
CONVERGENCE OF CONZE-LESIGNE AVERAGES

BERNARD HOST AND BRYNA KRA

Abstract. We study the convergence of 1
N

∑
f1(Ta1nx)f2(Ta2nx)f3(Ta3nx),

for a measure preserving system (X,B, µ, T ) and f1, f2, f3 ∈ L∞(µ). This gen-
eralizes the theorem of Conze and Lesigne on such expressions and simplifies
the proof. As well, we obtain a description of the limit.

1. Introduction

1.1. Background. An open problem is the existence of limits of expressions of the
form

lim
N→∞

1

N

N−1∑

n=0

f1(T a1nx)f2(T a2nx) . . . f`(T
a`nx),(1)

where T is a measure preserving automorphism of a probability space (X,B, µ),
f1, f2, . . . , f` ∈ L∞(X) and a1, a2, . . . , a` are distinct integers. Limits of such
expressions arise in Furstenberg’s proof of Szeméredi’s Theorem and have been
studied in various forms by Bourgain[2], Bergelson[1], Furstenberg and Weiss[7]
and Conze and Lesigne[5].

If one assumes that T is weak mixing, Bergelson[1] proved a convergence theorem
for more general expressions. However, without the assumption of weak mixing,
one can easily show that the limit need not be constant and proving convergence
becomes much more difficult. The existence of limits for the case with ` = 3
and with the added hypothesis that the system is totally ergodic was proved by
Conze and Lesigne in a series of papers (see [3], [8], [9], [5], [4] and [10]). Similar
expressions were considered by Furstenberg and Weiss[7] in order to study the limit

lim
N→∞

1

N

N−1∑

n=0

f1(Tnx)f2(Tn
2

x) .

1.2. Statement of results. We reprove the convergence obtained by Conze and
Lesigne directly, without needing the elaborate machinery they used. Furthermore,
we eliminate the reliance on the hypothesis of total ergodicity. As for the other
known methods for analyzing expressions of the form of Equation (1), we are unable
to extend our proof to more than three terms. In offering a new and simpler proof
of the convergence for three terms, we hope to gain insights into limits of more
general expressions.

In Section 4.3, we show:
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2 BERNARD HOST AND BRYNA KRA

Theorem 1.1. Let (X,B, µ, T ) be a measure preserving system, a1, a2, a3 three
distinct integers and f1, f2, f3 ∈ L∞(µ). Then

lim
N→∞

1

N

N−1∑

n=0

3∏

i=1

fi(T
ainx)

exists in L2(µ).

In fact we prove more than just existence, giving an description of the limit in
Section 4.4. A more precise value for the limit will be given in a forthcoming paper.

1.3. Organization of the paper. Our proof, like those of Conze and Lesigne[5]
and Furstenberg and Weiss[7], is roughly split into two parts. First we reduce
the problem to studying convergence on a simpler system. We follow classical
methods, using ideas introduced by Furstenberg[6] in the proof of the Szeméredi
theorem, such as the Van der Corput lemma[1] and isometric extensions. However,
we have no need for the detailed structure of the modified system, as used by Conze
and Lesigne, nor of the normal systems introduced by Furstenberg and Weiss. We
include few details of this portion of the proof, referring the reader to the literature.
This is carried out in Section 2.

The second part of the proof is the demonstration of the convergence in the
modified system. Our method is more elementary than that previously known, and
we obtain a description of the limit. One of our main tools is a lemma in harmonic
analysis, proved in Section 3. In Section 4, we prove the convergence and then in
Section 4.4, we give the actual formula.

2. Reduction to a simpler system

We can always assume ergodicity of the system, without loss of generality, by
using ergodic decomposition.

We plan to modify the original measure preserving system three times, showing
each time that proving the theorem for the new system implies the result for the
old system. First, we clarify the ideas needed for such reductions.

2.1. Characteristic factors.

Definition. Given distinct integers a1, a2, . . . , a` and a factor (Y,Y , ν, S) of a sys-
tem (X,B, µ, T ), we say that Y is a characteristic factor of X for the scheme
a1, a2, . . . , a` if for any f1, f2, . . . f` ∈ L∞(µ), whenever there is some i ∈ {1, 2, . . . , `}
with E(fi | Y) = 0, the limit

lim
N→∞

1

N

N−1∑

n=0

∏̀

i=1

fi ◦ T ain

exists in L2(µ) and is equal to 0.

This property implies that for f1, f2, . . . , f` ∈ L∞(µ)

lim
N→∞

(
1

N

N−1∑

n=0

∏̀

i=1

fi ◦ T ain −
1

N

N−1∑

n=0

∏̀

i=1

E(fi ◦ T ain | Y)

)
= 0

in L2(µ).
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Therefore, finding a characteristic factor Y for a system X allows us to restrict
to functions defined only on Y , and this restriction simplifies computations when
Y has a simple form.

2.2. The Kronecker is a characteristic factor for two terms. Throughout
the sequel, (X,B, µ, T ) is an ergodic measure preserving system and (Z,Z ,m, S)
denotes its Kronecker factor. More specifically, S : Z → Z is the rotation defined
by Sz = z + α, and we use π : X → Z for the natural projection. For f ∈ L2(µ),

we write f̃ the function on Z defined by f̃ ◦ π = E(f | Z).
Using the Van der Corput lemma (see Bergelson[1]), Furstenberg and Weiss

showed that the Kronecker factor is characteristic for two arbitrary terms b1, b2,
and deduced:

Theorem 2.1 (Furstenberg and Weiss[7]). Let (X,B, µ, T ) be a measure preserv-
ing system, with notations as above. Let b1, b2 be integers. Then for any f1, f2 ∈
L∞(µ)

lim
N→∞

1

N

N−1∑

n=0

f1(T b1nx)f2(T b2nx)

exists in L2(µ) and equals
∫

Z

f̃1(z + b1θ)f̃2(z + b2θ) dm(θ),

where z = π(x).

2.3. Two joinings. We assume here that a1, a2, a3 are given integers. Let Z̃ be
the closed subgroup

Z̃ =
{

(z + a1t, z + a2t, z + a3t) : z, t ∈ Z
}

of Z3 and let m̃ be its Haar measure. We write z̃ = (z1, z2, z3) for an element

z̃ ∈ Z̃. These notations will be used throughout the sequel.
By Theorem 2.1, for f1, f2, f3 ∈ L∞(µ),

lim
N→∞

1

N

N−1∑

n=0

∫

X

3∏

i=1

fi(T
ainx) dm(x) =

∫ 3∏

i=1

f̃i(z + aiθ) dm(z) dm(θ)

=

∫

Z̃

3∏

i=1

f̃i(zi)dm̃ (z̃) .(2)

The subgroup Z̃ is invariant under the transformation S̃ = Sa1 × Sa2 × Sa3 .
Writing

α̃ = (a1α, a2α, a3α) ,

the transformation S̃ is given by

S̃z̃ = z̃ + α̃ .

Thus, (Z̃, m̃, S̃) is a joining of the systems (Z,m, Sai), for i = 1, 2, 3, and each
of these is a factor of the corresponding (X,µ, T ai). Therefore we can form the

“conditionally independent product” (X̃, µ̃, T̃ ) of these systems over this joining.
It is a joining of (X,µ, T ai) for i = 1, 2, 3. (See Furstenberg[6] and Furstenberg and
Weiss[7].)
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Using this, we rewrite Equation (2) and have

lim
N→∞

1

N

N−1∑

n=0

∫

X

3∏

i=1

fi(T
ainx) dµ(x) =

∫

X̃

3∏

i=1

fi(xi) dµ̃(x1, x2, x3) .

2.4. Group extensions. We recall some basic facts about group extensions.
Let (X,B, µ, T ) be an ergodic measure preserving system and let (Y,D, ν, T )

be a factor. By definition, X is an isometric extension of Y if there exists a
homogeneous space H = L/K of a metrizable compact group L and a measurable
map σ : Y → L so that (X,B, µ, T ) is isomorphic to the skew product (Y ×H,B ⊗
BH , ν × mH , Tσ), where BH is the Borel σ-algebra of H , mH is the L-invariant
measure on H and Tσ(y, u) = (Ty, σ(y)u). σ is called the cocycle of the extension.
If H = L, we say that X is a group extension of Y .

We note for later use that by Lemma 7.2 in Furstenberg and Weiss, given an
ergodic isometric extension X = Y × H , one can express H = L/K and X =
Y × L/K so that the group extension X1 = Y × L defined by the same cocycle is
also ergodic.

2.5. Reduction to an isometric extension of the Kronecker. We now use
these structures to make our first change in the measure preserving system, allowing
us to assume that X is an isometric extension of the Kronecker factor Z.

Lemma 2.2 (Conze and Lesigne[3]). Let a1, a2, a3 be distinct integers. Assume
that f1, f2, f3 ∈ L∞(µ) and let F (z1, z2, z3) = f1(z1)f2(z2)f3(z3). If F is orthogonal
to the space of T a1 × T a2 × T a3-invariant functions in L2(µ̃), then the averages

1

N

N−1∑

n=0

3∏

i=1

fi(T
aix)

converge to 0 in L2(µ).

Proof. The lemma is proved via an application of the Van der Corput Lemma, with
un(x) = f1(T a1nx)f2(T a2nx)f3(T a3nx). For details, see Furstenberg and Weiss[7].

For an ergodic system (X,B, µ, T ) with Kronecker factor (Z, α), let (Ẑ, D̂, ν̂, T )
denote the maximal isometric extension of (Z, α) in (X,T ).

Theorem 2.3 (Furstenberg and Weiss[7]). Ẑ is a characteristic factor of X for all
schemes {a1, a2, a3}.
Proof. The proof uses Lemma 2.2, the fact that µ̃ defines a joining of the systems
(X,µ, T ai) and a theorem on joinings of Furstenberg[6]: invariant functions on a
conditionally independent product factorize through the conditionally independent
product of the maximal isometric extension. Again, we refer to Furstenberg and
Weiss[7] for the details.

Thus in order to prove the existence of

lim
N→∞

1

N

N−1∑

n=0

3∏

i=1

fi(T
ainx)

in L2(m), it suffices to show the convergence for functions defined on the isometric

extension Ẑ of Z. We express the extension Ẑ = Z × L/K in such a way that the
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corresponding group extension X1 = Z × L is ergodic. Clearly it suffices to prove
the convergence for this system X1. Let Z1 be the Kronecker factor of X1. By
Lemma 7.3 of Furstenberg and Weiss, X1 is a group extension Z1 ×L1 of Z1. The
following diagram explains these relations:

X
↓

Ẑ = Z × L/K ←− Z × L = X1 = Z1 × L1

↓ ↓
Z ←− Z1

For simplification of notation, from now on we can forget the initial system and
assume that X is itself a group extension Z × L of its Kronecker factor Z.

2.6. The Mackey groups. The notion of the Mackey group (also referred to as
the group of essential values) is not completely classical and so we recall the basic
facts.

We consider an ergodic system (Y, ν, S) with an extension by a compact group
H , defined by a cocycle σ. Thus σ is a measurable map from Y to H . We say
that σ is a coboundary if there exists a cocycle φ with σ(y) = φ(Sy)φ(y)−1. Two
cocycles σ and σ′ are said to be cohomologous if there exists a cocycle φ so that
σ′(y) = φ(Sy)σ(y)φ(y)−1.

Proposition 2.4. For each cocycle σ, there is associated a closed subgroup M of
H (uniquely determined up to conjugacy) satisfying:
ı) σ is cohomologous to some cocycle σ′ with values in M and M is a minimal

closed subgroup of H with this property.
ıı) For all m ∈M , each Sσ′ -invariant function f on Y ×H satisfies f(y,mh) =

f(y, h) for almost every (y, h) ∈ Y ×H.

Given a cocycle σ, the associated closed subgroupM is called its Mackey group.

Proof. The proof, again, is outlined in Furstenberg and Weiss[7].

Property (ıı) combined with Lemma 2.2 explains the important role of the
Mackey group in our setup.

2.7. The subgroup M of L3. Recall that we have defined X̃ and Z̃ in Section 2.3.
We have that X̃ = Z̃ × L3 is a group extension of Z̃ with cocycle

σ̃(z̃) =
(
σ(a1)(z1), σ(a2)(z2), σ(a3)(z3)

)
.

Thus the transformation T̃ on X̃ is given by

T̃ (z1, z2, z3, `1, `2, `3) =
(
z1 + a1α, z2 + a2α, z3 + a3α, σ

(a1)(z1)`1, σ
(a2)(z2)`2, σ

(a3)(z3)`3
)
.(3)

We can not immediately apply the theory of Mackey groups to the group ex-
tension (X̃, µ̃, T̃ ) of (Z̃, m̃, S̃), as the second system is not ergodic, and so we need
some preliminaries.

For every z ∈ Z the subset

Z̃z = {(z + a1t, z + a2t, z + a3t) : t ∈ Z}
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of Z̃ is invariant under S̃. The uniform measure m̃z on this set is invariant by S̃
and is ergodic. It gives an ergodic decomposition

m̃ =

∫

Z

m̃z dm(z)

of m̃. (This is not the standard ergodic disintegration, as the measures mz are not
necessarily distinct.)

Consider the corresponding decomposition

µ̃ =

∫

Z

µ̃z dm(z)

of µ̃. For each z the system (X̃, µ̃z, T̃ ) is an extension of (Z̃z , m̃z, S̃) by the group L3,
with the restriction of the cocycle σ̃, and so has a Mackey group Mz defined up to
conjugacy. We write [Mz] for the conjugacy class of Mz. The family of conjugacy
classes of closed subgroups of the compact metrizable group L3 can be endowed
with a structure of Polish space so that the map z 7→ [Mz] is Borel. Moreover,
the measure µ̃ is invariant under the transformation T × T × T , which commutes
with T̃ . It follows that [Mz+α] = [Mz] for all z ∈ Z. By ergodicity of the rotation
S : z 7→ z+ α, the class [Mz] is constant almost everywhere. Thus we can take Mz

equal for almost all z to a fixed subgroup M of L3. We call M the Mackey group
of the cocycle σ̃ on Z̃. As for the true Mackey groups, it satisfies the properties
of Propositions 2.4.

2.8. A final reduction. The final step is to reduce to an abelian group extension.

Theorem 2.5 (Furstenberg and Weiss[7]). X has a characteristic factor for all
schemes a1, a2, a3 that is an abelian group extension of its Kronecker factor Z.

Proof. We give a sketch of the proof given by Furstenberg and Weiss[7]. Recall

that the transformation T̃ on X̃ = Z̃×L3 is given by Formula (3). Using that Z is
the Kronecker factor of X , they deduce that for all i 6= j ∈ {1, 2, 3} and almost all
z, the (i, j)-two dimensional marginal of µ̃z is T ai × T aj -ergodic. Therefore, each
two dimensional projection M → L×L is surjective. By an algebraic lemma, they
prove that M contains L′ × L′ × L′, where L′ is the commutator subgroup of L.
Applying Lemma 2.2 and property (ıı) of Proposition 2.4, the factor Z × L/L′ of
X = Z × L is characteristic for all schemes a1, a2, a3.

From now on, we write G = L/L′ and write this group additively.
At this point, we simplify without loss of generality and assume that our system

X itself is Z ×G, a compact abelian group extension of its Kronecker.
Our new X is a factor of an extension of a factor of the original X . Many

properties of the original system may be lost in this construction, for example total
ergodicity. This has no implication for our present work.

2.9. The Mackey group in an abelian extension. We have reduced our orig-
inal system to an abelian group extension of its Kronecker, and in this set-up we
can say more about the Mackey group. We make frequent use of some elementary
results about the duality in compact abelian groups and we review the necessary
facts here.

Let H be a compact abelian group. The characters of H are the continuous
group homomorphisms from H to the circle group S1. They form a multiplicative
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group Ĥ called the dual group of H . For a closed subgroup M of H , its annihilator

M⊥ is the subgroup of Ĥ given by

M⊥ = {χ ∈ Ĥ : χ(m) = 1 for all m ∈M} .
Also,

M = M⊥⊥ = {h ∈ H : χ(h) = 1 for all χ ∈M⊥} .
Let (Y, µ, S) be an ergodic system and σ a cocycle with values in a compact,

abelian group H . The Mackey group M associated to σ is unique. This means
that in Proposition 2.4, the minimal, closed subgroup of H satisfying property (ı)
is actually the smallest.

Proposition 2.6. Using notations as above:

ı) A character χ ∈ Ĥ belongs to the annihilator M⊥ of M if and only if χ ◦ σ is
a multiplicative coboundary (as a cocycle with values in the circle group S1).
ıı) For all m ∈M , each Sσ-invariant function f on Y ×H satisfies f(y, h+m) =

f(y, h) for almost all (y, h) ∈ Y ×H.

Proof. Part ı): By Proposition 2.4, property (ı), σ is cohomologous to a cocycle σ ′

with values in M and there is a function b : Z → H with

σ(z) = σ′(z) + b(Sz)− b(z) .

For χ ∈M⊥,

χ ◦ σ(z) = χ(b(Sz))χ(b(z))

and χ ◦ σ is a coboundary.

Conversely, let χ ∈ Ĥ and assume that χ ◦ σ is the coboundary of a function

b . That is, χ ◦ σ(z) = b(Sz)b(z). The function B(z, h) = b(z)χ(h) defined on
X = Z × H is invariant by Tσ. By property (ıı) of Proposition 2.4, for every
m ∈ M , B(z, h + m) = B(z, h) for almost all z and h. Thus χ(m) = 1 and
χ ∈M⊥.

Part ıı): The proof follows immediately from Part ıı) of Proposition 2.4.

2.10. Conclusion of the reduction. We summarize the results of our modifica-
tions. We have X = Z ×G for some compact abelian metrizable group G (written
additively) and the natural projection X → Z is given by π(z, g) = z. The trans-
formation T on X is given by the cocycle σ : Z → G and can be written

T (z, g) = (Sz, g + σ(z)) .

The measure µ = m×mG, where mG is the Haar measure of G.
As usual, we write σ(0)(z) = 0 and for n > 0,

σ(n)(z) = σ(z) + σ(Sz) + · · ·+ σ(Sn−1z),

with a similar formula for n < 0. For every integer n we have

Tn(z, g) = (Snz, g + σ(n)(z))

and for integers m,n we have the “cocycle equation”

σ(n+m)(z) = σ(n)(Smz) + σ(m)(z) .
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As before, X̃ = Z̃ ×G3. For i = 1, 2, 3 the i-th projection of X̃ on X is given by
(z1, z2, z3, g1, g2, g3) 7→ (zi, gi). The measure µ̃ is the product m̃×mG ×mG ×mG

of the Haar measures. The transformation T̃ = T a1 × T a2 × T a3 on X̃ is given by

T̃ (z̃, g1, g2, g3) =
(
z̃ + α̃, g1 + σ(a1)(z1), g2 + σ(a2)(z2), g3 + σ(a3)(z3)

)
.

This means that the system (X̃, µ̃, T̃ ) is a compact abelian group extension

of (Z̃, m̃, S̃) by the group G3, given by the cocycle σ̃ : Z̃ → G3, where σ̃ =
σ(a1) × σ(a2) × σ(a3).

The results of Proposition 2.6 remain valid for the cocycle σ̃ and the subgroup
M of G3 defined as in Section 2.7.

3. A lemma in Harmonic Analysis

Here we stop following the paper of Furstenberg and Weiss[7]. Our main technical
tool in proving Theorem 1.1 is a result in harmonic analysis and its corollaries.

Unless otherwise noted, all L2-norms ‖ · ‖2 are relative to the the measure m,
Haar measure on Z, and are assumed to be taken with respect to the variable z.

We recall that Z is a compact monothetic group and so Zα is dense in Z. We
say that a function ω is affine if ω = cγ, the product of a constant c and a character
γ on Z.

Lemma 3.1. Let f be a function of modulus 1 on Z so that the following two
conditions are satisfied:

1.
∫
Z |f(z + α) − f(z)|2 dm(z) < 2/9

2. For all s ∈ Z there exists an affine function ωs on Z such that∫

Z

|f(z + s)− ωs(z)f(z)|2 dm(z) < δ2(4)

for some δ > 0.
Then there exists an affine function ω so that ‖f − ω‖ < 3

√
2δ.

Proof. If δ >
√

2/3, there is nothing to prove. We assume that δ ≤
√

2/3.

Write ωs(z) = csγs(z) for a constant cs and a character γs on Z. Since δ ≤
√

2/3,
the character γs is uniquely defined by the bound (4). Moreover, by the first
hypothesis, γα = 1.

The constant cs is not defined by the bound (4) and we can choose it so that
the integral in (4) is minimal. By the continuity of translations on L2(Z), the map
s 7→ cs is continuous on Z.

For s, t ∈ Z, applying bound (4) with s, t and s+ t, we have

‖cs+tγs+t − csctγs(t)γsγt‖2 < 3δ ≤
√

2 .

Thus γs+t = γsγt. Furthermore, if s is sufficiently close to 0 in Z, by again using
the same continuity argument we have that ‖f(z + s) − f(z)‖2 <

√
2/3 and so

γs = 1. Thus the map s 7→ γs is a continuous group homomorphism from Z to

Ẑ. Since γα = 1, γs = 1 for all s ∈ Z by continuity and density. The bound (4)
becomes

‖f(z + s)− csf(z)‖2 < δ .

Taking the Fourier transform with respect to z and integrating with respect to
s in this bound, we get

∑

θ∈Ẑ

|f̂(θ)|2
(
1−Re(ĉ(θ))

)
< δ2/2 ,
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where

ĉ(θ) =

∫
csθ̄(s) dm(s) .

Since
∑

θ∈Ẑ |f̂(θ)|2 = 1, there exists γ ∈ Ẑ such that 1 − Re(ĉ(γ)) < δ2/2. Thus

|ĉ(γ)|2 > 1− δ2. Since
∑

θ∈Ẑ |ĉ(θ)|2 = 1, for all θ 6= γ we have |ĉ(θ)| < δ and thus
1−Re(ĉ(θ)) > 1− δ. We get

∑

θ 6=γ
|f̂(θ)|2 < δ2

2(1− δ) < δ2 .

That is, ‖f − f̂(γ)γ‖2 < δ. Taking c = f̂(γ)/|f̂(γ)| and we get the statement of the
lemma.

Proposition 3.2. Let a be a non-zero integer. There exists a constant C > 0
(depending only on a) such that whenever f is a function of modulus 1 on Z so
that for some δ > 0 the following two properties are satisfied:

1.
∫
Z
|f(z + α) − f(z)|2 dm(z) < δ2

2. For all s ∈ Z there exists an affine function ωs on Z such that
∫

Z

f(z + as)− ωs(z)f(z)|2 dm(z) < δ2,(5)

then there exists an affine function ω on Z so that ‖f − ω‖2 < Cδ.

Proof. We use C to denote any positive constant depending only on a. Without
loss of generality we can assume that δ is as small as needed.

Let K be the open subgroup aZ of Z and let k be its index in Z. As Zα is dense
in Z, (kα)Z is dense in K, K = kZ, and the K-cosets areK,α+K, . . . , (k−1)α+K.
As K is monothetic with generator kα, we can apply Lemma 3.1 with K substituted
for Z and kα substituted for α.

Fix j ∈ {0, . . . , k − 1}, define a function fj on K by fj(z) = f(jα+ z) and so
∫

K

|fj(z + kα)− fj(z)|2 dmK(z) < k3δ2 .

Furthermore, for all s ∈ K,
∫

K

|fj(z + s)− fj(z)ωs(z + jα)|2 dmK(z) < kδ2 .

The restriction of the function ωs(z + jα) to K is affine and so we can apply
Lemma 3.1 with the function fj . As δ is small, there exists a constant cj and a

character γj ∈ Ẑ with
∫

K

|fj(z)− cjγj(z)|2 dmK(z) < C2δ2

for some constant C. The character γj is defined only modulo K⊥.
By the first hypothesis, we have

k−2∑

j=0

∫

K

|cj+1γj+1(z)− cjγj(z)|2 dmK(z)

+

∫

K

|c0γ0(z + kα)− ck−1γk−1(z)|2 dmK(z) < Cδ2
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for some constant C. Thus γj+1 = γj mod K⊥ for 0 ≤ j < k − 1, and we can

choose γ ∈ Ẑ with γj = γ mod K⊥ for all j. Moreover we have |cj+1 − cj | < Cδ
for 0 ≤ j < k − 1 and |c0γ(kα)− ck−1| < Cδ. Thus there exists c with |c| = 1 and
|c− cj | < Cδ for 0 ≤ j ≤ k − 1, and we have also |1− γ(α)k| < Cδ.

There exists a complex number ξ with ξk = 1 and |γ(α) − ξ| < Cδ. But, since
the index of K in Z is k, there exists a character θ ∈ K⊥ with θ(α) = ξ.

It is now immediate that the affine function ω = cθ̄γ satisfies ‖f −ω‖2 < Cδ for
some constant C.

Although we only use the following results for three terms, we state them more
generally for ` terms.

Lemma 3.3. Let ` ≥ 1 be an integer and let a1, a2, . . . , a` be distinct integers.
There exists a constant C > 0 such that whenever f1, f2, . . . , f` are functions of
modulus 1 on Z so that ∫

Z

|fi(z + α)− fi(z)|2 dm(z) < δ2(6)

for i = 1, . . . , ` and

∫

Z×Z

∣∣1−
∏̀

i=1

fi(z + ait)|2 dm(z) dm(t) < δ2(7)

for some δ > 0, then there exist affine functions ω1, ω2, . . . , ω` with

‖1− ωifi‖2 < Cδ(8)

for i = 1, 2, . . . , ` and

∏̀

i=1

ωi(z + ait) = 1(9)

for all z, t ∈ Z.

Proof. The result is obvious for ` = 1 and we proceed by induction. Let ` > 1 and
assume that the statement holds for any choice of a1, a2, . . . , a`−1.

Fix a1, . . . , a`. As before, we write C for any constant depending only on the
data a1, . . . , a` and all L2 norms are assumed to be taken with respect to z.

Let f1, . . . , f` be functions of modulus 1 such that conditions (6) and (7) hold
for some δ > 0. Clearly we can assume that δ is as small as needed.

For i = 1, . . . , `, set bi = ai − a`. Fix s ∈ Z. Substituting z− a`s for z and t+ s
for t in (7) we get

∫

Z×Z

∣∣1−
∏̀

i=1

fi(z + bis+ ait)|2 dm(z) dm(t) < δ2 .

Setting gi(z) = fi(z + bis)fi(z), using the bound (7) again we get

∫

Z×Z
|1−

`−1∏

i=1

gi(z + ait)|2 dm(z) dm(t) < 4δ2

because b` = 0. Moreover, for each i,

‖gi(z + α)− gi(z)‖2 < 2δ .



CONVERGENCE OF CONZE-LESIGNE AVERAGES 11

Using the induction hypothesis, for i = 1, . . . , `−1 and for all s ∈ Z there exists
an affine function ωs,i such that

‖fi(z + bis)− ωs,i(z)fi(z)‖2 < Cδ(10)

for some constant C. By Proposition 3.2, there exists an affine function ciγi such
that

‖fi − ciγi‖2 < Cδ(11)

for some constant C. Exchanging the role played by the indices ` and `− 1 we find
an affine function c`γ` satisfying the relation (11) for i = `.

Using (7) again we have

∫

Z×Z

∣∣∣1−
∏̀

i=1

ciγi(z + ait)
∣∣∣
2

dm(z) dm(t) < Cδ2 .(12)

Since δ is small,

∏̀

i=1

γi =
∏̀

i=1

γaii = 1

and |1−∏`
i=1 ci| < Cδ. Modifying c` by an amount less than Cδ so that

∏`
i=1 ci = 1

and setting ωi = ciγi, we have the affine functions satisfy the announced properties.

Lemma 3.4. Let a1, a2, . . . , a` be distinct integers. For 1 ≤ i ≤ ` and k ∈ N,
let fk,i be a function of modulus 1 on Z such that the following two properties are
satisfied as k →∞:

1. For i = 1, . . . , `, fk,i(z + α)fk,i(z) converges in L2(Z)

2.
∏̀

I=1

fk,i(z + ait) converges in L2(Z × Z).

Then, for i = 1, . . . , ` and k ∈ N, there exists an affine function ωk,i such that the
following two statements hold:

1. ωk,ifk,i converges in L2(Z) as k →∞
2. For all k ∈ N and for all z, t ∈ Z,

∏̀

i=1

ωk,i(z + ait) = 1 .(13)

In particular,
∏̀

i=1

fk,i(z) converges in L2(Z) as k →∞.

Proof. Let {kj} be an increasing sequence of integers such that for all j and all
k > kj ,

∫

Z×Z

∣∣1−
∏̀

i=1

fkj ,i(z + ait)fk,i(z + ait)
∣∣2 dm(z) dm(t) < 4−k

and for all i ∈ {1, . . . , `},
∫

Z

∣∣fk,i(z + α)fkj ,i(z + α) − fk,i(z)fkj ,i(z)
∣∣2 dm(z) < 4−k .
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Proceeding by induction and using Lemma 3.3 at each step, for each i ∈ {1, . . . , `}
and each j ∈ N there exists an affine function ωkj ,i such that relation (13) is valid
for k = kj and

∥∥ωkj+1,ifkj+1,i − ωkj ,ifkj ,i
∥∥

2
< C2−j .

For kj < k < kj+1 we use Lemma 3.3 applied to the functions fk,ifkj ,i and obtain
affine functions ωk,i such that the relation (13) is valid and

‖ωk,ifk,i − ωkj ,ifkj ,i‖2 < C2−j .

The affine functions ωk,i now defined for all values of k satisfy the required prop-
erties.

We note that it follows immediately from Lemma 3.3 that, if all the limits arising
in the hypothesis of Lemma 3.4 are equal to the constant 1, then the limits arising
in the conclusion can all be taken equal to the constant 1 too.

4. Proof of Theorem 1.1

We now return to our original problem. We assume that a1, a2, a3 are fixed,
distinct and non-zero integers and that we are given f1, f2, f3 ∈ L∞(µ). We prove
the existence in L2(µ) of

lim
N→∞

1

N

N−1∑

n=0

3∏

i=1

fi(T
ainx) .(14)

However, it now sufficies to prove the existence in L2(µ) of the limit (14) for the
modified system described in Section 2.10.

By density, it suffices to consider the case when the functions fi are of the form

fi(z, g) = wi(z)χi(g)(15)

for i = 1, 2, 3, where wi ∈ L∞(m), χi ∈ Ĝ and x = (z, g). We consider two cases,
depending on whether or not the character χ̃ = (χ1, χ2, χ3) belongs to M⊥.

4.1. The easy case. For χ̃ /∈M⊥, the proof is straightforward.

Lemma 4.1. Let the functions fi be given by Formula (15) and assume that χ̃ /∈
M⊥. Then

lim
N→∞

1

N

N−1∑

n=0

3∏

i=1

fi(T
ainx)

exists in L2(µ) and equals 0.

Proof. Let mM denote the Haar measure of M . For z ∈ Z and g ∈ G we have
∫

M

3∏

i=1

fi(zi, gi + ui) dmM (u1, u2, u3) =

3∏

i=1

wi(zi)χi(gi)

∫

M

3∏

i=1

χi(ui) dmM (u1, u2, u3) = 0

since χ̃ /∈ M⊥. On the other hand, each T̃ -invariant function F in L2(µ̃) satisfies
for all (u1, u2, u3) ∈M ,

F (z̃, g1 + u1, g2 + u2, g3 + u3) = F (z̃, g1, g2, g3) µ̃-a.e.
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by property (ıı) of Proposition 2.6. Consequently, the function

3∏

i=1

fi(zi, gi) is or-

thogonal in L2(µ̃) to the space of invariant functions. Thus by Lemma 2.2 (see the
remark at the end of Section 2.10), the averages converge to 0 in L2(µ).

4.2. The function φt. For χ̃ ∈M⊥, the proof is a bit more involved, and we use
the following lemma to express the limit as a continuous map.

Lemma 4.2. Let χ̃ ∈ M⊥. There exists a continuous map s 7→ φs(.) from Z to
L2(m) such that

φnα(z) =
3∏

i=1

χi
(
σ(nai)(z)

)

for all n ∈ Z.

We note that φs is of modulus one for all t.

Proof. Let {nk} be a sequence of integers such that {nkα} converges to some s ∈ Z.
For 1 ≤ i ≤ 3 and k ∈ N we write

fk,i(z) = χi
(
σ(nkai)(z)

)
.

We have to prove that
∏3
i=1 fk,i(z) converges in L2(Z) as k →∞.

By property (ı) of Proposition 2.6, the multiplicative S1-cocycle

χ̃ ◦ σ̃(z̃) =

3∏

i=1

χi
(
σ(ai)(zi)

)

is a multiplicative coboundary of (Z̃, S̃). Therefore, there exists a function b(z, t)
of modulus 1 on Z × Z such that for all k ∈ N

3∏

i=1

fk,i(z + ait) =

3∏

i=1

χi
(
σ(nkai)(z + ait)

)
= b(z, t+ nkα)b(z, t)

for m × m-almost all (z, t) ∈ Z × Z. As the translations act on L2(Z × Z) in a
continuous way,

3∏

i=1

fk,i(z + ait)→ b(z, t+ s)b(z, t)

in L2(Z × Z) as k →∞. Moreover, for i = 1, 2, 3 and k ∈ N,

fk,i(z + α)fk,i(z) = χi
(
σ(nkai)(z + α) − σ(nkai)(z)

)
= χi

(
σ(z + nkaiα)− σ(z)

)

by the cocycle relation, and it follows as above that

fk,i(z + α)fk,i(z)→ χi
(
σ(z + ais)− σ(z)

)

in L2(Z) as k →∞.
The result follows now immediately from Lemma 3.4
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4.3. Proof of convergence and a first expression of the limit. In order to
show that the limit in Equation (14) exists, we are left with considering the case
χ̃ ∈M⊥. For x = (z, g) and fi(z, g) = wi(z)χi(g), we have

1

N

N−1∑

i=1

3∏

i=1

fi(T
ainx) =

3∏

i=1

χi(g)
1

N

N−1∑

n=0

3∏

i=1

wi(z + naiα)χi
(
σ(nai)(z)

)
.

The function
∏3
i=1 ωi(z + naiα)χi(σ

(nai)(z)) is exactly the value at t = nα of the
mapping

t 7→ φt(z)

3∏

i=1

wi(z + ait) ,

a continuous map from Z to L2(m) by Lemma 4.2.

Lemma 4.3. Let Z be a compact metric space, S : Z → Z a homeomorphism so
that Z is uniquely ergodic with invariant measure m. Let f : Z → H be a continuous
map into a Hilbert space H. Then for all z ∈ Z,

lim
N→∞

1

N

N−1∑

n=0

f(Tnz) =

∫

Z

f(u) dm(u)

in H.

Proof. Without loss, we can assume that
∫
Z f(u) dm(u) = 0. For an integer k, we

consider the continuous, complex valued function z 7→ 〈f(Skz), f(z)〉 on Z, where
〈 , 〉 denotes the inner product on H. By unique ergodicity,

lim
N→∞

1

N

N−1∑

n=0

〈f(Sn+kz), f(Snz)〉 =

∫

Z

〈f(Sku), f(u)〉 dm(u) .

Using γk to denote this limit, by the Hilbert space Van der Corput lemma (see

Bergelson[1]) it suffices to show that 1
K

∑K−1
k=0 γk → 0 as K →∞, and this follows

from the ergodic theorem.

By the lemma and the fact that (Z, S) is uniquely ergodic,

lim
N→∞

1

N

N−1∑

n=0

3∏

i=1

ωi(z + naiα)χi(σ
(nai)(z)) =

∫

Z

φt(z)

3∏

i=1

wi(z + ait) dm(t)

in L2(m).
Thus, the limit in Equation (14) exists and equals

∫

Z

φt(z)
3∏

i=1

χi(g)wi(z + ait) dm(t) .

The proof of Theorem 1.1 is complete.

4.4. A global expression of the limit. The function φt(z) constructed in Sec-
tion 4.2 depends on the character χ̃ ∈M⊥ used to decompose the fi. To take this
into account, we write φχ̃t (z). By construction, the dependence on χ̃ is multiplica-

tive. More specifically, for χ̃, θ̃ ∈M⊥

φχ̃θ̃t (z) = φχ̃t (z)φθ̃t (z)
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for all z ∈ Z. As M⊥ is the dual group of the compact group G3/M , it follows

that there exists a measurable map Ft(z) with values in G3/M such that φχ̃t (z) =
χ̃(Ft(z)) for all χ̃ ∈M⊥. We can lift this map to a measurable map

Φ̃t(z) =
(
Φt,1(z),Φt,2(z),Φt,3(z)

)

taking values in G3. Then for χ̃ = (χ1, χ2, χ3) ∈M⊥,

φχ̃t (z) =

3∏

i=1

χi
(
Φt,i(z)

)
.

For f1, f2, f3 ∈ L∞(µ), consider the function on Ψ on X = Z ×G given by

Ψ(z, g) =

∫ 3∏

i=1

fi
(
z + ait, g + gi + Φt,i(z)

)
dm(t) dmM (g1, g2, g3)

where mM is the Haar measure of M .
We first consider the case that for each i, the function fi(z, g) is of the form

wi(z)χi(g), with wi ∈ L∞(m) and χi ∈ Ĝ. Then Ψ(z, g) equals

∫ 3∏

i=1

χi(g)wi(z + ait)φ
χ̃
t (z) dm(t)

∫ 3∏

i=1

χi(gi) dmM (g1, g2, g3) .

If χ̃ /∈ M⊥ the last integral equals 0. Therefore, Ψ(z, g) = 0 for all z and g and
so Ψ = 0. Thus, Ψ is the limit in Theorem 1.1 by the discussion of Section 4.1. If
χ̃ ∈M⊥, we also have that Ψ(z, g) is equal to the limit already obtained.

By density, Ψ equals the limit for all choices of the functions fi. We have proven
the following theorem, with Theorem 1.1 as a corollary.

Theorem 4.4. Let (X,B, µ, T ) be a measure preserving system, a1, a2, a3 distinct
integers and f1, f2, f3 ∈ L∞(µ). Assume that X = Z ×G, a compact abelian group
extension of the Kronecker Z, and let M ⊂ G3 be the Mackey group constructed
in Section 2.7. There exists a measurable map Φ̃t(z) =

(
Φt,1(z),Φt,2(z),Φt,3(z)

)
:

Z → G3 so that

lim
N→∞

1

N

N−1∑

n=0

3∏

i=1

fi(T
ain(x))

exists in L2(m) and equals

∫ 3∏

i=1

fi
(
z + ait, g + gi + Φt,i(z)

)
dm(t) dmM (g1, g2, g3)

at the point x = (z, g).
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[4] J.-P. Conze and E. Lesigne. Sur un théorème ergodique pour des mesures diagonales. Publi-
cations de l’Institut de Recherche de Mathématiques de Rennes, Probabilités, 1987.

[5] J.-P. Conze and E. Lesigne. Sur un théorème ergodique pour des mesures diagonales. C. R.
Acad. Sci. Paris, Série I, 306:491–493, 1988.



16 BERNARD HOST AND BRYNA KRA

[6] H. Furstenberg. Ergodic behavior of diagonal measures and a theorem of Szeméredi on arith-
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