not find the non-transitive case in the literature, but expect
Corollary 3.3 to be no surprise to experts). Coven and Paul [9] showed that any
automorphism preserves entropy and Parry [29] showed that a forward transitive
subshift of finite type has a unique measure of maximal entropy. It follows that
this unique measure (of maximal entropy) is preserved under the full automorphism
group. However we need further use of some of the tools used to prove Corollary 3.3
as well as its result in our arguments.

As an immediate corollary, this result holds for any shift of finite type.

Corollary 3.3. Every subshift of finite type has a characteristic measure.
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3.2. Finitely many topologically conjugate systems. We also make use of a
topological analog of Lemma 3.1:

Lemma 3.4. Let (X,σ) be a subshift and suppose there exists a subshift Y ⊆ X
that supports an Aut(Y )-characteristic measure and for which the set

J (Y ) := {Z ⊆ X : (Y, σ) is topologically conjugate to (Z, σ)}
is finite. Then X supports a characteristic measure whose support lies in

⋃
Z∈J (Y ) Z.

Proof. If Z ∈ J (Y ), then using the topological conjugacy between (Y, σ) and (Z, σ)
and pushing forward the characteristic measure on Aut(Y ), it follows that Z sup-
ports an Aut(Z)-characteristic measure (in fact Aut(Y ) ∼= Aut(Z) in this case).
Let ν be an Aut(Y )-characteristic measure supported on Y .

Every element of Aut(X) induces a permutation on J (Y ). Thus we can define
the group

Π := {π ∈ Sym(J (Y )) : ψ induces the permutation π for some ψ ∈ Aut(X)}.
For each π ∈ Π, choose an automorphism φ(π) ∈ Aut(X) that induces the permu-
tation π on J (Y ). Finally define

ξ :=
1

|Π|
∑
π∈Π

φ(π)∗ν.

If ψ ∈ Aut(X) and α is the permutation on J (Y ) induced by ψ, then φ(α)−1ψ
induces the identity permutation on J (Y ). Thus (φ(α)−1ψ)∗ν = ν, since φ(α)−1ψ
restricted to Y is an automorphism of Y and ν is Aut(Y ) characteristic. More
generally, for any permutation π ∈ Π, we have that φ(α)−1ψ restricted to φ(π)(Y ) is
an automorphism of φ(π)(Y ) and φ(π)∗ν is a Aut(φ(π)(Y )) characteristic measure.
Thus, we have:

ψ∗ξ =
1

|Π|
∑
π∈Π

ψ∗φ(π)∗ν =
1

|Π|
∑
π∈Π

φ(α)∗(φ(α)−1ψ)∗φ(π)∗ν

=
1

|Π|
∑
π∈Π

φ(α)∗φ(π)∗ν =
1

|Π|
∑
π∈Π

φ(απ)∗ν =
1

|Π|
∑
π∈Π

φ(π)∗ν = ξ,

where the penultimate equality holds because απ runs over every element of Π
exactly once as π runs over Π. �

This means, for example, that any subshift that contains periodic points has
a characteristic measure, a fact already pointed out in Frisch and Tamuz [19].
A version of this fact about periodic points also appears implicitly in Boyle and
Krieger [4], in their defining and study of the gyration function. But by making use
of the main result in [19], this also means that if X has only finitely many minimal
subsystems of topological entropy zero, then X has a characteristic measure.

3.3. Invariant measures for amenable actions. One final tool for proving the
existence of characteristic measures, as a classical result in the literature, is the
Krylov-Bogolioubov Theorem for actions of amenable groups. An immediate ap-
plication of it yields:

Theorem 3.5 (Krylov-Bogolioubov Theorem; see [25, 3, 1]). Let X be a subshift
and suppose the countable, discrete group Aut(X) is amenable. Then X supports a
characteristic measure.
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For several classes of subshifts, including some minimal ones with low complex-
ity [11], sufficiently low complexity without any dynamical assumptions [12], and
some Toeplitz shifts [13], the automorphism group is shown to be amenable and
so such shifts support a characteristic measure. However for many other classes
of subshifts, it is not known if the automorphism group is amenable. In particu-
lar, it is not known if the automorphism groups of all zero entropy subshifts are
amenable. On the other hand, the automorphism group of any positive entropy
transitive subshift of finite type is known to be nonamenable.

4. Language stable shifts

4.1. Defining language stable shifts. Recall that if X is a subshift and n ∈ N,
then Mn(X) denotes the set of minimal forbidden words of length n in L(X). We
make the following new definition.

Definition 4.1. A subshift (X,σ) is language stable if the set

{n ∈ N : Mn(X) = ∅}
has upper Banach density 1.

Note that any subshift of finite type is language stable, because in this case
Mn(X) = ∅ for all but finitely many n ∈ N. Moreover, any subshift X can
be approximated arbitrarily well by unforbidding enough of its forbidden words to
make it satisfy Definition 4.1 (see Section 5 for discussion of the metric on subshifts).
More precisely, let X be any subshift and let S ⊆ N be any set with upper Banach
density 1. Define

M :=
⋃
n/∈S

Mn(X).

Then YM is language stable, X is a subshift of YM, and by choosing S to be very
sparse we can ensure that M(Y ) \M(X) is also very sparse.

4.2. Language stable shifts support a characteristic measure. We use the
tools of the last two sections to prove our main theorem:

Proof of Theorem 1.1. Assume that X be a language stable subshift. If X is a
subshift of finite type, then the result follows from Corollary 3.3. Thus it suffices
to assume that X is not a subshift of finite type.

Let {Xn}∞n=1 be the SFT cover of X. By Lemma 2.4, each Xn supports at most
finitely many measures of maximal entropy. By Lemma 3.1, each Xn carries an
Aut(Xn)-characteristic measure ξn. Thus for each n ∈ N, we have that ξn is a σ-
invariant measure supported on (in general, a proper subset of) AZ. By assumption,
the set

S := {n ∈ N : Mn(X) = ∅}
has upper Banach density 1. Let r : S → N be the function

r(s) = −s+ min{t /∈ S : t > s}
defined to be the longest run of consecutive integers that lie in S, starting from s
(since X is not an subshift of finite type, this run is well-defined). By assumption,
the set S has upper Banach density 1, and so we can choose a subset S′ ⊆ S along
which r(s) is strictly increasing.

Since AZ is a compact metric space, it follows from the Banach-Alaoglu Theorem
that the set {ξs′+r(s′)−1}s∈S′ has weak* accumulation points in the set of all Borel
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measures on AZ. Let ξ be one such accumulation point. We claim that ξ is a
characteristic measure for X. Passing from S′ to S′′ if necessary, we can assume
the weak* limit of the sequence {ξs′+r(s′)−1}s′∈S′ exists.

Let ψ ∈ Aut(X) be fixed. By the Curtis-Hedlund-Lyndon Theorem (Theo-
rem 2.1), ψ is a block code of some range R ≥ 0. Let Ψ: L2R+1(X) → A be such
that for all x ∈ X and all i ∈ Z we have

(ψx)i = Ψ(xi−R, . . . , xi, . . . , xi+R).

If R′ ≥ R, then ψ is also a block code of range R′ and so we may assume (increasing
the value of R if necessary) that R is the range for both ψ and ψ−1. From hereon,
we fix such R. By abusing notation, we now extend the domain of ψ to include
any element of AZ to which the range R block code defining ψ can be applied.
Since the function r(s) is strictly increasing on S′, there exists some M such that
r(s′) ≥ 2R + 1 for all s′ ∈ S′ satisfying s′ > M ; let some such s′ be fixed. Notice
that

(1) Xs′ = Xs′+1 = · · · = Xs′+r(s′)−1

since these are all subshifts of finite type with identical sets of minimal forbidden
words. Furthermore, since X ⊆ Xs′+r(s′)−1 and there is no word of length at most
s′ + r(s′)− 1 forbidden in X that was not also forbidden in Xs′+r(s′)−1, it follows
that

Ls′+r(s′)−1(X) = Ls′+r(s′)−1(Xs′+r(s′)−1).

For each w ∈ Ls′+r(s′)−1(X), applying the sliding block code Ψ determines a word
Ψ(w) ∈ Ls′+r(s′)−1−2R(X). This implies that

Ls′+r(s′)−1−2R(ψ(Xs′+r(s′)−1)) ⊆ Ls′+r(s′)−1−2R(Xs′+r(s′)−1−2R)

and so ψ(Xs′+r(s′)−1) ⊆ Xs′+r(s′)−1−2R. Since r(s′) ≥ 2R + 1, it follows from this
and (1) that ψ(Xs′+r(s′)−1) ⊆ Xs′+r(s′)−1.

Applying the analogous argument with ψ−1 instead of ψ shows that ψ−1(Xs′+r(s′)−1) ⊆
Xs′+r(s′)−1, and so

ψ(Xs′+r(s′)−1) = Xs′+r(s′)−1.

In other words, ψ ∈ Aut(Xs′+r(s′)−1). But by definition, ξs′+r(s′)−1 is a Aut(Xs′+r(s′)−1)-
characteristic measure and so

(2) ψ∗ξs′+r(s′)−1 = ξs′+r(s′)−1.

Since (2) holds for any s′ ∈ S′ such that s′ > M , it follows that

ψ∗ξ = ψ∗

(
lim
s′∈S′

ξs′+r(s′)−1

)
= lim
s′∈S′

ψ∗ξs′+r(s′)−1 = lim
s′∈S′

ξs′+r(s′)−1 = ξ.

Since this holds for any ψ ∈ Aut(X), we have that ξ is a characteristic measure for
X. �

Note that in the proof, the measure ξ produced is a weak-* limit of the measures
ξn that are measures of maximal entropy on the shifts of finite type Xn. For each
n ∈ N we have htop(Xn) ≥ htop(X) (since X ⊆ Xn) and so hξn(σ) ≥ htop(X). By
upper semi-continuity of the entropy map (see [33, Theorem 8.2]), it follows that
hξ(σ) ≥ htop(X). Since ξ is supported on X we have equality, so it is a measure of
maximal entropy on X. Therefore our proof shows that:

Corollary 4.2. Any language stable shift has a characteristic measure that is a
measure of maximal entropy.
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5. Genericity of language stable shifts

We show that the set of language stable shifts is a dense Gδ, with respect to the
Hausdorff topology, in both the space of all subshifts with a fixed alphabet and in
the subspace of positive entropy subshifts with a fixed alphabet.

We start by defining the distance between two subshifts over the same alphabet:
if A is a finite alphabet and X,Y ⊆ AZ are two subshifts, define

(3) d(X,Y ) := 2− inf{n : Ln(X) 6=Ln(Y )}.

This metric gives the usual Hausdorff metric on the space of subshifts of AZ. En-
dowed with the metric (3), the space of all subshifts of AZ is a compact metric
space (recall that by definition, a subshift X is a closed, σ-invariant subset of AZ).

Fixing a finite alphabet A, a property of subshifts is said to be generic if it holds
for a dense Gδ subset of the space of all subshifts, in this topology. A property
is generic among shifts of positive entropy if it defines a dense Gδ (in the induced
topology) in the subspace of subshifts of positive entropy. Let S denote the set of
all subshifts of AZ and let S+ denote the set of all subshifts of AZ with positive
topological entropy. For any c > 0, let S+

≥c denote the set of all subshifts of AZ

with topological entropy greater than or equal to c.
Frisch and Tamuz [19] show that subshifts with zero entropy are generic in the

space of all shifts, and that more generally subshifts with entropy c are generic in
the space of all shifts with entropy at least c. Along these lines, we prove that the
language stable subshifts are generic. We start by showing that these shifts are a
Gδ subset:

Theorem 5.1. The set of language stable subshifts in S is a Gδ subset of S.

Proof. A subshift X is language stable if and only if for all k ∈ N there exists
nk ∈ N such that

Xnk
= Xnk+1 = Xnk+2 = · · · = Xnk+k−1,

where {Xn}∞n=1 denotes the SFT cover of X, and we show that the set of subshifts
in S having this property is Gδ.

For each fixed n ∈ N, note that

Wn := {Ln(X) : X ∈ S}
is finite, as Ln(X) ⊆ Ln(AZ) for any X ∈ S. Enumerate the elements of Wn as
Ln1 , L

n
2 , . . . , L

n
|Wn|. For each 1 ≤ i ≤ |Wn|, let X (i, n) denote the subshift of finite

type whose set of forbidden words is Ln(AZ) \ Lni . For each k, let

B(i, n, k) := {Y ∈ S : d(X (i, n), Y ) < 2−n−k+1}.
In other words, Y ∈ B(i, n, k) if and only if Ln+k−1(Y ) = Ln+k−1(X (i, n)). For
any such Y , it follows that Lj(Y ) = Lj(X (i, n)) for any 1 ≤ j ≤ n + k − 1. Fix
such a Y and let {Ym}∞m=1 be the SFT cover of Y . Then, since X (i, n) is a subshift
of finite type whose forbidden words all have length at most n, we have

Yn = Yn+1 = Yn+2 = · · · = Yn+k−1.

Since B(i, n, k) is open, the set

Uk :=

∞⋃
n=1

|Wn|⋃
i=1

B(i, n, k)
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is open. Therefore the set

LS :=

∞⋂
k=1

Uk

is Gδ.
We claim LS is precisely the set of language stable shifts. A subshift Y ∈ LS if

and only if for all k ≥ 1 there exists n and 1 ≤ i ≤ |Wn| such that Y ∈ B(i, n, k).
We have already seen that the statement Y ∈ B(i, n, k) implies that

Yn = Yn+1 = · · · = Yn+k−1,

where {Yn}∞n=1 is the SFT cover of Y . So if Y ∈ LS then for all k there exists some
nk such that

Ynk
= Ynk+1 = · · · = Ynk+k−1,

and this is equivalent to being language stable. Thus LS is contained in the set of
language stable shifts. Conversely, for any language stable shift Y and any k ≥ 1,
there exists nk such that

Ynk
= Ynk+1 = · · · = Ynk+k−1.

Let ik ∈ {1, . . . , |Wnk
|} be the index for which Lnk

(Y ) = Lnk
i . Then Y ∈ B(ik, nk, k) ⊆

Uk. Since this holds for any k, Y ∈
⋂
k Uk, meaning Y ∈ LS. This proves the claim

that the the Gδ set LS is equal to the set of language stable shifts. �

Corollary 5.2. The set of language stable subshifts in S+ is a Gδ subset of S+.
More generally, for any c ≥ 0, the set of language stable subshifts in S+

c is a Gδ
subset of S+

c .

Proof. By definition of the induced topology, the intersection of S+ (respectively
S+
≥c) with any Gδ subset of S is a Gδ subset of S+ (respectively S+

≥c), so both the
statements follow from Theorem 5.1. �

Theorem 5.3. For any c ≥ 0, the set of language stable subshifts in S+
≥c is dense

in S+
≥c. Analogously, the set of language stable subshifts in S is dense in S and the

set of language stable subshifts in S+ is dense in S+.

Proof. Let U be an arbitrary nonempty, open subset of S+
≥c and fix some X ∈ U .

Let {Xn}∞n=1 be the SFT cover of X. Then, by definition of the metric, there exists
N such that

{Y ∈ S+ : LN (Y ) = LN (X)} ⊆ U .
For such an N notice that XN is language stable (since it is a shift of finite type),
that LN (X) = LN (XN ), and that

(4) htop(XN ) ≥ htop(X) ≥ c,
since X ⊆ XN . Therefore XN ∈ U . Since U was arbitrary, the set of language
stable subshifts in S+

≥c is dense in S+
≥c for any c ≥ 0.

For the analogous results for S and S+, the only small modification is that in
inequality (4) we only have htop(X) ≥ 0 in S and htop(X) > 0 in S+. �

Combining the results of this section, we get:

Corollary 5.4. The set of language stable subshifts of S is generic in S, the set
of language stable subshifts of S+ is generic in S+, and for any c ≥ 0 the set of
language stable subshifts of S+

≥c is generic in S+
≥c.
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We note that zero entropy subshifts are generic in the space of all shifts [18]
and so, as Frisch and Tamuz [19] have shown every zero entropy subshift has a
characteristic measure, it was already known that having a characteristic measure
is generic among all shifts. However, to our knowledge there was not a previous
result showing that shifts having a characteristic measure are generic among positive
entropy shifts.

6. The example

6.1. Language stability gives rise to new shifts with characteristic mea-
sures. In this section, we construct a language stable subshift that carries a char-
acteristic measure that cannot be seen to exist for any of the four reasons given in
the introduction. In addition, we show that this characteristic measure is a measure
of maximal entropy. Specifically, we build a language stable subshift (W,σ) with
the following properties:

(1) The automorphism group of the subshift W is nonamenable.
(2) The subshift W and each of its nonempty subsystems has positive topolog-

ical entropy.
(3) Each characteristic measure supported on W is measurably isomorphic to

infinitely many other measures also supported on W .
(4) Each closed, proper subshift W ′ ⊂ W either is topologically conjugate to

infinitely many other subshifts of W (meaning Lemma 3.4 does not apply
to it), or has strictly lower topological entropy than W (meaning that even
if Lemma 3.4 could be applied to it, the resulting measure would not be a
measure of maximal entropy on W , and therefore would not be the measure
obtained from Corollary 4.2).

In summary, W carries a characteristic measure that is a measure of maximal
entropy (by Corollary 4.2) and the existence of this measure is not implied by any
of the four previously known methods of finding a characteristic measure.

Our method is to build the shiftW as a productW = X×Y×Z of three subshifts,
and the properties of two of these subshifts may be of independent interest. The
shift X, described in Section 6.2, is a language stable, positive entropy, minimal
subshift. The shift Y is the full shift on 2 symbols and its properties are described
in Section 6.3. The shift Z, described in Section 6.4, has countably many ergodic
measures, all of which are isomorphic to each other, and in Section 6.5 we check that
the product system W is language stable and has the properties described above.
In the constructions of each of these component systems, we need to take care of
how they interact with each other, both to guarantee that the resulting system is
language stable and to ensure that the existence of a characteristic measure for the
constructed system is not covered by any of the previously known methods.

Before giving our example, we reiterate that W is language stable and so has a
characteristic measure by Corollary 4.2. One might wonder if there is an easier way
to see this and so we indicate why what may seem like a natural approach to finding
a characteristic measure on W is not viable without significant extra information.
It is tempting to try to find a characteristic measure for W by analyzing X, Y , and
Z separately, finding an Aut(X)-characteric measure α, an Aut(Y )-characteristic
measure β, and an Aut(Z)-characteristic measure γ, and guessing that α × β ×
γ may be an Aut(W )-characteristic measure. However, a recent result of Salo
and Schraudner [31] shows that the automorphism group of a product of systems
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may be much larger than the product of their individual automorphism groups.
Specifically, they show that if X ⊆ {0, 1}Z is the sunny side up shift, consisting of
all configurations with at most one 1, then Aut(X) ∼= Z (in fact it is generated by the
shift). On the other hand, they showed that Aut(X×X) ∼= (Z∞oS∞)o (Z2oS2).
Thus, returning to our example, although α × β × γ is certainly invariant under
the subgroup Aut(X) × Aut(Y ) × Aut(Z) ⊆ Aut(X × Y × Z), there is no reason
to believe it is Aut(W )-invariant without fully describing the algebraic structure of
Aut(W ), which may be significantly larger.

6.2. There exists a language stable, positive entropy, minimal subshift.

Lemma 6.1. Let S be a forward transitive subshift of finite type whose minimal
forbidden words all have length at most N and let ε > 0. For any m ∈ N, and any
sufficiently large d ∈ N, where d depends on m, we have

(5) S′ := {x ∈ S : every subword of x of length d contains every word in Lm(S)}

is a forward transitive subshift of finite type and htop(S′) ≥ htop(S)− ε.

Proof. If S contains only a single periodic point, then the lemma is trivially true.
Thus without loss, we can assume that S contains at least two distinct periodic
points.

For a fixed m ∈ N, S′ is the subshift of finite type obtained by forbidding all
the minimal forbidden words in S, as well as all words in L(S) of length d ≥ m
that omit at least one element of Lm(S). Since S is a subshift of finite type,
by Proposition 2.3 there exists g ∈ N such that if u, v, w ∈ L(S) are such that
uv, vw ∈ L(S) and |v| ≥ g, then uvw ∈ L(S). For the remainder of the proof, we
assume that m ≥ g.

If d ≥ m is fixed and the shift S′ is defined by (5), then this shift is nonempty
for sufficiently large d. Fixing such d, for any a, b ∈ L(S′) we can find words
a′, b′ ∈ L(S′) such that: |a′| ≥ |a| + d, |b′| ≥ |b| + d, a is the leftmost subword of
a′, b is the rightmost subword of b′, and the rightmost subword of length m in a′

coincides with the leftmost subword of length m in b′. Note that we can do this
because all words in L(S′) can be legally extended arbitrarily far to the right and
left (in at least one way) and all words of length d in S′ contain a copy of every
word in Lm(S). Therefore, setting b′′ to be the word obtained by omitting the
leftmost m ≤ d letters of b′, we have that a′b′′ ∈ L(S′) and a′b′′ = acb for some
c ∈ L(S′). Thus for any two words a, b ∈ L(S′), there exists c ∈ L(S′) such that
acb ∈ L(S′) and so S′ is forward transitive.

We are left with showing that given ε > 0, we can choose d ∈ N sufficiently large
such that htop(S′) ≥ htop(S)− ε. We carry this out in two stages.

Step 1: we build a high entropy shift missing only one word. Let y be a pe-
riodic point in S of minimal period p ≥ m and choose w ∈ L(S) such that
y = . . . wwww . . . . Since S is a forward transitive shift of finite type that con-
tains at least two distinct periodic points, we can find a word q, whose length is
a multiple of |w|, that neither begins nor ends with the word w, and is such that
wqw ∈ L(S). Since |w| ≥ m it follows that if u, v ∈ L(S) are such that both
uw,wv ∈ L(S), then by Proposition 2.3 we have uwqwv ∈ L(S).

Let µ be the Parry measure on S and note that µ is an ergodic and nonatomic
measure satisfying hµ(σ) = htop(S) (see [29]). By the Shannon-McMillan-Breiman
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Theorem, for µ-almost every z ∈ S we have

lim
n→∞

− 1

2n+ 1
logµ([z−n . . . z0 . . . zn]) = hµ(σ) = htop(S).

Thus for any δ > 0, there exists N ∈ N and a set Q ⊆ S such that µ(Q) > 1− δ/2
and such that ∣∣∣∣− 1

2n+ 1
logµ([z−n . . . z0 . . . zn])− hµ(σ)

∣∣∣∣ < δ

for all z ∈ Q and all n ≥ N . For any fixed k > |q|
|w| + 3 (recall that the words q and

w are defined in the beginning of this step), let w(k) := ww . . . w︸ ︷︷ ︸
k times

. By the Pointwise

Ergodic Theorem, we have

lim
n→∞

1

2n+ 1

n∑
i=−n

1[w(k)](σ
iz) = µ ([w(k)])

for µ-almost every z ∈ S. Therefore there exists M ∈ N and a set R ⊆ S such that
µ(R) > 1− δ/2 and∣∣∣∣∣∣ 1

2n+ 1

n−|w|−1∑
i=−n

1[w(k)](σ
iz)− µ ([w(k)])

∣∣∣∣∣∣ < δ

for all z ∈ R and all n ≥ M . Taking the maximum of N and M , without loss
of generality we can assume that N = M . Then µ(Q ∩ R) > 1 − δ and for any
z ∈ Q ∩R, we have that for all n ≥ N ,

exp
(
−(2n+ 1) · (htop(S) + δ)

)
< µ([z−n . . . z0 . . . zn])(6)

< exp
(
−(2n+ 1) · (htop(S)− δ)

)
and

µ([w(k)])− δ < 1

2n+ 1

n−|w|−1∑
i=−n

1[w(k)](σ
iz) < µ([w(k)]) + δ.

Let W(n, k) ⊆ L2n+1(S) denote the set of words of the form z−n . . . z0 . . . zn for
some z ∈ Q ∩ R and fix some n ≥ N . Since µ(Q ∩ R) > 1 − δ, using the upper
bound for µ([z−n . . . z0 . . . zn]) given in (6), for each z ∈ Q ∩R there are at least

1− δ
exp
(
−(2n+ 1) · (htop(S)− δ)

)
cylinder sets based on words of length 2n + 1 in L(S) for which the number of
occurrences of w(k) as a subword of them lies between (2n+ 1)(µ([w(k)])− δ) and
(2n+ 1)(µ([w(k)]) + δ).

Recall that the word w(k) is a periodic self-concatenation of the word w and
recall the definition of the word q from the first paragraph of Step 1. Define the
modified word w̃(k) to be the word

w̃(k) := wwqww · · ·w︸ ︷︷ ︸
k− |q||w|−2 times

which is just w(k) with each occurrence of w starting with the third through the
(|q|/|w| + 2)nd occurrence changed to the word q. Note that in any element of S
and any occurrence of w(k) in that element, the modified sequence that replaces
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this occurrence of w(k) with w̃(k) also determines an element of S, by choice of q.
Moreover, making this replacement cannot introduce new occurrences of the word
w(k), by the Fine-Wilf Theorem [15, Theorem 1] and the fact that q neither begins
nor ends with w, because w̃(k) begins and ends with two consecutive occurrences
of w. Therefore, for any fixed k and any element of S we can produce an element of
S that does not contain w(k) as a subword, by enumerating all occurrence of w(k),
inductively modifying the next occurrence that remains at each stage w̃(k), and
taking a limit of the sequence of elements of S obtained at each stage. Let Yk ⊆ S
be the subshift obtained by forbidding the word w(k). Notice that if u ∈ L(S) does
not contains w(k) as a subword, then either u ∈ L(Yk) or every element of S ∩ [u]
contains an occurrence of w(k). The latter is only possible if all elements of S ∩ [u]
have an occurrence of w(k) that overlaps the word u in the location determined
by the cylinder set (otherwise modify occurrences of w(k) to w̃(k) as described
previously). Such a word can be modified at most once on its right and once on
its left so that these occurrences of w(k) are instead the word w̃(k). Now, any
element of L(S) can be turned into an element fo L(S) that does not contain w(k)
as a subword using the procedure described above (enumerating occurrences of w(k)
that occur within it beginning from the left and inductively modifying the next that
remains be w̃(k) until we reach the end of the word). Therefore for any n there is
a map from L2n+1(S) to L2n+1(Yk) that is at most (22+(2n+1)(µ([w̃(k)])+δ))-to-one
when restricted to the words arising from the restriction of elements of Q ∩ R to
the set {−n, . . . , 0, . . . , n} (first removing all occurrences of w(k) and then making
at most once change on the right and on the left if all elements of S ∩ [u] contain
an occurrence of w(k) that intersects u). For fixed δ > 0 and all sufficiently large
n, this map is at most (2(2n+1)(µ([w̃(k)])+2δ))-to-one.

We claim that htop(Yk) can be made arbitrarily close to htop(S) by taking k
sufficiently large. To see this note that for any n ≥ N , the number of words in
L2n+1(Yk) is at least (

1−δ
exp(−(2n+1)·(htop(S)−δ))

)
2(2n+1)(µ([w̃(k)])+2δ)

since the map described above taking a word in L(S) to a word in L(Yk) is at most
(2(2n+1)µ([w̃(k)])+2δ)-to-one on the words arising from the restriction of elements of
Q∩R to the set {−n, . . . , 0, . . . , n}. By taking k sufficiently large we can guarantee
that µ([w(k− |q|/|w|)]) is arbitrarily close to zero, and so µ([w̃(k)]) is also (since it
contains w(k−|q|/|w|) as its rightmost subword). Therefore the exponential growth
rate of |L2n+1(Yk)| is at least htop(S)− 3δ for any sufficiently large k.

Step 2: we use Yk to define S′. Choose a word w ∈ L(S) that contains every element
of Lm(S) as a subword. For each k ≥ 1, we use this word w in the construction of Yk.
Fixing ε > 0, we can choose k sufficiently large such that htop(Yk) > htop(S)− ε/4.
Choose N such that for all n ≥ N , we have logPX(n) > n(htop(S) − ε/2). Since
Yk is a forward transitive shift of finite type, by Proposition 2.3 there exists a
bound B such that for any v ∈ L(Yk) there are words gw,v, hw,v ∈ L(Yk) of length
|gw,v|, |hw,v| ≤ B and such that wgw,vvhw,vw ∈ L(Yk). Choose one such gw,v and
hw,v for each v ∈ L(Yk). Then there exist b1, b2 ≤ B such that

lim
n→∞

1

n
log |{v ∈ Ln(Yk) : |gw,v| = b1 and |hw,v| = b2}| > htop(S)− ε/4.
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Define

Wn := {wgw,vvhw,v ∈ Ln(Yk) : |gw,v| = b1 and |hw,v| = b2} .
Without loss of generality, increasing N if necessary, we can assume that |Wn| >
n(htop(S) − ε/2) for all n ≥ N . By Proposition 2.3, the elements of Wn can be
freely concatenated.

For each fixed n ∈ N, note that the shift S′ defined using d := |w|+ b1 + b2 + n
contains all elements of S that can be written as concatenations of elements of
Wn. Define the shift Zn to be the shift by only allowing elements of S that can
be written as bi-infinite concatenations of elements of Wn. Then the topological
entropy of S′ is at least as large as the topological entropy of the shift Zn. We are
left with estimating the entropy of Zn.

For `, n ≥ N , the number of words in L`(n+b1+b2+|w|)(Zn) is at least |Wn|` >
(htop(S)− ε/2)`n; namely, all words in Wn have the same length and therefore, all
ways of concatenating ` elements of Wn result in distinct words of length `(n +
b1 + b2 + |w|) in L(S). For any δ > 0, we can take n sufficiently large such that
`(n+ b1 + b2 + |w|) < `n(1 + δ) and thus

PZn
(`(n+ b1 + b2 + |w|)) > (htop(S)− ε/2)`(n+b1+b2+|w|)/(1+δ).

For δ sufficiently small, this is larger than (htop(S)− ε)`(n+b1+b2+|w|). Fixing some
sufficiently large n such that this holds, we have that this estimate holds for all
` ≥ N and so

lim inf
`→∞

1

`(n+ b1 + b2 + |w|)
logPZn

(`(n+ b1 + b2 + |w|)) > htop(S)− ε.

But

lim
t→∞

1

t
logPZn(t) = htop(Zn)

and, in particular, the limit exists. Thus we have htop(S′) ≥ htop(Zn) > htop(S)−
ε. �

For α ∈ [0, 1), let Rα : [0, 1)→ [0, 1) denote the rotation x 7→ x+α (mod 1), and
when X and Y are shifts and u ∈ L(X) and v ∈ L(Y ) are words of equal length,
we let u× v denote the word in the product shift X × Y whose ith letter is (a, b) if
and only if the ith letter of u is a and the ith letter of v is b.

Lemma 6.2. Let S be a forward transitive subshift of finite type. Let α ∈ R \ Q,
let k ∈ N, let β1, β2, . . . , βk ∈ (0, 1), and let Zi be the shift obtained by coding the
circle rotation ([0, 1), Rα) with respect to the partition {[0, βi), [βi, 1)}. Fix n1 ∈ N
and u ∈ Ln1(S).

(1) For any sufficiently large n2 ∈ N, there is a word v ∈ Ln2(S) such that for
any 1 ≤ i ≤ k and words w1 ∈ Ln1

(Zi) and w2 ∈ Ln2
(Zi), the word u×w1

occurs as a subword of v × w2.
(2) For any sufficiently large d, the shift

S′ := {x ∈ S : every subword of x of length d contains every word in Ln2(S)}

is a forward transitive subshift of finite type with htop(S′) ≥ htop(S)−ε and
such that for any 1 ≤ i ≤ k, all words in Ln1

(S′ × Zi) occur syndetically,
with gap at most 2d, in every element of S′ × Zi.
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Proof. To prove Part (1), fix u ∈ Ln1
(S). Since S is forward transitive, there exists

a word y ∈ L(S) such that

ỹ = · · ·uyuyuyuy · · ·

is a periodic point in X. Let m = |u|+ |y| be the period of ỹ
Fix some 1 ≤ i ≤ k and some word w1 ∈ Ln1

(Zi). The coding of a point
x ∈ [0, 1) begins with the word w1 if and only if x lies in the cell of the partition

n1−1∨
i=0

R−iα {[0, βi), [βi, 1)}

that corresponds to the word w1. This cell is a half-open interval of positive length.
Since ([0, 1), Rmα ) = ([0, 1), Rmα) is minimal, there exists t(βi) > 0 such that for
any x ∈ [0, 1) there is some 0 ≤ n ≤ t(βi) for which Rnmα(x) = Rmnα (x) is in this
half-open interval. Moreover, notice that t(βi) is bounded above by a function that
depends only on the length of the shortest interval in

n1−1∨
i=0

R−iα {[0, βi), [βi, 1)}

(namely the time it takes for orbits under Rmα to become more dense than the
length of the shortest interval). Set t := max{t(bj) : 1 ≤ j ≤ k}.

Set n2 := mt+ |u| with m = |u|+ |y| to be the period of ỹ chosen and t = t(βi).
Let w2 ∈ Ln2

(Zi). Find some x ∈ [0, 1) such that the coding of the orbit of x with
respect to the partition {[0, βi), [βi, 1)} begins with the word w2. By the definition
of t, there exists some 0 ≤ n ≤ t such that the word w1 occurs as a subword of
w2, beginning exactly mn letters from the left of w2. Let v ∈ Ln2

(S) be the word
uyuyuy · · · yu that has length n2. Then the subword of v that begins exactly mn
letters from the left of v is u. In particular, the word u × w1 occurs as a subword
of v × w2, starting mn letters from the left of v × w2. This completes the proof of
Part (1).

We turn to Part (2). The statement that S′ is a forward transitive subshift of
finite type with htop(S′) ≥ htop(S)−ε for any d sufficiently large follows immediately
from Lemma 6.1. Fix 1 ≤ i ≤ k. Let u × w1 ∈ Ln1

(S′ × Zi), where u ∈ Ln1
(S′)

and w1 ∈ Ln1
(Zi). Let v ∈ Ln2

(S′) be the word v constructed in Part (1). Let
w2 ∈ Ln2(Zi). Then v × w2 ∈ Ln2(S′ × Zi) and so by definition of S′ this word
occurs in every length d subword of every element of S′. But u × w1 occurs as a
subword of v×w2, and so u×w1 occurs in every length d subword of every element
of S′×Zi. Since u×w1 ∈ Ln1

(S′×Zi) is arbitrary, this holds for all such words. �

Lemma 6.3. Let α ∈ R \ Q and let 0 < β1 < β2 < 1. For i = 1, 2, let Zi be the
subshift obtained by coding the system ([0, 1), Rα) by the partition {[0, βi), [βi, 1)}.
Then Z1 and Z2 are both minimal, uniquely ergodic, and there exists N ∈ N such
that for all n ≥ N we have Ln(Z1) ∩ Ln(Z2) = ∅.

Proof. The irrational circle rotation ([0, 1), Rα) is uniquely ergodic and its unique
invariant measure is Lebesgue measure. Fix i ∈ {1, 2} and define the partition
Pn :=

∨n
j=0R

−j
α {[0, βi), [βi, 1)}. The cells in the partition Pn determine (distinct)

elements of Ln+1(Zi) and every word in Ln+1(Zi) corresponds to the coding, ac-
cording to the partition P0, of the elements in a cell of Pn. The cells of Pn are
half-open subintervals of [0, 1) and so by unique ergodicity of ([0, 1), Rα), for any
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cell C ∈ Pn and any ε > 0 there exists M such that for all m ≥M and all x ∈ [0, 1)
we have ∣∣∣∣∣λ(C)− 1

m

m∑
i=0

1C
(
Pn(Riαx)

)∣∣∣∣∣ < ε,

where Pn(Riαx) is the cell of Pn that contains Riαx. In particular, if µi is the push-
forward of λ under the coding map, then for any m ≥M the frequency with which
w ∈ Ln+1(Zi) occurs as a subword of any u ∈ Lm(Zi) differs from µi([w]) by at
most ε. Since this M = M(n) exists for any n, Zi is uniquely ergodic.

To see that Zi is minimal, fix any w ∈ L(Zi). Then w corresponds to the cod-
ing, under P0, of the points in one of the cells of Pn for some n. The cell of Pn
that corresponds to w is a half-open interval and the minimal system ([0, 1), Rα)
has the property that the orbit visits this half-open interval syndetically with uni-
form gap between consecutive visits. This means that all sufficiently long words in
L(Zi) contain w syndetically as a subword, with uniform gap between consecutive
occurrences. So Zi is minimal.

Finally, set ε := (β2 − β1)/2 and by unique ergodicity find M ∈ N such that for
i = 1, 2, any x ∈ Zi, and any m ≥M we have∣∣∣∣∣µi([0])− 1

m

m∑
i=0

1[0](σ
ix)

∣∣∣∣∣ < ε.

This means that for any m ≥ M the number of times that 0 ∈ L1(Z1) occurs
as a subword of any element of Lm+1(Z1) is strictly smaller than the number
of times 0 ∈ L1(Z2) occurs as a subword of any element of Lm+1(Z2). Thus
Lm+1(Z1) ∩ Lm+1(Z2) = ∅ for all m ≥M . �

Lemma 6.4. Let α ∈ R\Q and let β ∈ (0, 1) be such that β = nα (mod 1) for some
integer n > 0. Let Z ⊆ {0, 1}Z be the subshift obtained by coding the circle rotation
([0, 1), Rα) with respect to the partition {[0, β), [β, 1)}. For any integer k ≥ 1, let
S : {0, 1, . . . , k−1} → {0, 1, . . . , k−1} be the map S(i) := i+1 (mod k). There exists
a subshift Y ⊆ {0, 1}Z that is topologically conjugate to (Z×{0, 1, . . . , k−1}, σ×S).

We note that existence of the subshift Y is immediate, as we are considering
an expansive transformation on a zero dimensional space and so is topologically
conjugate to a subshift. However, we provide a direct proof of the existence of Y ,
as we need to control the number of symbols.

Proof. Let Zα ⊆ {0, 1}Z be the coding of ([0, 1), Rα) with respect to the partition
{[0, α), [α, 1)}, meaning that Zα is the Sturmian shift with rotation angle α. By
a theorem of Durand [14, Corollary 12], Zα is Cantor prime, meaning that any
nontrivial system that Zα factors onto (in the topological sense) is topologically
conjugate to Zα.

If γ = mα (mod 1) for some integer m > 0, then the intervals [0, γ) and [γ, 1)
can be written as unions of the cells of the partition

∨m
i=−mR

i
α({[0, α), [α, 1)},

and so Zα factors onto the (infinite) shift obtained by coding ([0, 1), Rα) with
respect to the partition {[0, γ), [γ, 1)}. For ease of notation, call this shift Zγ .
By Durand’s Theorem, there exists a topological conjugacy ϕγ : Zα → Zγ . Since
the system Zα is Sturmian, it has a unique asymptotic pair, meaning there is a
unique pair x[α], y[α] ∈ Zα such that x[α]i = y[α]i for all i > 0 but x[α]0 6=
y[α]0. Moreover, this pair has the property that x[α]i = y[α]i for all i < −1
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and {(x[α]−1, x[α]0), (y[α]−1, y[α]0)} = {(1, 0), (0, 1)}. Similarly, since γ = mα
(mod 1), there is a unique pair x[γ], y[γ] ∈ Zγ such that x[γ]i = y[γ]i for all i > 0
but x[γ]0 6= y[γ]0. For this system, we have x[γ]i = y[γ]i for all i < −m − 1 and
{(x[γ]−m−1, x[γ]0), (y[γ]−m−1, y[γ]0)} = {(1, 0), (0, 1)}. These points correspond to
the limit of sequences of codings of points that approach γ from the left and from
the right in [0, 1) with respect to the partition {[0, γ), [γ, 1)}, and the fact that
0 is the kth preimage of γ under Rα. Note that the conjugacy ϕγ sends the set
{x[α], y[α]} to the set {σtx[γ], σty[γ]} for some t ∈ Z. Without loss of generality,
passing from ϕγ to ϕγ ◦ σ−t if necessary, we can assume that t = 0. In particular,
if z ∈ {x[α], y[α]}, then ϕγ(z)0 is determined by ϕγ(z)−m−1, and vice-versa.

For 0 ≤ s < k, define γs := k(s + 1)α (mod 1). Define the map ψ : Zα ×
{0, 1, . . . , k − 1} → {0, 1}Z by the formula

(ψ(x, i))j :=
(
ϕγi+j (x)

)
j

where the subscript i+ j of γi+j is understood modulo k. The map ψ is given by a
block code and so is continuous and commutes with the map (x, i) 7→ (σ(x), i+ 1),
where again addition in the second coordinate is taken modulo k. We claim that
ψ is injective. To prove the claim, we proceed by contradiction and let (x1, i1)
and (x2, i2) be distinct points for which ψ(x1, i1) = ψ(x2, i2). If i1 6= i2, then
the restriction of x1 to the set {kn : n ∈ Z} is the same as the restriction of x2

to this set. Therefore there is a coding of the system ([0, 1), Rkα) with respect
to the partition {[0, γi1), [γi1 , 1)} that coincides with a coding of ([0, 1), Rkα) with
respect to the partition {[0, γi2), [γi2 , 1)}. This is impossible since, by Lemma 6.3
the languages of these symbolic systems are disjoint for all sufficiently large size
words. Therefore i1 = i2 and so we can assume that x1 6= x2.

For any fixed 0 ≤ d < k, the restriction of x1 to {d+ nk : n ∈ Z} coincides with
the restriction of x2 to this set. Recall that Zα can be written as the union of the
orbits O(x[α]) and O(y[α]) and all codings of points in [0, 1) \O(α) with respect to
{[0, α), [α, 1)}. If x ∈ Zα is the coding of some point y ∈ [0, 1)\O(α), we claim that
no other element of Zα has the same restriction as x has to the set {kn : n ∈ Z}.
To see this, note that this restriction can be interpreted as the coding of the point
y in the system ([0, 1), Rkα) with respect to the partition {[0, α), [α, 1)}. Therefore
y is determined by the restriction of x to {kn : n ∈ Z} and since y /∈ {0, α}, x is
determined by y. Therefore x1, x2 ∈ O(x[α]) ∪ O(y[α]) and since they have the
same restriction to {kn : n ∈ Z} there must exist some t for which x1 = σt(x[α])
and x2 = σt(y[α]). In particular, the only locations where x1 and x2 differ from
each other are t and t + 1, where one has the symbols (1, 0) and the other has
the symbols (0, 1). Let 0 ≤ d < k be such that t ≡ d (mod k). Since for any s,
ϕγs sends the set {x[α], y[α]} to the set {x[γs], y[γs]}, it follows that ϕγd(x1) and
ϕγd(x2) do not coincide on the set {d + kn : n ∈ Z}, and we have a contradiction.
Therefore x1 = x2 and so the map ψ : Zα × {0, 1, . . . , k − 1} → {0, 1}Z is injective.

Since ψ is injective and Z × {0, 1, . . . , k − 1} is a compact metric space, ψ is a
homeomorphism on its image. Thus ψ defines a topological conjugacy on its image,
meaning that the image of Y := Zα × {0, 1, . . . , k − 1} under ψ is a subshift of
{0, 1}Z such that (Y, σ) is topologically conjugate to (Zα×{0, 1, . . . , k− 1}, σ×S).
But Zα is topologically conjugate to Z and so Y is also topologically conjugate to
(Z × {0, 1, . . . , k − 1}, σ × S). �
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Lemma 6.5. There exists a language stable, positive entropy, minimal subshift.
Moreover, given a sequence of intervals of consecutive integers

{i1, i1 + 1, . . . , i1 + j1}, {i2, i2 + 1, . . . , i2 + j2}, . . . , {in, in + 1, . . . , in + jn}, . . .
such that both sequences i` and j` are increasing there exists a language stable,
positive entropy, minimal subshift X which has the property that Xin = Xin+jn

for infinitely many n, where Xk denotes the kth term in the SFT cover of X.
Furthermore, if α ∈ R \Q, β1, β2, β3, . . . ∈ (0, 1), and Zi is the coding of the circle
rotation ([0, 1), Rα) with respect to the partition {[0, βi), [βi, 1)}, then for each i ∈ N
the shift X × Zi is also minimal.

Proof. We inductively construct a sequence of subshifts

X1 ⊇ X2 ⊇ · · · ⊇ Xn ⊇ Xn+1 ⊇ · · ·
and show that X :=

⋂∞
i=1Xi is the desired system.

Fix a sequence {εi}∞i=1 of elements of (0, 1) such that
∑
i εi < log 2. Let X1 :=

{0, 1}Z and so htop(X1) = log 2. Fix the parameter n1 := 1. By Part (2) of
Lemma 6.2, we can choose d1 > n1 such that

X2 := {x ∈ X1 : every subword of length d1 contains every word in Ln1(X1)}
is a forward transitive subshift of finite type satisfying htop(X2) ≥ htop(X1) − ε1,
and such that all words in L1(X2 × Z1) occur syndetically with gap at most 2d1.

Assume that we have inductively constructed a nested sequence of topologically
transitive subshifts of finite type X1 ⊇ X2 ⊇ · · · ⊇ Xm, as well as parameters ni, di
for all i = 1, . . . ,m− 1 satisfying

ni+1 ≥ max{di + i, ik + jk}
where ik = min{i` : i` > di} and 1 ≤ i < m − 1. Suppose further that for all
x ∈ Xm and all 1 ≤ i < m, every subword of x of length di contains every element
of Lni(Xi) as a subword. Finally suppose that every word in Li−1(Xi×Zj) occurs
syndetically with gap at most 2di for all 1 ≤ j < i. Set k′ = min{i` : i` > dm−1},
define nm := max{dm−1 + m, ik′ + jk′}. Again using Part (2) of Lemma 6.2, we
can choose dm > nm such that

Xm+1 := {x ∈ Xm : every subword of length dm contains every word in Lnm
(Xm)}

is a forward transitive subshift of finite type satisfying htop(Xm+1) ≥ htop(Xm)−εm
and, increasing dm if necessary, such that every word in Lm(Xm+1 × Zj) occurs
syndetically with gap at most 2dm for all 1 ≤ j < m + 1. Inductively, this defines
the shift Xi for all i ≥ 1 and we set X :=

⋂
iXi. We claim that X is minimal,

language stable, and has positive entropy, and further claim that X×Zj is minimal
for all j ∈ N.

We first check that X is minimal. Let w ∈ L(X) and pick i ∈ N such that
ni > |w|. Since Lni

(X) ⊆ Lni
(Xi), it follows by construction that for any x ∈ Xi+1

the word w occurs in every subword of x of length di. But X ⊆ Xi+1 and so w
occurs syndetically, with gap at most di, in every element of X. Since this holds
for any w ∈ L(X), X is minimal.

Next we check that for any j ∈ N, the shift X × Zj is minimal. Let w ×
w′ ∈ L(X × Zj). By construction, there exists I such that w ∈ L(Xi) for all
i ≥ I, and without loss we can assume I > j. By construction, every word in
LI+|w|(XI+|w|+1×Zj) occurs syndetically with gap at most 2dI+|w|. In particular,
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w×w′ occurs syndetically with at most this gap. But X×Zj ⊆ XI+|w|+1×Zj and
so w×w′ occurs syndetically, with gap at most 2dI+|w| in every element of X×Zj .
Since this holds for any w × w′ ∈ L(X × Zj), X × Zj is minimal.

Next we show that X is language stable. Fix i ∈ N and recall that ni+1 ≥
max{di + i, ik + jk} where ik = min{i` : i` > di}. The shift Xi+1 is a forward
transitive subshift of finite type whose minimal forbidden words all have length at
most di. By construction, every word in Lni+1(Xi+1) occurs in every element of
Xi+2 and hence in every element of X. Therefore Lni+1

(X) = Lni+1
(Xi+1). It

follows that Lk(X) = Lk(Xi+1) for all 1 ≤ k ≤ ni+1. Since there are no minimal
forbidden words in Xi+1 of length greater than di and since ni+1 ≥ max{di+ i, ik+
jk} where ik = min{i` : i` > di}, it follows that there are no minimal forbidden
words in X of lengths di + 1, . . . , di + i, and moreover there are no forbidden words
of any length lying in the interval {ik, ik + 1, . . . , ik + jk}. Since this holds for any
i ∈ N, it follows that the set

{k : X has no minimal forbidden words of length k}
has upper Banach density 1. In other words, X is language stable. Furthermore,
there are infinitely many n for which Xin = Xin+jn .

Finally we show that htop(X) > 0. Since Xi is a topologically transitive subshift
of finite type, it follows from Parry [29] that Xi supports a unique measure of
maximal entropy µi. Passing to a subsequence if necessary, we can assume that
the sequence {µi}∞i=1 converges to a weak* limit µ. Note that µ is supported on
X =

⋂
iXi and by upper semi-continuity of the entropy map (see [33, Theorem

8.2]) for subshifts, we have that

hµ(σ) ≥ lim sup
i→∞

hµi
(σ) ≥ htop(X1)−

∞∑
i=1

εi = log(2)−
∞∑
i=1

εi > 0.

By the Variational Principle (see for example [33, Theorem 8.6]) we have htop(X) ≥
hµ(σ) > 0. �

6.3. The characteristic measures on a full shift. Boyle, Lind, and Rudolph [5,
Corollary 10.2] show that for any topologically mixing subshift of finite type, the
measure of maximal entropy is the unique characteristic measure of positive entropy,
and all characteristic measures of entropy zero are countable convex combinations
of purely atomic measures supported on unions of periodic orbits. In particular,
for the full shift on two symbols, their result says the following:

Lemma 6.6. For the full 2-shift ({0, 1}Z, σ), every characteristic measure is a
convex combination of the Bernoulli measure (assigning measure (1/2)n to each
cylinder set determined by a word of length n) and atomic measures supported on
unions of periodic orbits.

6.4. There exists a language stable shift with countably many ergodic
measures, all of whose ergodic measures are isomorphic to each other.

Lemma 6.7. Let α, β ∈ (0, 1) and α /∈ Q. Let Rα : [0, 1) → [0, 1) be the map
Rα(x) := x + α (mod 1). Let P := {[0, β), [β, 1)} and let Xβ be the coding of the
system ([0, 1), Rα) by the partition P. For n ≥ 2, let

Pn :=

n−1∨
i=1

R−iα P.
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Finally let S0 = {0, β} and Sn := R−nα S0 = {−nα, β − nα}. If Xβ has a minimal
forbidden word of length n+ 1, then at least one element of S0 lies in the same cell
of Pn as an element of Sn+1.

Proof. Suppose Xβ has a minimal forbidden word w of length n + 1. Writing
w := a0a1 . . . an−1an ∈ An+1, then since w is minimal, we have that

a0a1 . . . an−1, a1a2 . . . an ∈ Ln(Xβ).

Let u := a1a2 . . . an−1 ∈ Ln−1(Xβ) denote the “interior” of w.
Say there is a unique b ∈ A such that ub ∈ Ln(Xβ). Then since a1a2 . . . an ∈

Ln(Xβ), it follows that b = an. But then since a0u = a0a1 . . . an−1 ∈ Ln(Xβ), it
follows that w = a0uan ∈ Ln+1(Xβ), as

{x ∈ Xβ : xi = ai for all 0 ≤ i < n} 6= ∅,

and so the only possibility is that xn = an because x1 . . . xn−1 = u. But this
contradicts the assumption that w is a forbidden word, and so we conclude that
there is no unique b ∈ A such that ub ∈ Ln(Xβ). Similarly there cannot be a unique
c ∈ A such that cu ∈ Ln(Xβ). In other words, in the terminology of combinatorics
on words, u is a bispecial word.

Recall that when ([0, 1), Rα) is coded by the partition P, the cells of Pn are in
one-to-one correspondence with cylinder sets of the form:

σ−1[v]+0 := {x ∈ Xβ : xi = vi for all 1 ≤ i ≤ n− 1}

where v ∈ Ln−1(Xβ). We maintain the same notation for w being a minimal
forbidden word of length n+ 1 and u denoting its interior. Since there is no unique
b ∈ A such that ub ∈ L(Xβ), this means that the cell of Pn that corresponds to u
is subdivided into at least two different cells in the refined partition

∨n
i=1R

−i
α P =

Pn ∨ R−nα P. The only two cells that are subdivided in this way are the cells
containing the elements of Rn. Similarly, since there is no unique c ∈ A such that
cu ∈ L(Xβ), it follows that the cell of Pn corresponding to u is subdivided into at

least two different cells in the refined partition
∨n−1
i=0 R

−i
α P = P ∨ Pn. The only

two cells that are subdivided in this way are the cells containing the elements of
R0. Therefore, the cell of Pn corresponding to u contains at least one element of
R0 and at least one element of Rn. �

In preparation for our next lemma, we define a second partitionQ := {[0, α), [α, 1)}
and for n > 2, define Qn :=

∨n−1
i=2 R

−i
α Q (note that this partition does not include

Q∨R−1
α Q). We make use of an auxiliary result.

Lemma 6.8. For fixed n > 2, every cell of Qn can be written as a union of cells
from Pn.

Proof. Observe that Qn is the partition of [0, 1) into intervals whose endpoints
come from the set

{−α,−2α,−3α, . . . ,−(n− 1)α}.
Notice that Pn is the partition of [0, 1) into intervals whose endpoints come from
the set

{−α,−2α, 3− α, . . . ,−(n− 1)α} ∪ {β − α, β − 2α, β − 3α, . . . , β − (n− 1)α}.

Therefore each interval in Qn can be written as a union of intervals from Pn. �
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The intervals that comprise Qn have a natural adjacency relation in R/Z: we
say two cells of Qn are adjacent if they share an endpoint in R/Z and are twice
adjacent if there is a third cell that is adjacent to both of them.

Lemma 6.9. Maintaining the notation of Lemma 6.7, if Xβ has a minimal for-
bidden word of length n+ 1 then at least one of the following holds:

(1) 0 and −nα lie in the same, adjacent, or twice adjacent cells of Qn;
(2) β and −nα lie in the same cell of Qn;
(3) −β and −nα lie in the same, adjacent, or twice adjacent cells of Qn.

Proof. By Lemma 6.7, at least one element of {0, β} must lie in the same cell of Pn
as an element of {−nα, β−nα}. If −nα lies in the same cell of Pn as an element of
{0, β}, then one of (1) or (2) occurs since the cells of Qn can be written as unions
of cells in Pn. Otherwise, one of the following holds:

(1) β and β − nα lie in the same cell of Pn (hence also the same cell of Qn);
(2) 0 and β − nα lie in the same cell of Pn (hence also the same cell of Qn).

Let d denote the metric on [0, 1) inherited from the Euclidean metric on R/Z. Note
that d(β, β − nα) = d(0,−nα), and so if β and β − nα lie in the same cell of
Pn then d(0,−nα) is at most the length, L, of that cell. By the Three Lengths
Theorem [32], for any n > 2 the intervals comprising Qn have at least two and
at most three distinct lengths. Moreover, for any n where the intervals have three
distinct lengths, the longest of the lengths is the sum of the shorter two and the sum
of the lengths of any two consecutive cells is at least the longest length. Therefore,
since d(0,−nα) = L is at most the longest length of any interval in Qn, 0 and −nα
can be in the same cell of Qn, adjacent cells of Qn, or twice adjacent cells of Qn.
In particular, if β and β − nα lie in the same cell of Pn then (1) holds. Finally,
if 0 and β − nα lie in the same cell of Pn, then d(−β,−nα) = d(0, β − nα) and
similarly (3) holds. �

The interest in Lemma 6.9 is that we have removed the dependence on Pn (a
partition which depends on β) and replaced it with Qn (a partition which depends
only on α).

We recall some facts that follow from the Three Lengths Theorem of Sos [32].
First, if n is such that Qn has only two distinct lengths, then a new length is
created in Qn+1 by subdividing one of the intervals from Qn with the longest
length. Further, there is a simple formula for the number of intervals of each length
in Qn:

Theorem 6.10 (See for example [2, Theorem 2.6.1]). Let α /∈ Q and let α =
[0, a1, a2, . . . ] be its continued fraction expansion. Let pk/qk = [0, a1, a2, . . . , ak] be
its kth convergent. Then the sequence {qk}∞k=1 is nondecreasing, tends to infinity,
and for every integer n ≥ 1 there exists a unique k such that there are numbers
1 ≤ m ≤ ak+1 and 0 ≤ r < qk satisfying n = mqk + qk−1 + r. The partition
Qn ∨Q ∨R−1

α Q has:

(1) r + 1 intervals of length ηk−1 −mηk (Type 1);
(2) n+ 1− qk intervals of length ηk (Type 2);
(3) qk − r − 1 intervals of length ηk−1 − (m− 1)ηk (Type 3),

where ηk := (−1)k(qkα− pk).

We note that the partition Qn ∨ Q ∨ R−1
α Q in the statement of this theorem is

the standard partition used in a continued fraction approximation.
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An immediate corollary is the following:

Corollary 6.11. No interval in Qqk+qk−1
∨Q∨R−1

α Q is divided into more than 2

subintervals in Q(ak+1+1)qk+qk−1−1 ∨Q ∨R−1
α Q. In particular, the orbit segment

{−nα : qk + qk−1 ≤ n < (ak+1 + 1)qk + qk−1}

does not visit any cell in Qqk+qk−1
∨Q ∨R−1

α Q more than 2 times.

Applying this result to our modified partition Qn, we obtain:

Corollary 6.12. The orbit segment

{−nα : qk + qk−1 ≤ n < (ak+1 + 1)qk + qk−1}

does not visit any cell in the partition Qqk+qk−1
more than 4 times.

We are now ready to construct our language stable shift. The basic idea is to fix
an irrational α with its associated partition determined by its continued fraction
convergents, and then use an increasing sequence of reals βj such that the codings
of these reals stay close to the coding of α for long intervals. Using Lemma 6.9 we
can replace the coding of each βj with respect to its associated partition determined
by its continued fraction convergents by that of α, controlling the number of times
orbits visit a particular cell using Corollary 6.11. For the usual continued fraction
expansion and associated partition, the orbit of α visits each cell at most twice,
but our count in Corollary 6.12 differs from this standard result, as our partition
Qn does not include the cells determined by Q ∨ R−1

α Q. However, the partition
Qn ∨Q∨R−1

α Q only has three more cells than Qn, and so our construction carries
through with visits of the orbit to any particular cell inflated by at most 3.

More precisely, we fix α /∈ Q with continued fraction expansion α = [0, a1, a2, . . . ]
and convergents pk/qk. Choose 0 < β1 < α. Suppose we have chosen real numbers
β1 < β2 < · · · < βi < α and integers k1 < k2 < · · · < ki such that for all 1 ≤ j ≤ i,
we have

(1) (akj+1 + 1)qkj > 44j2;
(2) the real numbers βj , βj+1, βj+2, . . . , βi all lie in the same cell of the partition
Q(akj+1+1)qkj

+qkj−1−1 that α lies in;

(3) the real numbers −βj ,−βj+1,−βj+2, . . . ,−βi also all lie in the same cell of
the partition Q(akj+1+1)qkj

+qkj−1−1 that α lies in.

Then for any qk+qk−1 ≤ n < (ak+1+1)qk+qk−1, we have that βj , βj+1, . . . , βi all lie
in the same cell ofQn as each other, and similarly, we have that−βj ,−βj+1, . . . ,−βi
also all lie in the same cell of Qn as each other. We now check when new minimal
forbidden words arise for n in the interval [qkj + qkj−1, (akj + 1)qkj + qkj−1] for
j ∈ {1, 2, . . . , i}. By Lemma 6.9, these words arise only when −nα visits one of
11 cells from the partition Qqkj

+qkj−1
and by Corollary 6.12 each can be visited at

most 4 times. Thus for any j1, j2 ∈ {1, 2, . . . , i} there are at most 44 values of n in
the interval qkj1 +qkj1−1 ≤ n < (akj1 +1)qkj1 +qkj1−1 for which Xβj2

has a minimal

forbidden word of length n + 1. But combining these results with conditions (2)
and (3), we also have that for any 1 ≤ j1 ≤ i, the set of n in the interval

(7) [qkj1 + qkj1−1, (akj1 + 1)qkj1 + qkj1−1]

for which there exists 1 ≤ j2 ≤ i such that Xβj2
has a minimal forbidden word of

length n+1 is at most 44j1. By condition (1) of the construction, the interval in (7)
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has length at least 44j2
1 and so there must be a subinterval of length j1 on which

none of the shifts Xβ1 , Xβ2 , . . . , Xβi have any minimal forbidden words. Since
the sequence {qk}∞k=1 is nondecreasing and tends to infinity, we can choose ki+1

sufficiently large such that (aki+1+1 +1)qki+1
> 44(i+1)2 and choose βi+1 ∈ (βi, α)

such that βi+1 lies in the same cell of Q(aki+1+1+1)qki+1
+qki+1−1−1 as α, and −βi+1

lies in the same cell of Q(aki+1+1+1)qki+1
+qki+1−1−1 as −α. Since the partitions Qk

refine each other as k increases, it follows that for any 1 ≤ j1 ≤ i + 1 that βi+1

lies in the same cell of Q(akj1
+1+1)qkj1

+qkj1
−1−1 that α lies in, and −βi+1 lies in the

same cell of Q(akj1
+1+1)qkj1

+qkj1
−1−1 that −α lies in. By induction, we construct a

sequence

0 < β1 < β2 < β3 < · · · < βi < · · · < α

which satisfies conditions (1), (2), and (3) for all i, j ≥ 1. Therefore for any j there
is an interval of integers (between qkj + qkj−1 and (akj+1 + 1)qkj + qkj−1) of length
j such that Xβi

has no minimal forbidden words of any lengths in that interval, for
any i = 1, 2, 3, . . . Consider the shift

(8) Z :=

∞⋃
i=1

Xβi .

A word w ∈ {0, 1}∗ is in the language of Z if and only if there exists i such that
w ∈ L(Xβi

). It follows that Z is language stable.
Moreover we claim that

(9) Z \
∞⋃
i=1

Xβi

is the shift Xα. We show this in two steps. First, suppose z ∈ Z but z /∈ Xβi for any
i ≥ 1. Then there is a sequence {mi} of integers tending to infinity, and points xi ∈
Xβmi

such that limi xi = z. In other words, for each fixed N ≥ 1 we have zj = (xi)j
for all |j| ≤ N . Let si ∈ S1 be a point whose coding with respect to the partition
{[0, βmi

), [βmi
, 1)} agrees with (xi)j for all |j| ≤ N . Passing to a subsequence if

necessary, we can assume there exists y ∈ S1 such that lim si = y. Note that
Rjαsi only codes differently with respect to the partitions {[0, βmi

), [βmi
, 1)} and

{[0, α), [α, 1)} if Rjαsi ∈ [βmi , α). Since limi si = y and limi βmi = α, for fixed N
we have that for all sufficiently large i, the rotation Rjαsi codes in the same way
with respect to both of these partitions for all |j| ≤ N unless Rjαy = α for some
|j| ≤ N . Assuming first that Rjαy 6= α for any |j| ≤ N , note that Rjαsi and Rjαy
code in the same way with respect to both {[0, βmi

), [βmi
, 1)} and {[0, α), [α, 1)}

for all |j| ≤ N and all sufficiently large i. Therefore the coding of Rjαy is zj for
all |j| ≤ N . Since this holds for all N ≥ 1, it follows that z ∈ Xα. The other
possibility is that Rjαy = α for some |j| ≤ N . In this case, note that for fixed N ,
for any sufficiently small |γ| > 0 the points Rjα(si + γ) and Rjαsi code in the same
way with respect to {[0, βmi

), [βmi
, 1)} for all |j| ≤ N and all sufficiently large i

(since lim si = y). Thus we can reduce to the previous case and again it follows
that z ∈ Xα.

By the minimality of Xα, it follows that either the system in (9) is either Xα or
is empty. To show it is nonempty, fix y ∈ S1 to be a point whose Rα-orbit does
not include α ∈ S1. For any fixed N ≥ 1, note that the rotation Rjαy codes in
the same way with respect to {[0, βi), [βi, 1)} and {[0, α), [α, 1)} for all |j| ≤ N and
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all sufficiently large i. The coding of the Rα-orbit of y is an element of Xβi
and

therefore this defines a sequence of points in
⋃
iXβi whose limit is the coding of y

with respect to {[0, α), [α, 1)}, meaning there is some element of Xα in Z.
Furthermore, note that in our construction, we can always choose that

βi ∈ {nα (mod 1) : n = 1, 2, . . . },
and henceforth we insist on this. Then since [0, βi) can be written as a union of
intervals in

∨m
i=0R

−i
α {[0, α), [α, 1)} for sufficiently large m, there is a block code

ϕi : Xα → Xβi
. By Durand’s Theorem [14, Corollary 12], such a block code is in-

vertible and so Xα is topologically conjugate to Xβi for all i. Since Xα is uniquely
ergodic, it follows that Z is the union of countably many uniquely ergodic, topo-
logically conjugate subshifts. In particular it has only countably many ergodic
measures and they are all (measurably) isomorphic to each other.

Summarizing this construction and using the properties shown in Lemma 6.5,
we have:

Corollary 6.13. Fix some irrational α ∈ (0, 1). There exists an increasing se-
quence of reals {βi} with each βi ∈ {nα (mod 1) : n ≥ 1} such that limi βi = α and
such that the system

Z :=
∞⋃
i=1

Xβi
= Zc ∪

∞⋃
j=1

Zj ,

where Zj := Xβj
is the coding of the rotation ([0, 1), Rα) with respect to the partition

{[0, βj), [βj , 1)} for all j = 1, 2, . . . and Zc := Xα is the coding with respect to
{[0, α), [α, 1)}, is a language stable subshift. Moreover, if X is the system defined
in Lemma 6.5, then X × Zj is minimal for all j ∈ N and X × Zc is minimal.
Furthermore, the system

Z \
∞⋃
i=1

Xβi
= Z \

∞⋃
j=1

Zj

is the Sturmian shift Xα = Zc.

6.5. The example and its properties. The example is the shift X × Y × Z.

6.5.1. Language stability and the existence of a characteristic measure of maximal
entropy. We first check that our example is language stable and deduce that it has
a characteristic measure.

Lemma 6.14. The shift (W,σ), where W = X × Y × Z and X is defined as in
Lemma 6.5, Y is the full 2-shift, and Z is defined in (8), is language stable.

Proof. For any n ∈ N, we have that Ln(X × Y × Z) = Ln(X) × Ln(Y ) × Ln(Z).
Therefore (wX , wY , wZ) ∈ {0, 1}n × {0, 1}n × {0, 1}n is forbidden if and only if at
least one of the component words is forbidden, meaning that at least one of the
following holds: wX is forbidden in X, wY is forbidden in Y , or wZ is forbidden
in Z. Similarly, the word (wX , wY , wZ) is minimal and forbidden if and only if at
least one of wX , wY , and wZ is a forbidden word in its respective shift and none of
the wX , wY , and wZ is forbidden and not a minimal forbidden word. In particular,
if each of X, Y , and Z have no minimal forbidden words of length n, then W also
has no minimal forbidden words of length n. We claim that there are arbitrarily
long intervals of the form {N,N+1, N+2, . . . , N+k−1} for which W = X×Y ×Z
has no minimal forbidden words of any length in the interval.
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Since Y is the full 2-shift, it does not introduce any forbidden words. Let
{Zn}∞n=1 be the SFT cover of the shift Z defined by (8) and let

{i1, i1 + 1, . . . , i1 + j1}, {i2, i2 + 1, . . . , i2 + j2}, . . . , {in, in + 1, . . . , in + jn}, . . .

be a sequence of intervals of consecutive integers for which the sequence (jn)n∈N
is strictly increasing and such that Zin = Zin+jn for all n (this is possible since
Z is language stable). By Lemma 6.5 we can construct X such that for infinitely
many n we also have Xin = Xin+jn . Therefore there are infinitely many n such
that none of X, Y , or Z has a minimal forbidden word of any length in the interval
{in, in + 1, . . . , in + jn}, and so X × Y × Z also has no minimal forbidden word in
any such interval. Since the sequence (jn)n∈N is strictly increasing, W := X×Y ×Z
is language stable. �

Combining this with Corollary 4.2, we have that the existence of a characteristic
measure on this system:

Corollary 6.15. The system (W,σ) has a characteristic measure. Moreover it has
a characteristic measure that is a measure of maximal entropy.

We next check that the existence of this characteristic measure for the system
(W,σ) does not follow from results already previously in the literature.

6.5.2. Showing that Lemma 3.1 does not apply to this system.

Lemma 6.16. If µ is any characteristic measure on (W,σ), then the set

{ν ∈M(X) : (X,σ, ν) is measurably isomorphic to (X,σ, µ)}

is infinite. In particular, Lemma 3.1 does not apply to W = X × Y × Z.

Proof. Let µ be a characteristic measure on (W,σ). Let µY Z be the marginal
measure obtained by projecting µ onto Y × Z, meaning that for any measurable
A ⊆ Y × Z we have µY Z(A) := µ(X × A). Note that µY Z is a shift invariant
probability measure on Y × Z. Next set µY to be the marginal of µY Z projected
onto Y and set µZ to be the marginal of µY Z projected onto Z; thus for measurable
B ⊆ Y and C ⊆ Z, we have µY (B) := µY Z(B × Z) and µZ(C) := µY Z(Y × C).
Then µY is an invariant measure on Y and µZ is an invariant measure on Z.

If ϕ ∈ Aut(Y ) is an automorphism of Y and if B ⊆ Y is a measurable set, then
(letting Id denote the identity) we have

µY (ϕ−1B) = µY Z((ϕ× Id)−1(B × Z))

= µ((Id× ϕ× Id)−1(X ×B × Z)) = µ(X ×B × Z)

= µY Z(B × Z) = µY (B),

where the third equality holds because Id × ϕ × Id ∈ Aut(X × Y × Z) and µ is
characteristic. Therefore, µY is an Aut(Y )-characteristic measure on the full shift
Y . Thus by Lemma 6.6, we can decompose the measure µY into a convex combi-
nation of the symmetric Bernoulli measure on Y and atomic measures supported
on unions of periodic orbits in Y , writing

(10) µY = c0µBer +

∞∑
i=1

ciµpi
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where 0 ≤ ci ≤ 1 for all i,
∑∞
i=0 ci = 1, µBer is the symmetric Bernoulli measure

on Y , pi is a collection of pairwise disjoint unions of periodic orbits, and µpi is a
characteristic measure supported on pi.

Furthermore, the measure µY Z is a joining of the measures µY and µZ , in the
sense defined by Furstenberg in [20]. But htop(Z) = 0 and h(µZ) = 0. Therefore,
the measure µBer (in the decomposition (10) of µY ) is disjoint from µZ . Moreover,
µZ is an invariant measure on Z and so it is an at most countable convex com-
bination of ergodic measures that are all isomorphic to the same irrational circle
rotation. It follows that µZ is disjoint from every finite rotation, and in particular
from µpi for all i. Combining these two observations, it follows that µY and µZ are
disjoint, and so we have that µY Z = µY × µZ .

We write the decomposition of µZ as

µZ =

∞∑
i=1

diµZ,i,

where µZ,i is an enumeration of the countably many ergodic measures supported
on Z with weights 0 ≤ di ≤ 1 satisfying

∑∞
i=1 di = 1. For each integer k ≥ 0, the

measure µkZ defined by

µkZ :=

∞∑
i=1

di+kµZ,i

is measurably isomorphic to µZ , and the resulting measures {µkZ}∞k=0 are pairwise
distinct. Therefore, for each k ≥ 0, the measure µY Z = µY × µZ is measurably
isomorphic to each of the pairwise distinct measures µY × µkZ .

Finally, set µX to be the marginal obtained by projecting µ onto X, and so for
measurable A ⊆ X we have µX(A) := µ(A×Y ×Z). Then µ is a joining of µX with
µY Z . Since µY Z is isomorphic to µY × µkZ , there is a joining of µX with µY × µkZ
that is isomorphic to µ (and distinct from it since it has a different marginal onto
Y × Z). These joinings are pairwise distinct for each k ≥ 0, so µ is measurably
isomorphic to infinitely many measures supported on (W,σ).

Note that if µ were the measure produced by Lemma 3.1 then µ would only
be measurably isomorphic to finitely many other measures on (W,σ). Therefore µ
does not result from applying Lemma 3.1 to any measure on (W,σ). Since µ is an
arbitrary characteristic measure on (W,σ), Lemma 3.1 cannot be applied to this
system. �

6.5.3. Showing the Krylov-Bogolioubov Theorem does produce a characteristic mea-
sure on this system. Next we check that the automorphism group of (W,σ) is not
amenable, meaning that we can not apply the Krylov-Bogolioubov Theorem to
produce a characteristic measure for this system.

Lemma 6.17. The automorphism group of (W,σ) is not amenable (as a countable
discrete group).

Proof. The automorphism group of Y is nonamenable, since Y is a full-shift on at
least two symbols (see [5]). For each ϕ ∈ Aut(Y ), the map ϕ 7→ Id×ϕ× Id gives an
embedding of Aut(Y ) into Aut(W ). Since any subgroup of an amenable, countable
discrete group is also amenable, it follows that Aut(W ) is also nonamenable. �
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6.5.4. Showing that W has no zero entropy subsystems. We check that Frisch-
Tamuz’s Theorem [19] that zero entropy subshifts have characteristic measures
cannot be used to find a characteristic measure on W .

Lemma 6.18. Every subsystem of (W,σ) has positive entropy.

Proof. Since X is minimal and has positive entropy, every subsystem of W =
X × Y × Z has topological entropy at least htop(X) > 0. �

6.5.5. Showing that Lemma 3.4 cannot be used to find a characteristic measure
of maximal entropy on W . Finally, we show that the characteristic measure of
maximal entropy on W that is guaranteed by language stability cannot be obtained
by applying Lemma 3.4. We begin with some results characterizing the full entropy,
proper subshifts of W .

Lemma 6.19. Let W ′ ⊆ W be a subshift with topological entropy htop(W ). Then
there exists a nonempty set S ⊆ N ∪ {c} such that

X × Y ×

⋃
j∈S

Zj

 ⊆W ′,
where Zj is defined as in Corollary 6.13. Moreover, S can be chosen such that for
any j /∈ S the shift

(X × Y × Zj) ∩W ′

has topological entropy strictly lower than htop(W ′). Finally, if S is chosen in this
way and is infinite, then c ∈ S.

Proof. Let W ′ ⊆W = X × Y × Z. We define

projX(W ′) := {x ∈ X : there exist y ∈ Y and z ∈ Z such that (x, y, z) ∈W ′};
projY (W ′) := {y ∈ Y : there exist x ∈ X and z ∈ Z such that (x, y, z) ∈W ′};
projZ(W ′) := {z ∈ Z : there exist x ∈ X and y ∈ Y such that (x, y, z) ∈W ′}.

Note that projX(W ′) ⊆ X, projY (W ′) ⊆ Y , and projZ(W ′) ⊆ Z are each subshifts.
By minimality of X, projX(W ′) = X. It is a classical result that any full shift, in
particular Y , is entropy minimal, meaning every proper subshift of it has entropy
strictly lower than htop(Y ). Since

htop(W ′) ≤ htop(projX(W ′)) + htop(projY (W ′)) + htop(projZ(W ′))

and htop(W ′) = htop(W ) = htop(X)+htop(Y )+htop(Z), we must have projY (W ′) =
Y . Finally Z is a countable union of minimal subshifts

Z =
⋃

j∈N∪{c}

Zj

and so there exists a subset S′ ⊆ N ∪ {c} such that

projZ(W ′) =
⋃
j∈S′

Zj .

Suppose S′ is this subset.
By construction (see Corollary 6.13), X×Zj is minimal for each j ∈ S′. Therefore

projX×Z(W ′) := {(x, z) ∈ X × Z : there exists y ∈ Y with (x, y, z) ∈W ′}
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is the subshift X ×
⋃
j∈S′ Zj . For each j ∈ S define Yj ⊆ Y by

Yj := {y ∈ Y : there exists (x, z) ∈ X × Zj such that (x, y, z) ∈W ′}.

Since projY (W ′) = Y , we have Y =
⋃
j∈S′ Yj . By the Baire Category Theorem,

as Y is an infinite transitive subshift of finite type, Y cannot be written as the
union of a countable number of proper subshifts of itself, so there is a nonempty
set S ⊆ S′ such that Yj = Y for all j ∈ S. For any such j, by a theorem in
Furstenberg [20, Theorem II.2], the set W ′ ∩ (X × Y × Zj) = X × Y × Zj (in
Furstenberg’s terminology, a Bernoulli flow, such as Y , is disjoint from a minimal
flow, such as X × Zj). Therefore

X × Y ×

⋃
j∈S

Zj

 ⊆W ′.
Moreover, for any j /∈ S we have Yj 6= Y and so htop(Yj) < htop(Y ) and the
topological entropy of (X × Y × Zj) ∩W ′ is at most

htop(X) + htop(Yj) + htop(Zj) < htop(X) + htop(Y ) + htop(Z) = htop(W ′).

Finally we show that if S is infinite, then c ∈ S. Recall that in the proof
of Corollary 6.12 we showed that Zc = Z \

⋃∞
j=1 Zj . The proof of this relies

only on the fact that Z is the closure of the union of the infinite collection of
shifts Zj . If S is infinite, then the same proof as in Corollary 6.12 shows that

Zc =
⋃
j∈S\{c} Zj \

⋃
j∈S\{c} Zj . Since

X × Y ×

⋃
j∈S

Zj

 ⊆W ′
and W ′ is closed, it follows that c ∈ S. �

We recall a result that follows quickly from Boyle, Lind, and Rudolph [5, Propo-
sition 9.4].

Lemma 6.20. Let Y ′ ⊆ Y be an infinite proper subshift. Then Y ′ is topologically
conjugate to infinitely many other subshifts of Y .

Proof. Taking XT := Y in Proposition 9.4 of [5], if Y ′′ is any mixing subshift with
Y ′ ⊆ Y ′′ ⊆ Y , then Y ′′ lies in the Aut(Y )-orbit closure of Y ′ in the Hausdorff
metric (note that the use of this result requires that Y ′ is infinite). So if Y ′ is
contained in infinitely many mixing subshifts of Y , then the Aut(Y )-orbit of Y ′

cannot be finite. Let F be a minimal list of forbidden words defining Y ′. Since
Y ′ 6= Y , we know that F 6= ∅. Let w ∈ F . For each n ∈ N, the subshift Y ′′n
whose only forbidden word is w10n1 contains Y ′ and is contained in Y and for any
u, v ∈ L(Y ′′n ) we have u0|w|+n+2+tv ∈ L(Y ′′n ) for any t ≥ 1. In particular, Y ′′n is
mixing. Since Y ′′n 6= Y ′′m for any n 6= m, the Aut(Y )-orbit of Y cannot be finite.
But every element of the Aut(Y )-orbit of Y ′ is topologically conjugate to Y ′. �

Proposition 6.21. Let W ′ ⊆ W be a closed, proper subshift W with entropy
htop(W ). Then W ′ is topologically conjugate to infinitely many other subshifts of
W .
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Proof. By Lemma 6.19 there is a nonempty set S ⊆ N ∪ {c} such that

X × Y ×

⋃
j∈S

Zj

 ⊆W ′
and for every j /∈ S, (X × Y × Zj) ∩W ′ has entropy strictly lower than htop(W ).
Since W ′ 6= W , we have that S 6= N∪{c}. We consider two cases: when S is infinite
and when S is finite.

If S is infinite, then c ∈ S by Lemma 6.19. In this case, let

Yj := {y ∈ Y : there exist (x, z) ∈ X × Zj such that (x, y, z) ∈W ′}.

If Yj = Y , then (X × Y × Zj) ∩ W ′ = X × Y × Zj is a subshift of entropy
htop(W ) = htop(W ′) (recall that Z =

⋃
j∈N∪{c} Zj has entropy 0). So Yj 6= Y for all

j /∈ S. Fix some j /∈ S. Since c ∈ S, it follows that j 6= c. By construction, Zj is the
coding of ([0, 1), Rα) with respect to the partition {[0, βj), [βj , 1)}, where βj ∈ (0, 1)
is a fixed real number distinct from all other βk and the increasing sequence of βj
satisfies limk βk = α. Again by construction, βj is not an accumulation point of
{βk : k 6= j}, and so it follows from the unique ergodicity of the system Zj that
there exists N ≥ 1 such that for all n ≥ N we have

(11) Ln(Zj) ∩ Ln(Zk) = ∅ for all k 6= j and Ln(Zj) ∩ Ln(Zc) = ∅.

Note that for any k ∈ S, X × Yj × Zj is topologically conjugate X × Y × Zk,
by Durand’s Theorem [14]. Fixing k ∈ S and using that Zj is topologically con-
jugate to Zk, by the Curtis-Hedlund-Lyndon Theorem we can choose an invert-
ible block code ψ that implements this conjugacy. Let ψ−1 be its inverse block
code. Choose n ≥ 1 sufficiently large such that Ln(Zj) and Ln(Zk) are both dis-
joint from Ln(Xt) for all t /∈ {j, k}. Let Ψ be an invertible block code of range
max{range(ψ), range(ψ−1), n,N} that acts like ψ on Zj , acts like ψ−1 on Zk, and
acts like the identity on Zt for t /∈ {j, k}. The image of W ′ under the block code
Id× Id×Ψ is topologically conjugate to W ′, and is a subshift of W . Moreover for
fixed j /∈ S we can do this construction for any of the infinitely many k ∈ S \ {c}
and obtain distinct images for distinct k: namely, when this construction is carried
out with parameters j and k, the entropy of the resulting subshift intersected with
X × Y × Zt is larger than that of W ′ ∩ (X × Y × Zt) if and only if t = j, and has
entropy smaller than that of W ′ ∩ (X × Y × Zt) if and only if t = k. Thus W ′ is
topologically conjugate to infinitely many other subshifts of W when S is infinite.

If S is finite but S 6= {c}, then (N∪ {c}) \S is infinite, and we can use the same
construction, taking the same j ∈ S \ {c} and using the infinitely many k ∈ (N \S)
to obtain infinitely many subshifts of W that are topologically conjugate to W ′.

Finally we consider the case when S = {c}. If there exists j /∈ S such that
Yj is infinite, then by Lemma 6.20 there are infinitely many other subshifts of Y
that are topologically conjugate to Yj . Let ϕ be a block code implementing any
such conjugacy. Choose N as in (11). Then Id× ϕ× Id can be implemented by a
block code of range at least N and this block code can be extended to a block code
that acts like the identity on X × Yk × Zk for all k 6= j. The image of W ′ under
this subshift is topologically conjugate to W ′ and is a subshift of W . Moreover
for any two distinct subshifts topologically conjugate to Yj , the resulting subshifts
of W ′ are distinct, as the projections onto the middle coordinates are distinct. In
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this case, W ′ is topologically conjugate to infinitely many subshifts of W . Thus it
suffices considering the case when Yj is a finite shift for all j /∈ S.

If |{|Yj | : j /∈ S}| > 1, then there exists j ∈ (N \ S) such that there are infinitely
many k ∈ (N \ S) such that |Yj | 6= |Yk|. As before, we can find a block code that
acts like the identity on W ′∩(X×Yt×Zt) for all t /∈ {j, k} and acts like Id× Id×Ψ
on (X × Y × Zj) ∪ (X × Y × Zk), and ψ is a topological conjugacy between Zj
and Zk. As there are infinitely many choices for k, there are again infinitely many
subshifts of W topologically conjugate to W ′. Thus the final case remaining is
when S = {c} and |Yi| = |Yj | for all i, j ∈ N. In this case, fix j ∈ N. Note that
since Yj is a finite, invertible system, it is the disjoint union of a finite number of
cycles. Therefore Yj × Zj decomposes into the disjoint union of a finite number
of systems of the form {0, 1, . . . , k − 1} × Zj where the map on {0, 1, . . . , k − 1} is
addition modulo k. Applying Lemma 6.4 to each of these components individually,
there exists a subshift Tj ⊆ {0, 1}Z that is topologically conjugate to Yj × Zj . Let
ϕj : Tj → Yj × Zj be this conjugacy and let π : Yj × Zj → Zj denote projection
onto the second coordinate. Then the shift

Uj := X × {(t, π(ϕj(t))) : t ∈ Tj} ⊆ X × Y × Zj

is topologically conjugate to X × Yj × Zj . Since Tj is infinite, these shifts are
distinct. Now, as before, we can find a block code that acts like the identity on
W ′ ∩ (X × Yt × Zt) for all t 6= j and acts like a conjugacy between X × Yj × Zj
and Uj on X × Yj × Zj . Since there are infinitely many choice for j, again W ′ is
topologically conjugate to finitely many subshifts of W . �

Proposition 6.22. The characteristic measure of maximal entropy µ on W , guar-
anteed to exist by Corollary 4.2, cannot be obtained by applying Lemma 3.4 to any
proper subshift W ′ ⊆W .

In other words, this proposition shows that only way to obtain µ from Lemma 3.4
is to already know of a characteristic measure of maximal entropy on W .

Proof. For contradiction, suppose µ can be obtained by applying Lemma 3.4 to
some proper subshift W ′ ⊆W . Then µ is a convex combination of a finite number
of measures, each of which is supported on a subshift topologically conjugate to W ′.
Therefore hµ(σ) ≤ htop(W ′). But µ is a measure of maximal entropy on W and
so htop(W ′) = htop(W ). Since Lemma 3.4 only applies to a shift W ′ that is only
topologically conjugate to a finite number of other subshifts of W , and since any
proper subshift of W with entropy htop(W ) is topologically conjugate to infinitely
many other subshifts of W by Lemma 6.21, it follows that W ′ = W . But this is
contradiction of our assumption that W ′ is a proper subshift of W . �

7. An application

7.1. When does a block code define an automorphism? Suppose X ⊆ AZ is
a subshift and ϕ : L2R+1(X)→ A is a block code. A natural question is whether ϕ
defines an automorphism ofX, and answering this question in general is challenging.
We note, however, that if µ is a characteristic measure for (X,σ), then µ gives rise
to a family of necessary conditions that must be satisfied if ϕ is an automorphism.
Making this precise, we have:
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Lemma 7.1. Let X ⊆ AZ be a subshift and let ϕ : L2R+1(X) → A be a range R
block code with ϕ(X) ⊆ X. For each w ∈ L(X) define

ϕ−1(w) := {v ∈ L2R+|w|(X) : ϕ(v) = w}.

Suppose µ is a characteristic measure for (X,σ). If there exists w ∈ L(X) such
that µ([w]) 6= µ([ϕ−1(w)]), then ϕ does not define an automorphism of X.

In other words, in shifts where one can estimate the measure of cylinder sets for
a characteristic measure, one can quickly eliminate many block codes for consider-
ation as automorphisms of the system. Here we note that Lemma 7.1 generalizes a
theorem of Hedlund in the special case of full shifts [22, Theorem 5.4]. We demon-
strate how to use Lemma 7.1, in the case of the well-known Fibonacci shift.

7.2. Use of Lemma 7.1 for the Fibonacci shift. The Fibonacci shift is the
subshift of finite type whose only forbidden word is 11; it is called the Fibonacci
shift because the size of Ln(X) grows according to the Fibonacci sequence (note
this should not be confused with the Fibonacci substitution system, also known as
the Fibonacci Sturmian shift). It is not hard to show that it is topologically mixing
and so by Parry’s theorem [29], it has a unique measure of maximal entropy µ,
called its Parry measure. As already noted, µ is a characteristic measure for X and
so any automorphism on X preserves µ. The Parry measure of a subshift of finite
type can be written down explicitly and a computation following [29] (see also [21,
Section 4.4]) gives the measures:

µ([00]) =
b

b+ 2
≈ 0.44721;

µ([10]) = µ([01]) =
1

b+ 2
≈ 0.27639;

µ([0000]) = µ([0010]) = µ([0100]) =
a

b+ 2
≈ 0.17082;

µ([0001]) = µ([0101]) = µ([1000]) = µ([1010]) =
a2

b+ 2
≈ 0.10557;

µ([1001]) =
a3

b+ 2
≈ 0.06525,

where a := 2/(
√

5 + 1) and b := 2/(
√

5− 1). As a particular example, let ϕ denote
the block code with range 1 given by:

ϕ(000) = ϕ(001) = ϕ(010) = ϕ(100) = 0;

ϕ(101) = 1.

To determine if ϕ defines an automorphism of X, we first check that ϕ(X) ⊆ X
by checking that the image of any element of L4(X) is an element of L2(X) (this
guarantees that the forbidden word 11 does not occur in any element of ϕ(X)).
Then we check if the necessary conditions provided by Lemma 7.1 are satisfied. In
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this case, we conclude that ϕ does not have an inverse block code because

µ([ϕ−1(00)]) = µ([0000] ∪ [0001] ∪ [0010] ∪ [0100] ∪ [1000] ∪ [1001])

= µ([0000]) + µ([0001]) + µ([0010]) + µ([0100]) + µ([1000]) + µ([1001])

> µ([00]).

Of course for subshifts that are not shifts of finite type, the problem of deter-
mining whether ϕ(X) ⊆ X is more challenging. Further, even in cases when it is
known to exist, finding a characteristic measure and explicitly writing down the
measure of small cylinder sets is significantly more difficult. However, we mention
that the characteristic measure we construct on language stable shifts is a weak*
limit of Parry measures on shifts of finite type (at least in the case when the terms
in the SFT cover are themselves topologically mixing) and this allows one to ap-
proximate the measure our characteristic measure would give to a (small) cylinder
set by studying the measure it gets in the terms of the SFT cover.
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