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Abstract. Multiple ergodic averages, such as the average of expressions like f1(T
nx)

f2(T
2nx) . . . fk(T knx), were first studied in the ergodic theoretic proof of Szemerédi’s

Theorem on arithmetic progressions. It turns out that all constraints on such averages (in
a sense that we describe) have an algebraic character, arising from identities in nilpotent
groups. We discuss these averages, several generalizations, and combinatorial implications
of the results.
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1. Additive combinatorics and ergodic theory

A classic result of Ramsey Theory was proved by van der Waerden [53] in the
1920’s: if the integers are partitioned into finitely many subsets, at least one of
the subsets contains arbitrarily long arithmetic progressions. Erdős and Turán [12]
conjectured that a weaker assumption suffices: if A is a set of integers whose upper
density

d(A) = lim sup
N→∞

1
N
|A ∩ [1, N ]|

is positive, then A contains arbitrarily long arithmetic progressions. Clearly the
conjecture immediately implies van der Waerden’s Theorem.

The first progress on the Erdős-Turán conjecture came in 1952, when Roth [45]
used Fourier analysis to establish that a set of integers with positive upper density
contains an arithmetic progression of length 3. Further progress was not until 1969,
when Szemerédi [48] showed that the conjecture holds for progressions of length
4. Finally in 1975, Szemerédi [49] resolved the general case with an intricate
combinatorial proof.

Soon thereafter, Furstenberg [18] used ergodic theory to give a new proof of
Szemerédi’s Theorem, and this proof marks the birth of the field of ergodic Ram-
sey Theory. Since then, ergodic theory has been used to prove new results in
combinatorics, such as the multidimensional Szemerédi Theorem [22], the density

∗The author was partially supported by NSF grant DMS-0244994.



2 Bryna Kra

Hales-Jewett Theorem [24], and the polynomial Szemerédi Theorem [4]; many of
these results have yet to be obtained by other means. (Some of these results are
explained in Section 4.) Furstenberg’s pioneering work laid out the general strat-
egy for these problems: translate the combinatorial statement into a problem on
the intersection of sets in a measure preserving system and then study the average
associated to this intersection. The convergence of these multiple ergodic averages
is the main focus of this article. A key result is the convergence of the averages
associated to Szemerédi’s Theorem (see Section 2 for an explanation of the link):

Theorem 1.1 (Host and Kra [36]). Assume that (X,X , µ, T ) is a measure pre-
serving system,1 k ≥ 1 is an integer, and f1, f2, . . . , fk ∈ L∞(µ). Then the limit

lim
N→∞

1
N

N−1∑
n=0

f1(Tnx)f2(T 2nx) . . . fk(T knx) (1)

exists in L2(µ).

It turns out that a subsystem can be substituted for the original system without
affecting the convergence or the value of the limit. Furthermore, this subsystem
can be completely described algebraically, with a particular role played by nilpo-
tent groups and their homogeneous spaces. We describe the structural analysis of
measure preserving systems needed to prove this in Section 3.

This has led us to a greater understanding of other multiple ergodic averages,
including averages with polynomial exponents, prime exponents, and certain av-
erages of commuting transformations, and some of these results are discussed in
Section 4. In turn, the multiple convergence theorems have lead to deeper con-
nections with exciting developments in number theory and combinatorics, and we
discuss some of these developments in Sections 4 and 5.

Although the connection between ergodic theory and additive combinatorics
is well established, the depth of this connection is only now beginning to be un-
derstood. Szemerédi’s original proof is combinatorial and Furstenberg’s proof uses
ergodic theory, yet the two proofs have many formal similarities. These features re-
cur in more recent proofs of Szemerédi’s Theorem, such as those of Gowers [26] and
of Tao [50]. In the ergodic setup, with our work in [36] we have a complete under-
standing of the underlying structures in measure preserving systems that arise in
the ergodic theoretic proof of Szemerédi’s Theorem. To elucidate the true nature
of the link with additive combinatorics, describing corresponding combinatorial
constructions remains a deep open question.

1By an (invertible) measure preserving (probability) system, we mean a quadruple (X,X , µ, T )
where X is a compact metrizable set, X denotes the Borel σ-algebra on X, µ is a probability
measure on (X,X ), and T : X → X is an invertible measurable map with µ(A) = µ(T−1A) for
all A ∈ X . Even when not explicitly stated, the measure is assumed to be a probability measure
and the transformation is assumed to be invertible.
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2. Multiple ergodic averages

2.1. Multiple recurrence. We start with the connection between regular-
ity properties of subsets of integers and recurrence in measure preserving systems:

Correspondence Principle (Furstenberg [18], [20]). Let E be a set of integers
with positive upper density. There exist a measure preserving system (X,X , µ, T )
and a subset A ⊆ X such that µ(A) = d(E) and

d
(
(E + n1) ∩ (E + n2) ∩ . . . ∩ (E + nk)

)
≥ µ(T−n1A ∩ T−n2A ∩ . . . ∩ T−nkA)

for any integer k ≥ 1 and integers n1, n2, . . . , nk ≥ 0.

Furstenberg then deduced Szemerédi’s Theorem by showing that any system
(X,X , µ, T ) is multiply recurrent, meaning that for all A ∈ X with positive mea-
sure, there exists n ∈ N such that

µ
(
A ∩ TnA ∩ T 2nA ∩ . . . ∩ T knA

)
> 0 . (2)

To produce such n ∈ N using ergodic theoretic methods, it is natural to average
the expression in (2) over n. If one can show that the limit inferior of this average
is positive, the existence of some n ∈ N satisfying (2) follows immediately. Thus
combined with the Correspondence Principle, Szemerédi’s Theorem follows from:

Multiple Recurrence Theorem (Furstenberg [18]). Assume that (X,X , µ, T )
is a measure preserving system, A ∈ X has positive measure, and k ≥ 1 is an
integer. Then

lim inf
N→∞

1
N

N−1∑
n=0

µ
(
A ∩ TnA ∩ T 2nA ∩ . . . ∩ T knA

)
> 0 . (3)

Poincaré Recurrence is implied by the case k = 1: for any set A with positive
measure, there exist infinitely many n ∈ N such that µ(A ∩ TnA) > 0. Although
it is easy to prove Poincaré Recurrence directly, we can also view it as a corollary
of the von Neumann Ergodic Theorem, which implies that for a set A ∈ X with
positive measure, the limit

lim
N→∞

1
N

N−1∑
n=0

µ(A ∩ TnA)

exists and is positive. For higher order multiple recurrence (k ≥ 2), this method
of studying the corresponding multiple ergodic average is the only known method
for producing n such that (2) holds.

2.2. Multiple ergodic averages. A natural question arises: is the “lim inf”
in (3) actually a limit? More generally, if (X,X , µ, T ) is a measure preserving sys-
tem, k ≥ 1 is an integer, and f1, f2, . . . , fk ∈ L∞(µ), does the multiple ergodic
average

1
N

N−1∑
n=0

f1(Tnx)f2(T 2nx) . . . fk(T knx) (4)
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converge as N tends to infinity, and in what sense does it converge? Taking each
fi to be the indicator function 1A of a set A, multiplying by 1A and integrating
with respect to µ, we obtain the average in (3). For k = 1, the existence of this
limit in L2(µ) is the von Neumann Ergodic Theorem.

A measure preserving transformation T : X → X induces an operator UT , on
functions in L2(µ) defined by UT f(x) = f(Tx). In a standard abuse of notation,
we denote the operator UT by T and write Tf(x) = f(Tx). In general we assume
that the measure preserving system (X,X , µ, T ) is ergodic, meaning that the only
sets A ∈ X satisfying T−1A ⊆ A have either full or zero measure. Since a general
system can be decomposed into its ergodic components, for most of the theorems
we consider it suffices to assume that the system is ergodic.

When the system is ergodic, for k = 1 the limit of (4) in L2(µ) is the integral∫
X

f1 dµ and in particular is constant. However, without some assumption on the
system, for k ≥ 2, the limit in (4) need not be constant. For example, if X is the
circle T = R/Z, T : T → T is the rotation Tx = x + α mod 1 for some α ∈ T,
f1(x) = exp(4πix) and f2(x) = exp(−2πix), then f1(Tnx)f2(T 2nx) = f−1

2 (x) for
all n ∈ N. In particular, the double average

1
N

N−1∑
n=0

f1(Tnx)f2(T 2nx)

converges to a nonconstant function. (More generally, if α /∈ Q and f1, f2 ∈ L∞(µ),
the double average converges to

∫
f1(x + t)f2(x + 2t) dt, which in general is not

constant.)
The limit behavior of the double average depends on rotational behavior in the

system. To make this more precise, we introduce some terminology. A factor of a
measure preserving system (X,X , µ, T ) can be defined in one of several equivalent
ways: it is a T -invariant sub-σ-algebra Y of X , it is a measure preserving system
(Y,Y, ν, S) and a measurable map π : X → Y such that µ◦π−1 = ν and S ◦π(x) =
π ◦T (x) for µ-almost all x ∈ X, and it is a T -invariant subspace F of L∞(µ). The
equivalence between the first two definitions follows by identifying π−1(Y) with
a T -invariant sub-σ-algebra of X and noting that any T -invariant sub-σ-algebra
of X arises in this way. Setting F = L∞(Y), we have that the first definition
implies the third and taking Y to be the σ-algebra generated by F-measurable
sets, we have the converse. Depending on the context, we use any of these three
characterizations interchangeably. In a slight abuse of notation, we use the same
letter to denote the transformation in the whole space and in a factor.

If (Y,Y, ν, T ) is a factor of (X,X , µ, T ) and f ∈ L2(µ), the conditional expec-
tation E(f | Y) of f with respect to Y is the orthogonal projection of f onto L2(ν).
Let E(f |Y ) denote the function on Y defined by E(f |Y ) ◦ π = E(f | Y), where
π : X → Y is the natural projection. This expectation is characterized by∫

Y

E(f |Y )(y)g(y) dν(y) =
∫

X

f(x)g(π(x)) dµ(x)

for all g ∈ L∞(µ).
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A measure preserving system (X,X , µ, T ) is said to be weakly mixing if the only
measurable eigenfunctions of the operator on L2(µ) induced by the transformation
T are constant. An alternate characterization of weakly mixing can be given in
terms of a factor: the measure preserving system (X,X , µ, T ) is not weakly mixing
if and only if it has a nontrivial factor which is a rotation on a compact abelian
group. The maximal such (group rotation) factor is known as the Kronecker factor.
A rotation on a circle is not weakly mixing.

Taking the rotational behavior into account, the double average 1
N

∑
Tnf1 ·

T 2nf2 can be understood. The obvious phenomenon is that for µ-almost every x,
the triple (x, Tnx, T 2nx) projects to an arithmetic progression in the Kronecker
factor Z. Furstenberg showed that this restriction is the only restriction, meaning
that ∥∥∥∥∥ 1

N

N−1∑
n=0

Tnf1 · T 2nf2 −
1
N

N−1∑
n=1

TnE(f1 | Z) · T 2nE(f2 | Z)

∥∥∥∥∥
L2(µ)

tends to 0 as N →∞. Thus to prove convergence of the double average, it suffices
to replace each fi, for i = 1, 2, by its conditional expectation E(fi | Z) on the
Kronecker factor. In particular, this means that one can assume that the system is
an ergodic rotation on a compact abelian group. Then one can easily use Fourier
analysis to show the existence of the limit. (The Kronecker factor is said to be
characteristic for the double average. See Section 3.1 for the general definition.)
The double average is the simplest example of a “nonconventional ergodic average,”
where even if the system is assumed to be ergodic, the limit need not be constant.

Furthermore, if the system is assumed to be weakly mixing, Furstenberg [18]
showed the existence of the limit in (4) for all k ≥ 1. Moreover, in this case the
limit takes on a particularly simple form: the average converges in L2(µ) to the
product of the integrals

∫
f1 dµ

∫
f2 dµ . . .

∫
fk dµ.

For a general system, the limiting behavior for k ≥ 3 is more complicated and
group rotations do not suffice for describing the long term behavior. For example,
if f(Tx) = λf(x) for some |λ| = 1 and F (Tx) = f(x)F (x), then

F (Tnx) = f(x)f(Tx) . . . f(Tn−1x)F (x) = λ
n(n−1)

2
(
f(x)

)n
F (x) .

Therefore
F (x)

(
F (Tnx)

)−3(
F (T 2nx)

)3(
F (T 3nx)

)−1 = 1 .

Projection to the Kronecker factor does not capture the behavior of generalized
eigenfunctions, meaning that there is some relation among x, Tnx, T 2nx and T 3nx
that does not arise from the Kronecker factor. See Furstenberg [21] for a more
intricate example, showing that even such generalized eigenfunctions do not suffice
in determining the limiting behavior for k = 3.

Using a new structural analysis for ergodic systems, we describe the algebraic
constraints on n-tuples x, Tnx, T 2nx, . . . , T (k−1)nx, and use this to obtain conver-
gence of the averages in (4). Existence of the limit in L2(µ) for k = 1 is the
von Neumann Ergodic Theorem and existence for k = 2 was proven by Fursten-
berg [18]. Existence of the limit for k = 3 with the hypothesis of total ergodicity,
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meaning that T and all its powers are ergodic, was proven by Conze and Lesigne
([9], [10], and [11]); this is the first place that a natural generalization (playing a
major role for higher k) of the Kronecker factor, a 2-step nilsystem, appears as
a factor. In the general case for k = 3, existence was shown by Furstenberg and
Weiss [25] and by Host and Kra [33] (see also [34]). We proved existence of the
limit (1) for all integers k ≥ 1 in [36] and this is the statement of Theorem 1.1.
More recently, Ziegler [57] has a different approach for showing the existence of
the limit in the general case. The existence of the pointwise limit is a much more
difficult problem and convergence is only known for k = 2, due to Bourgain [8].

The key role in the analysis used to prove the existence of the limit in (1) is
played by nilpotent groups and their homogeneous spaces. We start with a brief
overview of the ingredients in the proof of Theorem 1.1.

3. Structural analysis

3.1. Characteristic factors. A general strategy for showing the existence
of an average, such as that of (1), is to find a factor such that the limiting behavior
is unchanged when each function is replaced by its conditional expectation on this
factor. More precisely, a factor Y ⊆ X is a characteristic factor (or more succinctly,
is characteristic) for the average

1
N

N−1∑
n=0

T a1(n)f1 · T a2(n)f2 · . . . · T ak(n)fk

if the difference between this average and the same average with each function
replaced by its conditional expectation on Y

1
N

N−1∑
n=0

T a1(n)E(f1 | Y) · T a2(n)E(f2 | Y) · . . . · T ak(n)E(fk | Y)

converges to 0 in L2(µ) as N tends to infinity. For example, when a1(n) = n
and a2(n) = 2n, the Kronecker factor is characteristic for the double average.
Although the term characteristic factor only appeared explicitly in the literature
fairly recently [21], the method is implicit in Furstenberg’s original proof [18] of
Szemerédi’s Theorem.

If one can find a characteristic factor for a given average, then it suffices to
prove convergence when the characteristic factor is substituted for the original
system. Proving convergence for the factor is then easier when the factor has a
sufficiently explicit and “simple” description.

We follow this general strategy, but with a different point of view. Rather than
manipulating a particular average that we want to understand, we start with an
abstract construction of characteristic factors. The construction (following [36]) is
based on an inductively defined sequence of measures and of seminorms,2 which
are then used to define the factors. We now outline this construction.

2Although the definition and context are on the surface quite different, these seminorms turn
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3.2. Definition of measures and seminorms. Fix an integer k ≥
0. We write a point ω ∈ {0, 1}k as ω = ω1ω2 . . . ωk with ωi ∈ {0, 1}, omitting
commas and parentheses, and let |ω| = ω1 +ω2 . . .+ωk. Fixing an ergodic measure
preserving system (X,X , µ, T ), let X [k] = X2k

and let T [k] : X [k] → X [k] be the
map T × T × . . .× T , taken 2k times. Elements of X [k] are written x = (xω : ω ∈
{0, 1}k). There is a natural identification of X [k+1] and X [k] ×X [k], with a point
x ∈ X [k+1] being identified with (x′,x′′) ∈ X [k] × X [k], where x′ω = xω0 and
x′′ω = xω1 for each ω ∈ {0, 1}k.

By induction, we define a probability measure µ[k] on X [k], that is invariant
under T [k]. Set µ[0] = µ. Assume that µ[k] is defined for some k ≥ 0. Let I [k]

denote the σ-algebra of T [k]-invariant subsets of X [k].
Under the natural identification of X [k+1] with X [k]×X [k], define the measure

preserving (probability) system (X [k+1], µ[k+1], T [k+]) to be the relatively indepen-
dent joining of (X [k], µ[k], T [k]) with itself over I [k]; this means that the measure
µ[k+1] satisfies for all bounded functions F ′ and F ′′ on X [k],∫

X[k+1]
F ′(x′)F ′′(x′′) dµ[k+1](x) =

∫
X[k]

E(F ′ | I [k]) E(F ′′ | I [k]) dµ[k] .

The measure µ[k+1] is invariant under T [k+1] and the two natural projections
on X [k] are each µ[k]. By induction, each of the 2k natural projections of µ[k] on
X is equal to µ. Letting C : C → C denote the conjugacy map z 7→ z, we have
that for a bounded function f on X, the integral∫

X[k]

∏
ω∈{0,1}j

C |ω|f(xω) dµ[k](x)

is real and nonnegative.
Therefore, for a function f ∈ L∞(µ), we can define

|||f |||k =

∫
X[k]

∏
ω∈{0,1}k

C |ω|f(xω) dµ[k](x)

1/2k

.

One can also view this definition as an average over the cube {0, 1}k. A con-
vergence theorem for general averages along cubes is also proved in [36], and the
connection between averages along cubes and along arithmetic progressions is more
fully explained in Host [32].

Using the Ergodic Theorem and the definition of the measures, we have that
for any f ∈ L∞(µ),

|||f |||k+1 =

(
lim

N→∞

1
N

N−1∑
n=0

|||f · Tnf |||2
k

k

)1/2k+1

. (5)

out to be a generalization of the norms introduced by Gowers [26] in his proof of Szemerédi’s
Theorem. To recover the Gowers norms, consider the space Z/NZ, the transformation x 7→ x+1
mod N , and the uniform measure assigning each element of Z/NZ weight 1/N . The Gowers
norms were later used by Green and Tao [28] in a spirit closer to ergodic theory and their use in
our work [36]. See [32] and [39] for more on this connection.
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To show that the map f 7→ |||f |||k is a seminorm on L∞(µ), one derives a version
of the Cauchy-Schwarz inequality and uses it to show subadditivity. Positivity
immediately follows from Equation (5). (See [36] for details.)

We now return to the original averages along arithmetic progressions and show
that the long term behavior of the average (1) is controlled by the seminorms we
have constructed:

Theorem 3.1 (Host and Kra [36]). Assume that (X,X , µ, T ) is an ergodic measure
preserving probability system. Let k ≥ 1 be an integer and assume that f1, f2, . . . , fk

are functions on X with ‖f1‖∞, ‖f2‖∞, . . . , ‖fk‖∞ ≤ 1. Then

lim sup
N→∞

∥∥∥∥∥ 1
N

N−1∑
n=0

Tnf1 · T 2nf2 · . . . · T knfk

∥∥∥∥∥
L2(µ)

≤ min
1≤j≤k

(j|||fj |||k) .

The proof relies on a standard method for finding characteristic factors, which
is an iterated use of a variation of the van der Corput Lemma on differences (see
for example [40] or [1]):

van der Corput Lemma. Assume that H is a Hilbert space with inner product
〈 , 〉 and norm ‖ · ‖, and that ξn, n ≥ 0, is a sequence in H with ‖ξn‖ ≤ 1 for all
n. Then

lim sup
N→∞

∥∥∥∥∥ 1
N

N−1∑
n=0

ξn

∥∥∥∥∥
2

≤ lim sup
H→∞

1
H

H−1∑
h=0

lim sup
N→∞

∣∣∣∣∣ 1
N

N−1∑
n=0

〈ξn+h, ξn〉

∣∣∣∣∣ .

In our context, we apply this to the Hilbert space L2(µ) of unitary operators
that is naturally associated with the system (X,X , µ, T ). The seminorms we con-
struct reflect k successive uses of the van der Corput Lemma, with the number of
steps in the iteration increasing with the complexity of the averages. Theorem 3.1
follows using induction, the Cauchy-Schwarz Inequality, and the van der Corput
Lemma.

3.3. The factors. We then show that for every integer k ≥ 1, the seminorms
define factors Zk−1. One presentation of these factors is obtained by defining their
orthogonal complements: for k ≥ 1, it can be shown that there exists a T -invariant
σ-algebra Zk−1 of X such that for f ∈ L∞(µ),

|||f |||k = 0 if and only if E(f | Zk−1) = 0 .

Thus a bounded function f is measurable with respect to Zk−1 if and only if∫
fg dµ = 0 for all functions g ∈ L∞(µ) with |||g|||k−1 = 0.

Then Zk−1 is defined to be the factor of X associated to the sub-σ-algebra
Zk−1. Thus defined, Z0 is the trivial factor, Z1 is the Kronecker factor and more
generally, Zk is a compact abelian group extension of Zk−1. Furthermore, the
sequence of factors is increasing

Z0 ← Z1 ← Z2 ← . . .← X
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and if T is weakly mixing, then Zk is the trivial factor for all k. In this terminology,
Theorem 3.1 states that the factor Zk is characteristic for the average (1).

The bulk of the work, and also the most technical portion, is devoted to the
description of these factors. The initial idea is natural: we associate to each of these
factors the group of transformations which preserves the natural cubic structure
that arises in the construction. This group is nilpotent. We then conclude that
for a sufficiently large (for our purposes) class of systems, this group is a Lie
group and acts transitively on the space. Therefore, the constructed system is a
translation on a nilmanifold. More precisely, if G is a k-step nilpotent Lie group
and Γ is a discrete cocompact subgroup, then the compact space X = G/Γ is said
to be a k-step nilmanifold. The group G acts on G/Γ by left translation and the
translation by a fixed element a ∈ G is given by Ta(gΓ) = (ag)Γ. There exists
a unique probability measure mG/Γ, the Haar measure, on X that is invariant
under the action of G by left translations. Fixing an element a ∈ G, we call
the system G/Γ with its associated Borel σ-algebra, Haar measure mG/Γ, and
translation Ta a k-step nilsystem. The system (X,X , µ, T ) is an inverse limit of a
sequence of factors (Xn,Xn, µn, T ) if Xn∈N is an increasing sequence of T -invariant
σ-algebras such that

∨
n∈N Xn = X up to a set of measure 0. If in addition each

factor (Xn,Xn, µn, T ) is isomorphic to a k-step nilsystem for n ∈ N, the system
(X,X , µ, T ) is an inverse limit of k-step nilsystems.

The structure theorem states:

Theorem 3.2 (Host and Kra [36]). There exists a characteristic factor for the
averages in (1) which is isomorphic to an inverse limit of k-step nilsystems.

An expository outline of the proof is also given in Host [32]. A posteriori,
the role played by the nilpotent structure is not surprising: for a k-step nilsystem
(X,X , µ, T ) and x ∈ X, the (k + 1)st term T kx of an arithmetic progression is
constrained by the first k terms x, Tx, T 2x, . . . , T k−1x.

Convergence of the linear (meaning the exponents n, 2n, . . . , kn are linear) mul-
tiple ergodic average then follows easily from general properties of nilmanifolds
proved by Lesigne [43] for connected groups and proved in the general case by
Leibman [41].

4. Generalizations of multiple convergence

4.1. Polynomial averages. It is natural to ask what configurations, other
than arithmetic progressions, must occur in sets of integers with positive upper
density. Sárközy [46] showed that if a subset of integers E has positive upper
density and p : Z → Z is a polynomial with p(0) = 0, then there exist x, y ∈ E
and n ∈ N such that x − y = p(n). Furstenberg [19] gave a proof using ergodic
theory. Once again, Furstenberg’s proof used the correspondence principle and
a recurrence result, this time along polynomial times. Bergelson and Leibman
generalized the recurrence result for multiple polynomials:
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Theorem 4.1 (Bergelson and Leibman [4]). Assume that (X,X , µ, T ) is an invert-
ible measure preserving system, A ∈ X has positive measure, k ≥ 1 is an integer,
and p1, p2, . . . , pk : Z→ Z are polynomials with pj(0) = 0 for j = 1, 2, . . . , n. Then

lim inf
N→∞

1
N

N−1∑
n=0

µ
(
A ∩ T−p1(n)A ∩ T−p2(n)A ∩ . . . ∩ T−pk(n)A

)
> 0 .

The result in [4] is actually quite a bit stronger; they prove a multidimen-
sional version of this statement (see Section 4.2), meaning that one replaces the
j-th occurrence of T by Tj , for k commuting measure preserving transformations
T1, T2, . . . , Tk of the measure space (X,X , µ). A polynomial version of Szemerédi’s
Theorem follows immediately via Furstenberg’s Correspondence Principle.

The polynomial recurrence theorem naturally leads to the corresponding con-
vergence question for multiple polynomial averages:

Theorem 4.2 (Host and Kra [37], Leibman [42]). Assume that (X,X , µ, T ) is a
measure preserving system, k ≥ 1 is an integer, p1, p2, . . . , pk : Z → Z are polyno-
mials, and f1, f2, . . . , fk ∈ L∞(µ). Then the limit

lim
N→∞

1
N

N−1∑
n=0

T p1(n)f1 · T p2(n)f2 · . . . · T pk(n)fk (6)

exists in L2(µ).

For a weakly mixing system, convergence of (6) was proved by Bergelson [1].
In an arbitrary measure preserving system, Furstenberg and Weiss [25] proved
convergence for k = 2 with p1(n) = n and p2(n) = n2 and p1(n) = n2 and p2(n) =
n2 + n. Weak convergence was proven in [37], as well as convergence in L2(µ) in
most cases. The remaining case, along with a generalization for multiparameter
polynomials, was completed in [42].

As with the linear average corresponding to exponents n, 2n, . . . , kn, the be-
havior of a general polynomial average is controlled by the seminorms ||| · |||k. Using
an inductive procedure like that of [1], the averages in (6) can be reduced to an
average only with linear exponents and we obtain a result for a polynomial average
analogous to Theorem 3.1. Using the structure theorem (Theorem 3.2), we have
that a characteristic factor for a polynomial average is once again an inverse limit
of nilsystems.

The number of steps needed in the inductive procedure used to reduce the
average (6) to linear terms depends on the choice of polynomials. As might be ex-
pected, more terms and higher degree increases the number of steps needed and so
the complexity of the corresponding the nilsystem rises. However, it turns out that
the linearly dependent family {n, 2n, . . . , kn} is in some sense the most difficult.
For a general polynomial family, the minimal characteristic factor Zk (meaning
smallest k) is unknown. Yet for rationally independent polynomials, meaning poly-
nomials p1, p2, . . . , pk : Z→ Z with {1, p1, p2, . . . , pk} linearly independent over Q,
the characteristic factor (and therefore the value of the limit) is particularly simple
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and is independent of the choice of polynomials. Answering a question of Bergelson
posed in [2], we show:

Theorem 4.3 (Frantzikinakis and Kra [14]). Assume that (X,X , µ, T ) is a totally
ergodic measure preserving system, k ≥ 1 is an integer, p1, p2, . . . , pk : Z → Z are
rationally independent polynomials, and f1, f2, . . . , fk ∈ L∞(µ). Then

1
N

N−1∑
n=0

T p1(n)f1 · T p2(n)f2 · . . . · T pk(n)fk −
∫

f1 dµ

∫
f2 dµ . . .

∫
fk dµ

converges to 0 in L2(µ) as N →∞.

Our proof uses the machinery of the Structure Theorem, but we ultimately show
that the procyclic factor (an inverse limit of cyclic groups), which is contained in
the Kronecker factor, is characteristic for this average. It would be interesting to
prove the theorem directly, avoiding the use of nilsystems.

4.2. Averages for commuting transformations. Furstenberg and
Katznelson generalized multiple recurrence for commuting transformations:

Theorem 4.4 (Furstenberg and Katznelson [22]). Assume that (X,X , µ) is a
probability space, k ≥ 1 is an integer, T1, T2, . . . , Tk : X → X are commuting
measure preserving transformations, and A ∈ X has positive measure. Then

lim inf
N→∞

1
N

N−1∑
n=0

µ
(
A ∩ T−n

1 A ∩ T−n
2 A ∩ . . . ∩ T−n

k A
)

> 0 .

(Other generalizations, including combinations of the commuting and polyno-
mial averages, are contained in [23] and [5].) Furstenberg’s correspondence princi-
ple immediately implies a combinatorial version, the multidimensional version of
Szemerédi’s Theorem.

Once again, it is natural to ask about convergence of the corresponding com-
muting multiple ergodic average:

Question 4.5. If k ≥ 1 is an integer, T1, T2, . . . , Tk : X → X are commuting mea-
sure preserving transformations of a probability space (X,X , µ), p1, p2, . . . , pk : Z→
Z are polynomials, and f1, f2, . . . , fk ∈ L∞(µ), does

lim
N→∞

1
N

N−1∑
n=0

T
p1(n)
1 f1 · T p2(n)

2 f2 · . . . · T pk(n)
k fk

exist in L2(µ)?

For two transformations and exponents p1(n) = p2(n) = n, existence of the
limit in L2(µ) was shown by Conze and Lesigne [9]. For arbitrary k ≥ 1, under
the assumptions that Tj is ergodic for j = 1, 2, . . . , k and that TiT

−1
j is ergodic for

i 6= j, i, j ∈ {1, 2, . . . , k}, existence of the limit with exponents p1(n) = p2(n) =
. . . = pk(n) = n in L2(µ) is shown in [15]. However, the general case (even with
all exponents equal to n) remains open and it is easy to construct systems such
that the characteristic factors are not nilsystems.
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4.3. Sequences related to prime numbers. Recently, a new chapter
in ergodic Ramsey Theory was opened, with ergodic theoretic techniques adapted
for use outside of the field. A particularly spectacular result in this direction
is Green and Tao’s proof [28] that the prime numbers contain arbitrarily long
arithmetic progressions. The connections between the proof of Green and Tao
and ergodic theory are further explained in the expository articles of Host [32],
Kra [39], and Tao [51]. In turn, Green and Tao’s results make it possible to
study convergence for other multiple ergodic averages, leading us to a greater
understanding of patterns in a set of integers with positive upper density. Green
and Tao([29], [30], [31]) proved a strong uniformity result on the prime numbers
and using this result, we can show that the shifted primes have multiple recurrence
properties. (See also the survey articles of Green [27] and of Tao [52].) Letting P
denote the primes, we show:

Theorem 4.6 (Frantzikinakis, Host, and Kra [13]). Assume that (X,X , µ, T ) is
a measure preserving system and A ∈ X has positive measure. Then there exists
n ∈ P− 1 such that

µ(A ∩ T−nA ∩ T−2nA) > 0 .

The same statement holds with P−1 replaced by P+1. Thus the shifted primes
P − 1 and P + 1 are sets of 2-recurrence. For single recurrence, this was proven
by Sárközy [47] and reproved using ergodic methods by Wierdl [54]. (Bourgain [7]
and Wierdl [55] also proved several stronger results on pointwise convergence along
primes.)

An immediate corollary is that a set of integers with positive upper density con-
tains infinitely many arithmetic progressions of length 3 whose common difference
is of the form p− 1 for some prime p (and similarly of the form p + 1).

Roughly speaking, we prove this by comparing the associated double average
along primes with the usual double average, and show that the difference converges
to 0. This relies on the uniformity result on the prime numbers of Green and Tao.
It turns out that the Kronecker factor is characteristic for the associated average.
The added complication is that one must work with Z/NZ as the underlying space
instead of Z.

Using the same methods, we also show the existence of the related double
ergodic average:

Theorem 4.7 (Frantzikinakis, Host, and Kra [13]). Assume that (X,X , µ, T ) is
a measure preserving system and f1, f2 ∈ L∞(µ). Then

lim
N→∞

1
|P ∩ [0, N)|

∑
n∈P,n<N

Tnf1 · T 2nf2

exists in L2(µ).

The same reduction to a uniformity statement about the prime numbers, for
both recurrence and convergence, works for multiple recurrence and convergence
of all lengths. However, the needed uniformity result for prime numbers remains
open for longer progressions.



From combinatorics to ergodic theory and back again 13

5. Lower bounds for multiple ergodic averages

5.1. Khintchine Recurrence. As described in Section 2, the first step in
Furstenberg’s Multiple Recurrence Theorem (Poincaré Recurrence) is an imme-
diate corollary of the von Neumann Ergodic Theorem. However, using the full
description of the limit, and not only positivity of the limit inferior, one can make
a finer statement about the frequency of recurrence. More precisely, a set E ⊆ Z is
syndetic3 if there exists M ∈ N such that every interval of length M has nontriv-
ial intersection with the set E. Khintchine generalized Poincaré Recurrence and
showed:

Theorem 5.1 (Khintchine [38]). If (X,X , µ, T ) is a measure preserving system
and A ∈ X , then for all ε > 0, the set

{n ∈ Z : µ(A ∩ TnA) > µ(A)2 − ε}

is syndetic.

As this follows easily from the von Neumann Ergodic Theorem, one can ask
for the analogous results corresponding to other multiple recurrence theorems:
if (X,X , µ, T ) is a measure preserving system, A ∈ X , k ≥ 1 is an integer,
p1, p2, . . . , pk : Z → Z are polynomials with pj(0) = 0 for j = 1, 2, . . . , k, and
ε > 0, is the set

{n ∈ Z : µ
(
A ∩ T−p1(n)A ∩ . . . ∩ T pk(n)A

)
> µ(A)k+1 − ε} (7)

syndetic?
Surprisingly enough, the answer depends on the number k of polynomials and

on the linear dependencies among the polynomials. For rationally independent
polynomials, using the fact that a characteristic factor takes on a simple form, we
show that the measure of the intersection in (7) is as large as possible on a syndetic
set:

Theorem 5.2 (Frantzikinakis and Kra [16]). Assume that (X,X , µ, T ) is an in-
vertible measure preserving system, A ∈ X , k ≥ 1 is an integer, and p1, p2, . . . , pk :
Z → Z are rationally independent polynomials with pj(0) = 0 for j = 1, 2, . . . , k.
Then for all ε > 0, the set

{n ∈ Z : µ
(
A ∩ T p1(n)A ∩ T p2(n)A ∩ . . . ∩ T pk(n)A

)
≥ µ(A)k+1 − ε}

is syndetic.

This sharply contrasts the behavior for a family of linearly dependent poly-
nomials, such as the linear polynomials corresponding to Szemerédi’s Theorem,
where the behavior depends on the number of linear terms. This dependence is
illustrated in the following two theorems:

3A syndetic set is sometimes known in the literature as relatively dense. A syndetic set in Z
is said to have bounded gaps.
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Theorem 5.3 (Bergelson, Host, and Kra [3]). Assume that (X,X , µ, T ) is an
ergodic measure preserving system, A ∈ X , and k ≥ 1 is an integer. Then for all
ε > 0, the sets

{n ∈ Z : µ
(
A ∩ TnA ∩ T 2nA

)
≥ µ(A)3 − ε}

and
{n ∈ Z : µ

(
A ∩ TnA ∩ T 2nA ∩ T 3nA

)
≥ µ(A)4 − ε}

are syndetic.

While ergodicity is not needed in Khintchine’s Theorem, it is a necessary hy-
pothesis in Theorem 5.3. In [3], we construct a counterexample for the nonergodic
case.

For arithmetic progressions of length ≥ 5, the analogous result does not hold.
Based on a result of Ruzsa contained in the Appendix of [3], we show

Theorem 5.4 (Bergelson, Host, and Kra [3]). There exists an ergodic system
(X,X , µ, T ) such that for all integers ` ≥ 1 and all ε > 0, there exists a set
A = A(`, ε) ∈ X with positive measure such that

µ(A ∩ TnA ∩ T 2nA ∩ T 3nA ∩ T 4nA) ≤ εµ(A)`

for every integer n 6= 0.

The proofs of these theorems are based on a decomposition result for the mul-
ticorrelation sequence∫

f(x)f(Tnx)f(T 2nx) . . . f(T knx) dµ(x) , (8)

where (X,X , µ, T ) is a measure preserving system, f ∈ L∞(µ), and k, n ≥ 1 are
integers. We decompose such a sequence into two pieces, one of which is small in
terms of density and the second of which arises from a nilsystem. We need some
terminology to describe this decomposition more precisely. A bounded sequence
{an}n∈Z tends to zero in uniform density if

lim
N→∞

sup
M∈Z

1
N

M+N−1∑
n=M

|an| = 0 .

If k ≥ 1 is an integer, the sequence {xn} is said to be a basic k-step nilsequence if
there exists some k-step nilmanifold X = G/Γ, a continuous real valued function φ
on X, a ∈ G and e ∈ X such that xn = φ(an ·e) for all n ∈ N. A k-step nilsequence
is a uniform limit of basic k-step nilsequences. The general decomposition result
is:

Theorem 5.5 (Bergelson, Host, and Kra [3]). Assume that (X,X , µ, T ) is an
ergodic measure preserving system, k ≥ 1 is an integer, and f ∈ L∞(µ). The
multicorrelation sequence (8) is the sum of a sequence tending to zero in uniform
density and a k-step nilsequence.
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By subtracting a sequence of integers that tends to 0 in uniform density, the
sequences in Theorem 5.3 have the same behavior as the associated nilsequences
(of lengths 3 and 4), and the problem reduces to studying lower bounds for the
associated nilsequences. The factors constructed in [36] are used to understand
the structure of these nilsequences and a key ingredient comes from the explicit
formula for the average (1) given in Ziegler [56] (an alternate proof is given in [3]).

In [16], we prove a similar multicorrelation result for independent polynomials.
In this case, the nilsequence takes on a simple form, as it is induced by a unipotent
affine transformation.

5.2. Combinatorial Implications. Via a small modification of Fursten-
berg’s Correspondence Principle, each of these results translates to a combinatorial
result. The upper Banach density d∗(E) of a set E ⊆ Z is defined by

d∗(E) = lim
N→+∞

sup
M∈Z

1
N
|E ∩ [M,M + N − 1]| .

Let ε > 0, E ⊆ Z have positive upper Banach density, and consider the set{
n ∈ Z : d∗

(
E ∩ (E + p1(n)) ∩ · · · ∩ (E + pk(n))

)
≥ d∗(E)k+1 − ε

}
. (9)

For k = 2 or k = 3 and pj(n) = jn for j = 1, 2, 3, this set is syndetic, while for
k ≥ 4 and pj(n) = jn for j = 1, 2, . . . , k, there exists a set of integers E with
positive upper Banach density such that the set in (9) is empty. On the other
hand, in [16] we show that for all integers k ≥ 1, if p1, p2, . . . , pk : Z → Z are
rationally independent polynomials with pi(0) = 0 for i = 1, 2, . . . , k, then the set
in (9) is always syndetic.

Question 5.6. If ε > 0, E ⊆ Z has positive upper Banach density, for which
polynomials p1, p2, . . . , pk : Z→ Z with pi(0) = 0 for i = 1, 2, . . . , k, is the set{

n ∈ Z : d∗
(
E ∩ (E + p1(n)) ∩ (E + p2(n)) ∩ . . . ∩ (E + pk(n))

)
≥ d∗(E)k+1 − ε

}
syndetic?

For the polynomials of Theorems 5.2, 5.3, and 5.4 we know the answer and
it is sometimes yes and sometimes no. It is reasonable to conjecture that the
answer is yes for k = 2 and 3, as we know it holds for two extreme cases: 2 (or 3)
rationally independent polynomials and 2 (or 3) linear polynomials. For higher k,
it may be possible to lift the independence condition of Theorem 5.2 under certain
circumstances. The natural approach to the problem is via the corresponding
statement in ergodic theory. A first step in answering this question is finding a
general formula for the multiple polynomial average (6), generalizing the formula
for the linear average (1).

6. Future directions

6.1. Convergence along other sequences. General conditions on se-
quences of integers under which one can prove a multiple ergodic theorem are
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unknown:

Question 6.1. If k ≥ 1 is an integer and a1(n), a2(n), . . . , ak(n) are sequences of
integers with aj(n)→∞ as n→∞ for j = 1, 2, . . . , n, when does

lim
N→∞

1
N

N−1∑
n=0

T a1(n)f1 · T a2(n)f1 · . . . · T ak(n)fk

exist in L2(µ) for all measure preserving systems (X,X , µ, T ) and f1, f2, . . . , fk ∈
L∞(µ)?

For k = 1, convenient necessary and sufficient conditions are given by the spec-
tral theorem. However for k ≥ 2, there is no such characterization and the proof of
all known sequences for multiple convergence (including arithmetic progressions,
polynomials, and the primes) rely in some manner on a use of the van der Corput
Lemma. Finding alternate proofs not relying on the van der Corput Lemma is
a first step in describing choices for the sequences aj(n); a full characterization
would probably require some sort of higher order spectral theorem.

Another natural question is the convergence of random multiple ergodic av-
erages. Let (Ω,B, P ) be a probability space and let {Yn}n∈N be a sequence
of independent random variables taking on values 0 and 1. Given ω ∈ Ω, let
E = E(ω) = {n ∈ N : Yn(ω) = 1}. Ordering E by size, we have defined a random
sequence {a(n) = a(n, ω)} of natural numbers.

Question 6.2. Assume that k ≥ 1 is an integer and that a(n) is a random sequence
of natural numbers generated by a sequence of independent random variables on
some probability space (Ω,B, P ). When does

lim
N→∞

1
N

N−1∑
n=0

T a(n)f1 · T 2a(n)f2 · . . . · T ka(n)fk

exist in L2(µ) for all measure preserving systems (X,X , µ, T ) and f1, f2, . . . , fk ∈
L∞(µ)?

For k = 1, Bourgain [6] showed that for a random nonlacunary sequence,
meaning a sequence where P (Xn(ω) = 1) = pn satisfies limn→∞ npn = ∞, which
is also decreasing, one has convergence in L2(µ). For k ≥ 1, convergence for k = 1
is of course a necessary condition, but it is not know if this is sufficient.

6.2. Connections with additive combinatorics. Since Furstenberg’s
proof of Szemerédi’s Theorem, there has been a long and fruitful interaction be-
tween additive combinatorics and ergodic theory, with results and techniques pass-
ing from one field to the other. A major challenge remains: understand the mathe-
matics behind the deep analogies between the two fields. The nilsystems that arise
in the structural analysis of measure preserving systems should have some sort of
combinatorial analog:
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Question 6.3. What is the combinatorial analog for the Structure Theorem (The-
orem 3.2)?

The uniformity norms on Z/NZ (used in Gowers’s [26] proof of Szemerédi’s
Theorem and in Green and Tao’s [28] proof that the primes contain arbitrarily
long progressions) play a role similar to the role that the seminorms described
in Section 3 play in proving convergence of the multiple ergodic average along
arithmetic progressions in [36]. A partial answer to this question is given by Green
and Tao in [29], in which they show that generalized quadratic functions control
the third uniformity norm, analogous to the way that 2-step nilsystems control the
third seminorm. These generalized quadratic functions are controlled by 2-step
nilsequences, and this gives a partial understanding of the combinatorial objects.
It should be interesting and useful to obtain a more complete understanding of the
precise nature of the link between these generalized quadratic functions and 2-step
nilsequences, with a description in the finite setting of Z/NZ rather than in Z. For
longer progressions, even partial results are not known.

It is not clear if one can use ergodic theory to prove statements about the
primes, as the primes have zero density and Furstenberg’s Correspondence Princi-
ple only applies for sets of positive upper density. However, even without a version
of the Correspondence Principle that applies to zero density subsets, ergodic theory
and especially its techniques has and will be further used to understand the finer
structure of the primes. In analogy with multiple ergodic averages along polyno-
mial sequences (and the use of seminorms), one may hope to combine techniques
of additive combinatorics and ergodic theory to show, for example, that for all
integers k > 1, there exist infinitely many pairs (p, n) of integers with p, n ≥ 1
such that p, p + n, p + n2, . . . , p + nk consists only of prime numbers.
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agonales. Publications de l’Institut de Recherche de Mathématiques de Rennes,
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2004.

[51] T. Tao. Obstructions to uniformity, and arithmetic patterns in the primes.
Preprint, 2005.

[52] T. Tao. The dichotomy between structure and randomness, arithmetic progres-
sions, and the primes. Proceedings of ICM 2006, Madrid.

[53] B. L. van der Waerden. Beweis einer Baudetschen Vermutung. Nieuw Arch. Wisk.
15 (1927), 212–216.

[54] M. Wierdl. Almost everywhere convergence and recurrence along subsequences in
ergodic theory. PhD Thesis, Ohio State University, 1989.

[55] M. Wierdl. Pointwise ergodic theorem along the prime numbers. Israel J. Math.,
64 (1988), 315–336.

[56] T. Ziegler. A non-conventional ergodic theorem for a nilsystem. Erg. The. Dyn.
Sys. 25 (2005), 1357–1370.

[57] T. Ziegler. Universal Characteristic Factors and Furstenberg Averages. To appear,
J. Amer. Math. Soc.

Department of Mathematics, Northwestern University, 2033 Sheridan Road,
Evanston, IL 60208-2730, USA

E-mail: kra@math.northwestern.edu


