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Abstract. The Morse-Hedlund Theorem states that a bi-infinite sequence η

in a finite alphabet is periodic if and only if there exists n ∈ N such that

the block complexity function Pη(n) satisfies Pη(n) ≤ n. In dimension two,
Nivat conjectured that if there exist n, k ∈ N such that the n× k rectangular

complexity Pη(n, k) satisfies Pη(n, k) ≤ nk, then η is periodic. Sander and

Tijdeman showed that this holds for k ≤ 2. We generalize their result, showing
that Nivat’s Conjecture holds for k ≤ 3. The method involves translating the

combinatorial problem to a question about the nonexpansive subspaces of a

certain Z2 dynamical system, and then analyzing the resulting system.

1. Nivat’s Conjecture for colorings of height 3

1.1. Background and statement of the theorem. The Morse-Hedlund The-
orem [8] gives a classic relation between the periodicity of a bi-infinite sequence
taking values in a finite alphabet A and the complexity of the sequence. For higher
dimensional sequences η =

(
η(~n) : ~n ∈ Zd

)
with d ≥ 1 taking values in the finite

alphabet A, a possible generalization is the Nivat Conjecture [9]. To state this

precisely, we define η : Zd → A to be periodic if there exists ~m ∈ Zd with ~m 6= ~0
such that η(~n + ~m) = η(~n) for all ~n ∈ Zd and define the rectangular complexity
Pη(n1, . . . , nd) to be the number of distinct n1 × . . . × nd rectangular colorings
that occur in η. Nivat conjectured that for d = 2, if there exist n, k ∈ N such
that Pη(n, k) ≤ nk, then η is periodic. This is a two dimensional phenomenon, as
counterexamples for the corresponding statement in dimension d ≥ 3 were given
in [11]. There are numerous partial results, including for example [11, 6, 10] (see
also related results in [2, 3, 5]). In [4] we showed that under the stronger hypothesis
that there exist n, k ∈ N such that Pη(n, k) ≤ nk/2, then η is periodic.

We prove that Nivat’s Conjecture holds for rectangular colorings of height at
most 3:

Theorem 1.1. Suppose η : Z2 → A, where A denotes a finite alphabet. Assume
that there exists n ∈ N such that Pη(n, 3) ≤ 3n. Then η is periodic.

If there exists n ∈ N such that Pη(n, 1) ≤ n, periodicity of η follows quickly from
the Morse-Hedlund Theorem [8]: each row is horizontally periodic of period at most
n and so n! is an upper bound for the minimal horizontal period of η. When there
exists n ∈ N such that Pη(n, 2) ≤ 2n, periodicity of η was established by Sander
and Tijdeman [12]. The extension to colorings of height 3 is the main result of this
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article. By the obvious symmetry, the analogous result holds if there exists n ∈ N
such that Pη(3, n) ≤ 3n.

1.2. Generalized complexity functions. To study rectangular complexity, we
need to consider the complexity of more general shapes. As introduced by Sander
and Tijdeman [11], if S ⊂ Z2 is a finite set, we define Pη(S) to be the number of
distinct colorings in η that can fill the shape S. For example, Pη(n, k) = Pη(Rn,k),
where Rn,k = {(x, y) ∈ Z2 : 0 ≤ x < n, 0 ≤ y < k}. Similar to methods introduced
in [4], we find subsets of Rn,3 (the generating sets) that can be used to study peri-
odicity. Using the restrictive geometry imposed by colorings of height 3, we derive
stronger properties that allow us to prove periodicity only using the complexity
bound 3n, rather than 3n/2 as relied upon in [4].

1.3. Translation to dynamics. As in [4], we translate the problem to a dynamical
one. We define a dynamical system associated with η : Z2 → A in a standard way:

endow A with the discrete topology, X = AZ2

with the product topology, and define
the Z2-action by translations on X by (T ~uη)(~x) := η(~x+~u) for ~u ∈ Z2. With respect
to this topology, the maps T ~u : X → X are continuous. Let O(η) := {T ~uη : ~u ∈ Z2}
denote the Z2-orbit of η ∈ AZ2

and set Xη := O(η). When we refer to the dynamical
system Xη, we implicitly assume that this means the space Xη endowed with the

Z2-action by the translations T ~u, where ~u ∈ Z2. Note that in general O(η) \ O(η)
is nonempty.

The dynamical system Xη reflects the properties of η. An often used fact is that

if F ⊂ Z2 is finite and f ∈ Xη, then there exists ~u ∈ Z2 such that (T ~uη)�F = f�F ,
where by ·�F we mean the restriction to the region F . So, for example, if η satisfies
some complexity bound, such as the existence of a finite set S ⊂ Z2 satisfying
Pη(S) ≤ N for some N ≥ 1, then every f ∈ Xη satisfies the same complexity
bound. Moreover, if η is periodic with some period vector, then every f ∈ Xη is
also periodic with the same period vector. Similarly, if ~u ∈ Z2 and F ⊂ Z2, there is
a natural correspondence between a coloring of the form (T−~uf)�F and a coloring
f�F + ~u.

Characterizing periodicity of η ∈ AZ2

amounts to studying properties of its orbit
closure Xη. In particular, note that η is doubly periodic if and only if it has two
non-commensurate period vectors, or equivalently Xη is finite.

1.4. Expansive and nonexpansive lines. Restricting a more general definition
given by Boyle and Lind [1] to a dynamical system X with a continuous Z2-action
(T ~u : ~u ∈ R2) on X, we say that a line ` ⊂ R2 is an expansive line if there exist
r > 0 and δ > 0 such that whenever f, g ∈ X satisfy d(T ~uf, T ~ug) < δ for all ~u ∈ Z2

with d(~u, `) < r, then f = g. Any line that is not expansive is called a nonexpansive
line.

For the system X = AZ2

with the continuous Z2-action on X by translation
(sometimes called the full A-shift), it is easy to see that there are no expansive
lines. However, more interesting behavior arises when we restrict to Xη.

Boyle and Lind [1] proved a general theorem that nonexpansive lines (and, more
generally, subspaces) are abundant. In the context of Xη with the continuous Z2-
action on Xη by translation, this theorem implies that for infinite Xη, there exists
at least one nonexpansive line. Rephrased in our context the Boyle and Lind result
becomes:
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Theorem 1.2 (Boyle and Lind [1]). For η : Z2 → A, η is doubly periodic if and
only if there are no nonexpansive lines for the Z2-action by translation on Xη.

In [4], we further characterized the situation with a single nonexpansive line:

Theorem 1.3 (Cyr and Kra [4]). Let η ∈ AZ2

. If there exists Rn,k such that
Pη(Rn,k) ≤ nk and there is a unique nonexpansive line for the Z2-action by trans-
lation on Xη, then η is periodic but not doubly periodic.

Thus Theorem 1.1 follows once we show that there can not be more than a single
nonexpansive line, making its proof equivalent to showing:

Theorem 1.4. If η : Z2 → A and there exists Rn,k such that Pη(Rn,k) ≤ nk for
some k ≤ 3, then there is at most one nonexpansive line for the dynamical system
Xη.

The proof of this result occupies the remainder of the paper.

1.5. Conventions. Throughout the paper, we assume that η : Z2 → A, where A
denotes a finite alphabet with |A| ≥ 2 and Xη = O(η) denotes the associated

dynamical system, endowed with the continuous transformations T ~u for ~u ∈ Z2.
We do not explicitly mention this hypothesis again. However, each time we make
an assumption on the complexity, in particular the existence of n ∈ N such that
Pη(Rn,3) ≤ 3n, we make this explicit.

2. Generating and balanced sets

2.1. Generating sets. We review some definitions from [4], adapted to our current
problem.

If S ⊂ R2, we denote the convex hull of S by conv(S). We say S ⊂ Z2 is convex
if S = conv(S) ∩ Z2 and in this case we set ∂S to be the boundary of conv(S). A
boundary edge of S is an edge of the convex polygon convS and a boundary vertex
is a vertex of convS. We denote the set of boundary edges by E(S) and the set of
boundary vertices by V (S). Our convention is that if conv(S) has zero area, then
E(S) = ∅.

If the area of conv(S) is positive, we orient the boundary of S positively. We
also consider infinite, convex sets S with an associated interior, and we orient the
boundary of conv(S) such that the interior is on the left. This allows us to refer
to a directed line as being parallel to a boundary edge of S. We say two directed
lines are parallel if the (undirected) lines they determine are parallel and, as directed
lines, they have the same orientation. We say they are antiparallel if they determine
parallel (undirected) lines, but are endowed with opposite orientations.

Definition 2.1. If S ⊆ Z2 is convex and if u, v ∈ E(S) and u ∩ v 6= ∅ then the
positive orientation on ∂S gives an ordering to the set {u, v}. If v is the larger
(with respect to this ordering) of the two edges, we say that v is the successor edge
to u, and that u is the predecessor edge to v. In this case we define succ(u) := v and
pred(v) := u. If u1, u2, . . . , un ∈ E(S) are distinct, we say that {u1, u2, . . . , un} is
connected if u1 ∪ u2 ∪ · · · ∪ un is a connected subset of R2.

If S ⊂ Z2, then |S| denotes the number of elements of S. We define the S-words
of η to be

Wη(S) :=
{

(T ~uη)�S : ~u ∈ Z2
}
.
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Following Sander and Tijdeman [11], we define the η-complexity of a set S ⊂ Z2 by

Pη(S) := |Wη(S)|.
As in [4], we define the η-discrepancy function Dη on the set of nonempty, finite
subsets of Z2 by

Dη(S) := Pη(S)− |S|.
For W ⊂ Z2, by an η-coloring of W we mean (T ~uη)�W for some ~u ∈ Z2, and

when η is clear from the context, we omit it from the terminology and refer to a
coloring of W .

Definition 2.2. If S1 ⊂ S2 ⊂ Z2 are sets and α ∈ Xη, we say that α�S1 extends
uniquely to an η-coloring of S2 if for all β ∈ Xη such that α�S1 = β�S1, we have
that α�S2 = β�S2. Otherwise, we say that the coloring α�S1 extends non-uniquely
to an η-coloring of S2.

Definition 2.3. If S ⊂ Z2 is a finite set, then x ∈ S is η-generated by S if every
η-coloring of S \ {x} extends uniquely to an η-coloring of S. A nonempty, finite,
convex subset of Z2 for which every boundary vertex is η-generated is called an
η-generating set.

We note that if S is an η-generating set and ~v ∈ Z2, then S + ~v is also an η-
generating set. Similarly if S is an η-generating set and α ∈ Xη, then S is also an
α-generating set.

Lemma 2.4. Suppose S ⊂ Z2 is finite, |S| ≥ 2, and x ∈ S. If x is η-generated by
S, then Dη(S \{x}) = Dη(S) + 1. If x is not η-generated by S, then Dη(S \{x}) ≤
Dη(S).

Proof. If x is η-generated by S, then Pη(S \ {x}) = Pη(S). Then

Dη(S \ {x}) = Pη(S \ {x})− |S|+ 1 = Pη(S)− |S|+ 1 = Dη(S) + 1.

If x is not η-generated by S, then Pη(S \ {x}) < Pη(S). Thus

Dη(S \ {x}) = Pη(S \ {x})− |S|+ 1 < Pη(S)− |S|+ 1 = Dη(S) + 1.

Since Dη(S \ {x}) and Dη(S) are both integers, Dη(S \ {x}) ≤ Dη(S). �

Corollary 2.5. Suppose S ⊂ Z2 is finite and p1, . . . , pj ∈ S. Then Dη(S \
{p1, . . . , pj}) ≤ Dη(S) + j.

2.2. Nonexpansiveness. We reformulate the definition of expansive, and more
importantly nonexpansive, in the context of a particular configuration η. While
this is a priori weaker than Boyle and Lind’s definition of expansiveness introduced
in Section 1.4, it is easy to check that they are equivalent in the symbolic setting:

Definition 2.6. A line ` ⊂ R2 is a nonexpansive line for η (or just a nonexpansive
line when η is clear from the context) if for all r ∈ R, there exist fr, gr ∈ Xη such
that fr 6= gr, but

fr(~u) = gr(~u) for all ~u ∈ Z2 such that d(~u, `) < r.

We say that ` is an expansive line for η (or just an expansive line) if it is not a
nonexpansive line.

If ` is a directed line, let H(`) ⊂ R2 be the half-plane whose (positively oriented)
boundary passes through the origin and is parallel to `. We say that a directed line
` is a nonexpansive direction for η (or just a nonexpansive direction when η is clear
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from the context) if there exist f, g ∈ Xη such that f 6= g but f�H(`) = g�H(`).

We say ` is an expansive direction for η (or just an expansive direction) if it is not
a nonexpansive direction for η.

Remark 2.7. The set of expansive lines (similarly expansive directions, nonexpan-
sive lines, and nonexpansive directions) is invariant under translations in R2.

More generally, the same definitions apply in an arbitrary subshift, and not just
the subshift generated by a single η. We use this to give an example to illustrate
the difference between expansive lines and expansive directions:

Example 2.8. Let X be the Ledrappier 3-dot system [7]:

X := {η ∈ {0, 1}Z
2

: η(x, y) + η(x+ 1, y) + η(x, y − 1) ≡ 0 (mod 2)}.

Then X is a closed subshift of {0, 1}Z2

.
Let η ∈ X, a ≤ b be integers, and let

S := {(x, y) ∈ Z2 : a ≤ y ≤ b}

be a horizontal strip in Z2. By the definition of X, the restriction of η to S extends
uniquely to the half-plane

{(x, y) ∈ Z2 : y ≤ b}.
It does not, however, extend uniquely to all of Z2, meaning that we cannot recover
η from its restriction to the strip S. As this holds for any horizontal strip (see [1,
Example 2.8]), the x-axis is a nonexpansive line for X.

Set

H− := {(x, y) ∈ Z2 : y ≤ 0};
H+ := {(x, y) ∈ Z2 : y ≥ 0}.

Taking the orientation on each of H− and H+ such that the interior is on the left,
the boundary of H− is a leftward-oriented horizontal line and the boundary of H+

is a rightward-oriented horizontal line. Fixing η ∈ X, we can recover η from its re-
striction to H+ (using the rules defining X) but cannot recover η from its restriction
to H−. Therefore the leftward orientation on the x-axis is a non-expansive direc-
tion for X, while the rightward orientation on the x-axis is an expansive direction
for X.

Expansive (and nonexpansive) lines are closely related to expansive (and nonex-
pansive) directions; this is clarified in Proposition 2.11.

We summarize properties of generating sets proved in [4] that we use here. As
the setting is slightly different, for completeness we include proofs:

Proposition 2.9 ([4], Lemmas 2.3 and 3.3). Suppose there exists n ∈ N such that
Pη(Rn,3) ≤ 3n. Then there exists an η-generating set S ⊂ Rn,3 with the property
that

if S ′ ⊂ S is nonempty and convex, then Dη(S ′) ≥ Dη(S) + 1.(1)

Moreover, for any nonexpansive direction `, there is a boundary edge w` ∈ E(S)
that is parallel to `.

(In fact this proposition holds for η such that there exist n, k ≥ 1 with Pη(n, k) ≤
nk, but we do not need this more general result in our setting.)
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Proof. By assumption, Dη(Rn,3) ≤ 0. Let S ⊂ Rn,3 be a convex set which is
minimal (with respect to the partial ordering by inclusion) among all convex subsets
of Rn,3 whose discrepancy is nonpositive. Since |A| ≥ 2, the discrepancy of a set
with a single element is |A| − 1 > 0, and so S contains at least two elements. In
particular for any x ∈ V (S), the set S \ {x} is nonempty and convex. If x ∈ V (S)
is not η-generated by S, then Dη(S \ {x}) ≤ Dη(S) by Lemma 2.4. Therefore, by
minimality of S, if x ∈ V (S) then x is η-generated by S. This establishes that S is
an η-generating set. Claim (1) follows from the minimality of S.

Finally, suppose ` is a directed line that is not parallel to any of the edges of S.
Without loss of generality, we can assume that ` points either southwest or south
(all other cases are similar). We claim that ` is expansive for η, thereby establishing
the second part of the proposition.

Suppose this does not hold. Let H ⊂ R2 be a half-plane whose (positively
oriented) boundary edge is parallel to `. Let `0 be the translation of ` that passes
through (0, 0) and for all t ∈ R, set `t := `0 + (t, 0). Since ` is nonexpansive for η,
there exist f, g ∈ Xη such that f 6= g but f�H = g�H. Let A := {~u ∈ Z2 : f(~u) 6=
g(~u)} and set

tmax := sup{t ∈ R : `t ∩A 6= ∅}.
Since f�H = g�H and ` points southwest or south, we have that tmax <∞. Since `
is not parallel to any of the edges of S, there is a vertex x` ∈ V (S) and a half-plane
whose boundary is parallel to ` such that S \ {x`} is contained in this half-plane
but x` is not. If `tmax

∩A 6= ∅, let ~umax ∈ `tmax
∩A. There is a translation of S that

takes x` to ~umax and S \{x`} is translated to the region on which f and g coincide.
But this is a contradiction of the fact that S is η-generating, as x` is η-generated by
S. If instead `tmax

∩A = ∅ let d be the distance from x` to the half-plane separating
x` from S \ {x`}. Let ~u ∈ A be a point such that d(~u, `tmax

) < d/2. Then there is
again a translation of S taking x` to ~u and S \ {x`} is translated to the region on
which f and g coincide. Once again, this is a contradiction of x` being η-generated.
Thus ` is an expansive direction for η, completing the proof. �

Corollary 2.10. Suppose there exists n ∈ N such that Pη(Rn,3) ≤ 3n and S is the
η-generating set constructed in Proposition 2.9. Then for any w ∈ E(S), we have

Dη(S \ w) ≥ Dη(S) + 1.

Proof. If E(S) 6= ∅, then conv(S) has positive area (recall our convention that if
conv(S) has zero area then the edge set is empty), and so by (1) we are done. �

Proposition 2.11. Suppose there exists n ∈ N such that Pη(Rn,3) ≤ 3n. If ` is
a nonexpansive line for η, then at least one of the orientations on ` determines a
nonexpansive direction for η. If ˜̀ is an expansive line for η, then both orientations
on ˜̀ determine expansive directions for η.

Proof. Assume ` is a nonexpansive line. For each r ∈ N, let fr, gr ∈ Xη be such
that fr 6= gr but fr(~u) = gr(~u) for all d(~u, `) < r. Let

R(r) := sup{R > 0: fr(~u) = gr(~u) for all d(~u, `) < R}.
Let ~vr ∈ Z2 be such that fr(~vr) 6= gr(~vr) and such that the distance d(~vr, `) ≤
R(r)+1. We have r ≤ R(r) ≤ d(~vr, `) ≤ R(r)+1 <∞. By passing to a subsequence,
choose r1, r2, . . . such that ~vri all lie in the same connected component of R2 \ `.
Define f̃ri = fri ◦ T~vri and similarly g̃ri = gri ◦ T~vri . Then f̃ri(0, 0) 6= g̃ri(0, 0)
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but f̃ri(~u) = g̃ri(~u) for all {~u ∈ Z2 : d(~u, ` − ~vri) < R(ri)}. The distance from the
set {~u ∈ Z2 : d(~u, ` − ~vri) < R(ri)} to the origin is at most 1, because d(~vri , `) ≤
R(ri) + 1. By compactness of Xη, and passing again to a subsequence (which, by
abuse of notation, we continue to call r1, r2, . . . ), we can assume that the colorings

f̃ri and g̃ri both converge. By construction, the limits disagree at (0, 0) but agree
on the set

∞⋂
i=1

∞⋃
j=i

{~u ∈ Z2 : d(~u, `− ~vrj ) < R(rj)},

which is a halfplane (of distance at most 1 from the origin) bordered by a translation
of `. This implies that at least one orientation on ` makes it into a nonexpansive
direction. This establishes the first part of the proposition.

Since half-planes contain arbitrarily wide strips, the second part of the proposi-
tion is immediate. �

Corollary 2.12. Suppose there exists n ∈ N such that Pη(Rn,3) ≤ 3n. If ` is a
nonexpansive line for η, then ` has rational slope.

Proof. Let ` be a nonexpansive line for η. By Proposition 2.11, at least one of the
orientations on ` determines a nonexpansive direction for η. By Proposition 2.9,
there exists an η-generating set S ⊂ Rn,3 and there is a (positively oriented) edge
w` ∈ E(S) parallel to `. The two endpoints of w` are both boundary vertices of S,
and so in particular are integer points in Rn,3. It follows that the line determined
by ` has rational slope. �

Proposition 2.11 shows that if ` is a nonexpansive line for η, then there is an
orientation on ` that determines a nonexpansive direction for η. We do not know, a
priori, that both orientations on ` determine nonexpansive directions for η. In the
sequel, this is a significant hurdle: we put considerable effort into the construction
of particular sets (Proposition 2.16) which can be used to show (Proposition 2.19)
that when there exists n ∈ N such that Pη(Rn,3) ≤ 3n, it is indeed the case that
both orientations of a nonexpansive line for η determine nonexpansive directions.

Proposition 2.13. Suppose there exists a finite, convex set S ⊂ Z2 and an edge
w ∈ E(S) such that

Dη(S \ w) > Dη(S).

Then there are at most |w ∩S|− 1 η-colorings of S \w that do not extend uniquely
to an η-coloring of S.

Proof. Since |S \ w| = |S| − |w ∩ S|,

Pη(S \ w)− |S|+ |w ∩ S| = Dη(S \ w) > Dη(S) = Pη(S)− |S|.

Therefore Pη(S) ≤ Pη(S\w)+|w∩S|−1. On the other hand, defining π : Wη(S)→
Wη(S \ w) to be the natural restriction, the number of η-colorings of S \ w that
extend non-uniquely to an η-coloring of S is the number of points in Wη(S \ w)
whose preimage under π contains more than one element. Since π is surjective, this
is at most |Wη(S)|−|Wη(S\w)|. In other words, it is at most Pη(S)−Pη(S\w). �

Proposition 2.14. Suppose there exists n ∈ N such that Pη(Rn,3) ≤ 3n. If ` is a
nonexpansive line for η, S ⊂ Z2 is a finite set, and x ∈ V (S) is η-generated by S,
then there is no translation of ` that separates x from conv(S \ {x}).
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Proof. The argument is a straightforward modification of the proof of (1) in Propo-
sition 2.9. �

2.3. Balanced sets. We define the types of sets that are used to show that under
the complexity assumption, both orientations of a nonexpansive line for η determine
nonexpansive directions:

Definition 2.15. Suppose ` is a directed line. A finite, convex set S ⊂ Z2 is
`-balanced if

(i) There is an edge w ∈ E(S) parallel to `;
(ii) Both endpoints of w are η-generated by S;
(iii) The set S satisfies Dη(S \ w) > Dη(S);
(iv) Every line parallel to ` that has nonempty intersection with S intersects

S in at least |w ∩ S| − 1 integer points.

Note that an `-balanced set is not necessarily an η-generating set.
Definition 2.15 is slightly less general than the definition of an `-balanced set

used in [4], where an `-balanced set is not necessarily assumed to contain an edge
parallel to ` (the first condition).

The main result of this section is Proposition 2.18, where we use balanced sets
to deduce the periodicity of certain elements of Xη. In [4], we relied on the stronger

assumption that Pη(Rn,k) ≤ nk
2 to show the existence of balanced sets (as well as

other uses related to the existence of generating sets with further properties). Due
to the simplified geometry available in rectangles of height 3, we are able to avoid
the stronger assumption.

We start by showing the existence of balanced sets:

Proposition 2.16. Suppose there exists n ∈ N such that Pη(Rn,3) ≤ 3n and
suppose that ` ⊂ R2 is a nonexpansive direction for η. If η is aperiodic, then there
exists an `-balanced subset.

Proof. Suppose ` is a nonexpansive direction for η. We make some simplifying
assumptions. First, if n = 1 then by the Morse-Hedlund Theorem [8], η is periodic
and so we can assume that n > 1. Second, if Pη(Rn,2) ≤ 2n, then by Sander and
Tijdeman’s Theorem [12], η is periodic and so we can assume that Pη(Rn,2) > 2n,
meaning that

(2) Dη(Rn,3) ≤ 0 < Dη(Rn,2).

Finally, we can assume that Pη(R(n−1),3) > 3n− 3, meaning that n is chosen to be
the minimal integer satisfying Pη(Rn,3) ≤ 3n.

We consider three cases depending on the direction of `: vertical, horizontal, and
neither vertical nor horizontal.

By Proposition 2.9, there exists an η-generating set S ⊂ Rn,3 and there is an
edge w ∈ E(S) parallel to `. If |w ∩ S| = 2, then S is `-balanced and we are done.
Thus it suffices to assume that |w ∩ S| ≥ 3.

Assume ` is vertical. Suppose that ` points downward (the case that ` points up-
ward is similar). Then since a vertical line cannot intersect a subset of Rn,3 in more
than three places, |w ∩ S| = 3. Observe that (0, 0) and (0, 2) are both η-generated
by Rn,3 since S can be translated into Rn,3 in such a way that w is translated to
the set {(0, 0), (0, 1), (0, 2)}. In this case Rn,3 is `-balanced.
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Assume ` is horizontal. Suppose that ` points leftward (the case that ` points
rightward is similar). For 0 ≤ a ≤ b ≤ n− 1, set

S[a,b] := Rn,2 ∪ {(x, 2) : a ≤ x ≤ b} .

Let S̃ be a minimal set of this form (with respect to the partial ordering by inclusion)

satisfying Dη(S̃) ≤ Dη(Rn,3); say S̃ = S[a0,b0] for some a0 ≤ b0. Suppose first that

a0 = b0. If (a0, 2) is η-generated by S̃, Proposition 2.14 contradicts the fact that the
leftward horizontal is a nonexpansive direction for η. If (a0, 2) is not η-generated

by S̃, then Dη(Rn,2) ≤ Dη(S̃) ≤ Dη(Rn,3); a contradiction of (2). Therefore we

can assume a0 < b0 and Dη(S̃) ≤ Dη(Rn,3) < Dη(Rn,2). By minimality and

Lemma 2.4, the points (a0, 2) and (b0, 2) must both be η-generated by S̃. In this

case S̃ is an `-balanced set.

Assume ` is neither vertical nor horizontal. Making a coordinate change of the
form (x, y) 7→ (±x,±y) if necessary, we can assume that ` points southwest. A line
parallel to ` cannot intersect Rn,3 in more than three places and so |w∩S| = 3. Since
` is not horizontal, w ∩ S can have at most one integer point at any y-coordinate
and thus w ∩ S has exactly one integer point at each of the three y-coordinates
in Rn,3. Therefore there exists an integer a > 0 such that (−a,−1) is parallel to
`. It follows immediately that a ≤ n/2. Since a translation of any η-generating
set is also η-generating, without loss of generality we can assume the bottom-most
integer point on w is (0, 0).

We claim that any η-coloring of Rn,3 extends uniquely to an η-coloring of the
set Rn,3 ∪ {(−1, 0), (−2, 0), . . . , (−a, 0)}. Set T0 := Rn,3 and for 0 < i ≤ a, define

Ti := Rn,3 ∪ {(−1, 0), (−2, 0), . . . , (−i, 0)}.

Then the set S−(i, 0) is contained in Ti and (S\{(0, 0)})−(i, 0) is contained in Ti−1.
Since S − (i, 0) is an η-generating set, the color of vertex (−i, 0) can be deduced
from the coloring of S \ {(0, 0)} − (i, 0). Thus for 0 < i ≤ a, every η-coloring of
Ti−1 extends uniquely to an η-coloring of Ti. Inductively, every η-coloring of Rn,3
extends uniquely to an η-coloring of Ta and the claim follows (see Figure 1).

Therefore, Pη(Ta) = Pη(Rn,3) and we obtain

Dη(Ta) = Dη(Rn,3)− a ≤ −a.

Observe that any line parallel to ` that intersects {(0, 2), (1, 2), . . . , (a− 1, 2)} must
intersect Ta in precisely one integer point. Inductively applying Proposition 2.14,
we have that for each 0 ≤ i < a, the point (i, 2) is not η-generated by the set
Ta \ {(0, 2), . . . , (i− 1, 2)} and so Dη(Ta \ {(0, 2), . . . , (i− 1, 2)}) ≤ Dη(Ta). Setting

T̃a := Ta \ {(0, 2), (1, 2), . . . , (a− 1, 2)}, it follows that Dη(T̃a) ≤ −a. Define

S0 := T̃a \ {(0, n− a), (0, n− a+ 1), . . . , (0, n− 1)}.

By Corollary 2.5, Dη(S0) ≤ Dη(Ta) + a ≤ 0. (See Figure 1). Moreover, every line
parallel to ` that has nonempty intersection with S0 intersects it in at least two
places.

We claim that S0 contains an `-balanced subset. Let w0 ∈ E(S0) be the edge
of S0 that is parallel to `, and let `0 be the translation of ` that has nonempty
intersection with w0.
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S

The η-generating set S is shaded.

T1

The shaded region T1 contains S−(1, 0).

T2

The shaded region T2 contains S−(2, 0).

T̃2

Points not η-generated are removed.

S0

Rational lines parallel to ` intersecting
the shaded set S0 contain at least 2 in-
teger points.

Figure 1. Steps in the proof of Proposition 2.16 when ` is neither
vertical nor horizontal.

For 0 < i ≤ n − 1, let `i := `0 + (i, 0). Then for all i, `i ∩ S0 6= ∅ and every
element of S0 is contained in exactly one of `0, . . . , `n−1. Let

Ui :=

n−1⋃
j=i

`j ∩ S0

and observe that U0 = S0. Thus Dη(U0) ≤ 0. If Dη(Un−1) ≤ 0, then Un−1 contains
an η-generating set. Since Un−1 is a convex subset of a single line, the Morse-
Hedlund Theorem [8] implies that η is periodic, a contradiction. Therefore we have
that Dη(Un−1) > 0 and there is a maximal index 0 ≤ imax < n − 1 such that
Dη(Uimax

) ≤ 0.
Write `imax ∩ S0 = {q1, q2, q3}, where q1 is the bottom-most element and q3 is

the top-most. (Note that we have reduced to the case that |w ∩S| = 3.) If both q1
and q3 are η-generated by Uimax

, then Uimax
is `-balanced and we are done (here we

are using the fact that every line parallel to ` that has nonempty intersection with
S0 intersects it in at least two places). Otherwise, suppose q3 is not η-generated by
Uimax (we argue similarly if q1 is not η-generated). Set

S1 := Uimax \ {q3}.
Since this removes a non-generated vertex from a set of nonpositive discrepancy, it
follows that Dη(S1) ≤ Dη(Uimax) ≤ 0. We claim that both q1 and q2 are η-generated
by S1. Say, for example, that q2 is not η-generated by S1. Then Dη(S1 \ {q2}) ≤ 0
and q1 is η-generated by S1\{q2}, as otherwise Dη(Uimax+1) ≤ Dη(S1) ≤ Dη(Uimax

)
contradicting maximality of imax. By Proposition 2.14, this contradicts the fact that
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` is a nonexpansive direction for η. The same argument holds if q1 is not η-generated
and so we conclude that both q1 and q2 are η-generated by S1. Therefore S1 is an
`-balanced set. �

Definition 2.17. Given a nonexpansive direction ` and an `-balanced set S`, define
the associated border B`(S`) to be the thinnest strip with edges parallel to ` that
contains S`. If w` ∈ E(S`) is the edge of S` that is parallel to `, then B`(S

` \ w`)
denotes the thinnest strip with edges parallel to ` that contains S` \ w`.

Note that if η is aperiodic and there exists n ∈ N satisfying Pη(Rn,3) ≤ 3n, then
Proposition 2.16 guarantees the existence of the set S` and the boundary edge w`.

Proposition 2.18. Suppose η is aperiodic, there exists n ∈ N such that Pη(Rn,3) ≤
3n, ` is a nonexpansive direction for η, and H is a half-plane whose boundary is
parallel to `. Then if f, g ∈ Xη are such that f 6= g but f�H = g�H, then both f
and g are periodic with period vector parallel to `.

Furthermore, if in addition there exists an `-balanced set S`, w` ∈ E(S`) is the
edge of S` parallel to `, and B`(S

`) and B`(S
` \w`) are the associated borders, then

for any ~u ∈ Z2:

(i) If the restriction (T ~uf)�B`(S` \ w`) does not extend uniquely to an η-

coloring of B`(S`), then the period of (T ~uf)�B`(S` \ w`) is at most |w` ∩
Z2| − 1;

(ii) If the restriction (T ~uf)�B`(S` \ w`) extends uniquely to an η-coloring of

B`(S`), then the period of (T ~uf)�B`(S` \ w`) is at most 2|w` ∩ Z2| − 2.

Proof. We assume that ` is a nonexpansive direction and there exists n ∈ N with
Pη(Rn,3) ≤ 3n. Let S` be an `-balanced set (which exists by Proposition 2.16),
w` ∈ E(S`) be the edge of S` parallel to ` and let B`(S

`) and B`(S
` \ w`) be

the associated borders. By definition, S` \ w` is contained in B`(S` \ w`). Find
A ∈ SL2(Z) such that A(`) points vertically downward and define η̃ : Z2 → A by

η̃ = η◦A−1 and S̃` = A(S`). Observe that η is aperiodic if and only if η̃ is aperiodic,

and that S̃` is A(`)-balanced for η̃.

Let f, g ∈ Xη be as in the statement of the proposition. Let f̃ := f ◦ A−1,

g̃ := g ◦ A−1, and w̃` := A(w`). It suffices to show that for any ~u ∈ Z2 , f̃ , g̃ are

vertically periodic and that (T ~uf̃)�A(B`(S` \ w`)) satisfies the claimed bounds on

its period.
The proof proceeds in three steps. First we show that the restriction of f to the

strip B`(S` \w`) is periodic. Next we use this fact to show that f itself is periodic.
Finally we use the periodicity of f (with some as yet unknown period) to establish
the claimed bounds on the period of (T ~uf)�B`(S` \ w`).

Step 1: Showing f�B`(S` \ w`) is periodic. For i ∈ Z, let

Hi := {(x, y) ∈ Z2 : x ≥ i}.

By translating the coordinate system if necessary and using the nonexpansiveness
of `, we can assume that A(H) = H0. Furthermore, there exists a translation (i, 0)

such that (T−(i,0)f̃)�H0
= (T−(i,0)g̃)�H0

, but (T−(i,0)f̃)�H−1 6= (T−(i,0)g̃)�H−1.

Without loss of generality, we can assume that i = 0. Set B := A(B`(S` \w`)) and
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without loss of generality, assume that B ⊂ H0 and B 6⊂ H1. Choose L ∈ N such
that

(3) B =
{

(x, y) ∈ Z2 : 0 ≤ x < L
}
.

For i ∈ Z, set

Ci := S̃` + (0, i) and Di := S̃` \ w̃` + (0, i).

We claim that for all i ∈ Z, the η̃-coloring f̃�Di
does not extend uniquely to an

η̃-coloring of Ci. If, on the other hand, it does extend uniquely, then f̃�B extends
uniquely to an η̃-coloring of B ∪ Ci for some i ∈ Z. Since any translation of an
`-balanced set is also `-balanced, the top-most vertex of the edge of Ci+1 parallel to
A(`) is η̃-generated by Ci+1. This is the only element of Ci+1 that is not contained

in B ∪ Ci, and so f̃�B extends uniquely to an η-coloring of B ∪ Ci ∪ Ci+1. By

induction, f̃�B extends uniquely to an η-coloring of B ∪
⋃
j≥i Cj . The bottom-

most vertex of the edge of Ci parallel to A(`) is also η-generated by Ci, and so a

similar induction argument shows that f̃�B extends uniquely to an η̃-coloring of
B∪

⋃
j∈Z Cj . This contradicts the fact that f̃�H0

= g̃�H0
but f̃�H−1 6= g̃�H−1 and

so the claim follows. Equivalently, for all j ∈ Z, the η̃-coloring (T (0,j)f̃)�D0
does

not extend uniquely to an η̃-coloring of C0.

By Proposition 2.13, there are at most |w̃`∩S̃`|−1 = |w`∩S`|−1 many colorings
of D0 that extend non-uniquely to an η̃-coloring of C0. Thus∣∣∣{(T (0,i)f̃)�D0

: i ∈ Z
}∣∣∣ ≤ |w` ∩ S`| − 1.

For each integer 0 ≤ x < L, where L is defined as in (3), let px be the bottom-most

element of S̃` ∩ {(x, j) : j ∈ Z}. Set

V := {px : 0 ≤ x < L} and U :=

|w`∩S`|−2⋃
y=0

V + (0, y).

Since S̃` is A(`)-balanced, U ⊂ D0. (See Figure 2). Define α : Z → Wη(V ) by

α(j) := (T (0,j)f̃)�V . Patterns of the form α�{m,m+ 1, . . . ,m+ |w` ∩ S`| − 2} are

in one-to-one correspondence with colorings of the form (T (0,m)f̃)�U . The number

of such coloringss is at most the number of coloringss of the form (T (0,m)f̃)�D0
,

which is at most |w` ∩ S`| − 1. By the Morse-Hedlund Theorem [8], α is periodic

with period at most |w` ∩S`| − 1. Therefore f̃�B is vertically periodic with period
at most |w` ∩ S`| − 1 as well.

Step 2: Showing f is periodic. For i ∈ Z, set

Bi := B + (i, 0).

We claim that for any i ≥ 0, we have that f̃�B−i is vertically periodic and the
periods satisfy the bounds in the statement of the proposition. For i = 0, we have
already shown that f̃�B0

is vertically periodic of period at most |w` ∩ S`| − 1. We

proceed by induction and suppose that for all 0 ≤ i < k, we have that f̃�B−i is
periodic and

(i) The period of f̃�B−i is at most 2|w` ∩ S`| − 2;

(ii) If for all j ∈ Z, the η̃-coloring (T−(−i,j)f̃)�S̃` \ w̃` does not extend uniquely

to an η̃-coloring of S̃`, then the period of f̃�B−i is at most |w` ∩ S`| − 1.
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Figure 2. The shaded region represents S, the union of the boxes
is U , and the union of the bottom most elements of the boxes is
the set V . Step 1 of the proof shows that the wavy region B is
periodic.

First we show that f̃�B−k is vertically periodic of period at most 2|w` ∩S`| − 2.
Suppose there exists j ∈ Z such that

(4) (T−(−k+1,j)f̃)�S̃` \ w̃` extends uniquely to an η-coloring of S̃`.

Let p ≤ 2|w`∩S`|−2 be the minimal vertical period of f̃�B−k+1
. Then for allm ∈ Z,

(T−(−k+1,j+mp)f̃)�S̃` extends uniquely to an η̃-coloring of S̃` and in particular all

the colorings of the form (T−(−k+1,j+mp)f̃)�S̃` coincide. By periodicity of f̃�B−k+1
,

all of the colorings (T−(−k+1,j+mp+1)f̃)�S̃` \ w̃` coincide and so all of the colorings

(T−(−k+1,j+mp+1)f̃)�S̃` coincide except possibly on the top-most element of w̃`.

Since S̃` is A(`)-balanced, the top-most element of w̃` is η-generated by S̃`, and so
the colorings coincide on the top-most element of w̃` as well. By induction, for any
q with 0 ≤ q < p and all m ∈ Z, all colorings of the form (T−(−k+1,j+mp+q)f̃)�S̃`
coincide. This implies that f̃�B−k is periodic and that its period divides the period

of f̃�B−k+1
.

Otherwise, if (4) does not hold, we can suppose that for all j ∈ Z, the coloring

(T−(−k+1,j)f̃)�S̃` \ w̃` does not extend uniquely to an η̃-coloring of S̃`. Then by

applying the Morse-Hedlund Theorem as in Step 1, the vertical period of f̃�B−k+1

is at most |w` ∩S`| − 1. As above, let 0 < p ≤ |w` ∩S`| − 1 be the minimal vertical

period of f̃�B−k+1
. Let π : Wη̃(S̃`)→Wη̃(S̃` \ w̃`) be the natural restriction map.

As in Proposition 2.13, there are at most Pη̃(S̃`)−Pη̃(S̃`\w̃`) elements ofWη̃(S̃`\w̃`)
whose pre-image under π contains more than one element; say the number of such

elements is Q. There are at most Q + Pη̃(S̃`) − Pη̃(S̃` \ w̃`) elements of Wη̃(S̃`)
where π is not one-to-one. That is, there are at most

2(Pη̃(S̃`)− Pη̃(S̃` \ w̃`)) ≤ 2|w` ∩ S`| − 2
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many η-colorings of S̃` whose restrictions to S̃` \ w̃` do not extend uniquely to an

η-coloring of S̃`.
Each of the colorings (T−(−k+1,j)f̃)�S̃` is such a coloring. By the pigeonhole

principle, there exist 0 ≤ j1 < j2 < 2|w` ∩ S`| − 2 such that

(5) (T−(−k+1,j1)f̃)�S̃` = (T−(−k+1,j2)f̃)�S̃`.

In particular, this implies that

(6) (T−(−k+1,j1)f̃)�S̃` \ w̃` = (T−(−k+1,j2)f̃)�S̃` \ w̃`.

Since S̃` is A(`)-balanced, every vertical line with nonempty intersection with S̃`
contains at least |w`∩S`|−1 ≥ p integer points. Therefore, it follows from (6) that
j2− j1 is a multiple of p. Using induction as previously, it follows from (5) that we
have

(T−(−k+1,j1+j)f̃)�S̃` = (T−(−k+1,j2+j)f̃)�S̃`

for all j ∈ Z. In particular f̃�B−k+1 ∪B−k is vertically periodic of period j2− j1 ≤
2|w` ∩ S`| − 2.

By induction, for all k > 0 we have that f̃�B−k is vertically periodic with
the bounds claimed in the proposition. We consider two cases, depending if the
direction antiparallel to ` is nonexpansive or is expansive. If this direction is non-
expansive, let T ` ⊂ Rn,3 be a set which is balanced in the direction antiparallel to

` (such a set exists by Proposition 2.16). Since the restriction of f̃ to the vertical
half-plane {(x, y) ∈ Z2 : x ≤ 0} is periodic, a similar induction argument (using T `
in place of S`) shows that f̃ is vertically periodic on all of Z2, where the precise
bounds on the period are yet to be determined. (A priori, these bounds depend
on the number of integer points on the edge of T ` that is antiparallel to `.) If the
directional antiparallel to ` is expansive, then there exist a, b ∈ N such that every
η̃-coloring extends the rectangle [−a,−1]× [−b, b] uniquely to an η̃-coloring of this
rectangle union {(0, 0)}. Thus every η̃-coloring of the strip [−a,−1] × Z extends
uniquely to the right. It is easy to check that any vertically periodic coloring of
this strip with period p extends uniquely to the right to a periodic coloring, with
period dividing p.

Step 3: Showing that the period of f satisfies the claimed bounds. We are left with
showing that f̃�Bk satisfies the claimed bounds for all k ∈ Z. We remark that the

argument showing that f̃�B−k is vertically periodic with the claimed bounds relied

only the fact that f̃�B0
was vertically periodic of period at most |w`∩S`|−1. Thus

it suffices to show that for infinitely many k > 0, the vertical period of f̃�Bk is at

most |w` ∩ S`| − 1, since then the previous argument shows that the half-plane to
the left of such a Bk satisfies the claimed bounds. As before, it further suffices to
show that for infinitely many k > 0, the η-coloring f̃�Bk does not extend uniquely
to an η-coloring of Bk ∪Bk−1.

Since f̃�Bk is vertically periodic for all k and there is a global common period
(each vertical arises from f), there are only finitely many colorings B0 that are of

the form (T−(k,0)f̃)�B0
for some k ∈ Z. Say there exists an integer kmin ≥ 0 such

that (T−(k,0)f̃)�B0
extends uniquely to an η-coloring of B0 ∪B−1 for all k > kmin

and without loss of generality assume that kmin is the minimal integer with this
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property. Let K ≥ kmin be the smallest integer for which there exists i ∈ N such
that

(T−(K+i,0)f̃)�B0
= (T−(K,0)f̃)�B0

(K exists by the pigeonhole principle). Then by definition of kmin, there is a unique

extension of (T−(K+i,0)f̃)�B0
to an η̃-coloring of B0 ∪B−1. In particular,

(7) (T−(K−1,0)f̃)�B0
= (T−(K+i−1,0)f̃)�B0

.

If K > kmin, then (7) contradicts the minimality of K. If K = kmin the fact that

(T−(K+i,0)f̃)�B0
= (T−(K,0)f̃)�B0

extends uniquely to an η̃-coloring of B0 ∪ B1

contradicts the definition of kmin. Either case leads to a contradiction, and so we
conclude that no such integer kmin exists. The bounds on f̃�Bk claimed in the
proposition follow.

The analogous argument applied to g implies the periodicity of g. �

Proposition 2.19. Assume η is aperiodic and there exists n ∈ N such that Pη(Rn,3) ≤
3n. If ` is a nonexpansive direction for η, then the direction antiparallel to ` is also
nonexpansive for η. In particular, if S is an η-generating set, there is an edge
ŵ` ∈ E(S) antiparallel to `.

Proof. We proceed by contradiction. Suppose ` is nonexpansive but the antiparallel

direction ̂̀is expansive for η. By Corollary 2.12, ` is a rational direction. Recall (see
Definition 2.6) that since ` is a nonexpansive direction for η, there exist f, g ∈ Xη

and a half-plane H whose (positively oriented) border is parallel to ` such that
f�H = g�H but f 6= g. Without loss of generality, we assume that the border
of H passes through the origin. By Proposition 2.18, f and g are both periodic
η-colorings of Z2 and they both have (nonzero) period vectors parallel to `.

Choose A ∈ SL2(Z) such that A(`) points vertically downward so that A(H) =

{(x, y) ∈ Z2 : x ≥ 0}. Note that since ̂̀ is an expansive direction for η, A(̂̀) is an

expansive direction for (η ◦A−1). The (η ◦A−1)-expansiveness of A(̂̀) means there
exist a, b ∈ N such that every (η◦A−1)-coloring of [−a+1, 0]× [−b+1, b−1] extends
uniquely to an (η◦A−1)-coloring of the larger set [−a+1, 0]×[−b+1, b−1]∪{(1, 0)}.
(Otherwise, we can define rectangles QR = [−R + 1, 0] × [−R + 1, R − 1] and for
every R ≥ 1 there exist functions fR, gR ∈ Xη◦A−1 such that fR�QR = gR�QR and

fR(1, 0) 6= gR(1, 0). Passing to a limit we obtain f∞, g∞ ∈ Xη◦A−1 that agree on the
half plane {(x, y) ∈ Z2 : x ≤ 0} but disagree at (1, 0), contradicting expansiveness.)

Then both f̃ = f ◦A−1 and g̃ = g ◦A−1 are vertically periodic and agree on the
vertical half plane A(H). At most one of f̃ and g̃ can be horizontally periodic, so

without loss of generality assume that f̃ is not horizontally periodic. Let C be the
set of f̃ -colorings of the strip V := [−a+ 1, 0]× (−∞,∞). Vertical periodicity of f̃
guarantees that C is finite. We produce a coloring α : Z→ C by coloring the integer
i with the color (T (−i,0)f̃)�V . Since every η-coloring of [−a+ 1, 0]× [−b+ 1, b− 1]
extends uniquely to an η-coloring of [−a+ 1, 0]× [−b+ 1, b− 1] ∪ {(1, 0)}, we also
have that every η-coloring of V extends uniquely to an η-coloring of V ∪(V +(1, 0)).
Therefore for any i ∈ Z, the α-color of {i, i+ 1, . . . , i+ a− 1} uniquely determines

the α-color of i+ a. Therefore α is periodic and hence f̃ is horizontally periodic; a

contradiction. Thus ̂̀must be nonexpansive for η.
By Proposition 2.9, there is an edge ŵ` ∈ E(S) antiparallel to `. �
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Corollary 2.20. Assume that η is aperiodic and there exists n ∈ N such that
Pη(Rn,3) ≤ 3n. Let S ⊂ Rn,3 be an η-generating set satisfying (1). Then for every
nonhorizontal, nonexpansive direction `, S is `-balanced.

If ` is horizontal and nonexpansive, then S is either `-balanced or ̂̀-balanced,

where ̂̀ is the antiparallel direction.

Proof. Assume that ` is a nonhorizontal and nonexpansive direction. We check the
four conditions of Definition 2.15. The first condition follows from Proposition 2.9,
the second is immediate from the definition of an η-generating set and the third
follows since S satisfies (1). If |w ∩ S| = 2, then the fourth condition follows since
every line with nonempty intersection with S intersects in at least one point. If
|w∩S| = 3, then ` is either vertical or determines a line with slope of the form 1/a
for some integer a > 0. By Proposition 2.19, there exists ŵ̀∈ E(S) antiparallel to
`. Since both endpoints of ŵ̀ are boundary vertices of S, |ŵ̀∩ S| ≥ 2. Therefore
any line parallel to ` that has nonempty intersection with S, intersects S in at least
two integer points.

If ` is horizontal, let n be the smaller of the number of integer points on the top
and bottom edges of S. By convexity of S, the middle line has length r ≥ n for
some r ∈ R. Thus the middle line contains at least brc ≥ n integer points, and so

S is balanced for either ` or ̂̀. �

Corollary 2.21. Assume there exists n ∈ N such that Pη(Rn,3) ≤ 3n. Suppose ` is

an oriented rational line in R2, ̂̀ is the antiparallel line, S` is an `-balanced set, Ŝ`
is an ̂̀-balanced set, w` ∈ E(S) is the edge parallel to ` and B ⊂ Z2 is the thinnest
bi-infinite strip with edges parallel and antiparallel to ` that contains S` \ w`. If
η�B is periodic, then η is periodic with period vector parallel to `.

Proof. Let S` be an `-balanced set and let w` ∈ E(S) be the associated edge
and B the associated strip. The argument is nearly identical to the proof of Step
2 of Proposition 2.18 and so we just summarize the differences. Maintaining the
notation in that proof, if there exists i ∈ Z such that η̃�Bi does not extend uniquely

to an η-coloring of Bi ∪Bi−1, then η̃�Bi is periodic of period at most |w` ∩ S`| − 1
and the remainder of the induction is identical. Otherwise, for every i ∈ Z, the
coloring η̃�Bi extends uniquely to an η-coloring of Bi ∪ Bi−1. By the pigeonhole

principle and the fact that S` is `-balanced, as in Step 2 of Proposition 2.18, it
follows that whenever η̃�Bi is vertically periodic, η̃�Bi−1 is vertically periodic of
period dividing that of η̃�Bi. This establishes the result for the restriction of η̃ to⋃∞
j=0Bi−j . The restriction to the other half-plane follows a similar argument using

the antiparallel line ̂̀ and associated ̂̀-balanced set Ŝ` instead of S`. �

Corollary 2.22. Suppose there exists n ∈ N such that Pη(Rn,3) ≤ 3n and f ∈ Xη.
Suppose ` is a nonexpansive direction for η, ~u ∈ Z2 is the shortest integer vector
parallel to `, S is an `-balanced set, and w ∈ E(S) is the edge parallel to `. Let
B`(S \ w) be the intersection of Z2 with all lines parallel to ` that have nonempty
intersection with S \w. Finally, suppose there exists R ∈ N such that for all r ≥ R,
(T r·~uf)�S \ w does not extend uniquely to an η-coloring of S. Then the restriction

of f to the semi-infinite strip ⋃
r≥R

T−r·~u(S \ w)
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is eventually periodic with period vector parallel to ~u and period at most |w∩S|−1.
Moreover, there exists 0 ≤ I < |w ∩ S| − 1 such that the restriction of f to the
semi-infinite strip ⋃

r≥R+I

T−r·~u(S \ w)

is periodic.

Proof. The proof is almost identical to Step 1 of Proposition 2.18. Define

α : N→ {(T r·~uf)�S \ w : r ≥ R}

by setting α(i) := (T (R+i−1)·~uf)�S \ w. As in Proposition 2.18, we have that

the number of colorings of the form α�{m,m+ 1, . . . ,m+ |w ∩ S| − 2} is at most

|w ∩ S| − 1. The one-sided version of the Morse-Hedlund Theorem [8] shows that
α is eventually periodic with period at most |w ∩S|− 1 and is such that the initial
portion has length at most |w ∩ S| − 1. �

Corollary 2.23. Assume there exists n ∈ N such that Pη(Rn,3) ≤ 3n. Suppose ` is
an oriented rational line and there exists an `-balanced set S`. Let w` ∈ E(S`) be the
edge parallel to ` and suppose T ⊂ Z2 is an infinite convex set with a semi-infinite
edge W parallel to `. Let

U :=
{
~u ∈ Z2 : (S` \ w`) + ~u ⊂ T and w` + ~u 6⊂ T

}
.

If η�(S \ w`) + U is periodic with period vector parallel to `, then η�S + U is periodic

with period vector parallel to `. Moreover if for all ~u ∈ U the coloring (T ~uη)�S \ w`
does not extend uniquely to an η-coloring of S, then the period of η�(S \ w`) + U is

at most |w` ∩S`|− 1 and the period of η�S + ~u is at most 2|w` ∩S`|− 2. Otherwise
the period of η�S + ~u is equal to the period of η�(S \ w`) + U .

Proof. This follows from the Morse-Hedlund Theorem and the pigeonhole principle,
as in Steps 2 and 3 of Proposition 2.18, and in Corollary 2.22. �

3. complexity with multiple nonexpansive lines

In this section, we show that the complexity assumption of the existence of
n ∈ N such that Pη(Rn,3) ≤ 3n is incompatible with the existence of more than
one nonexpansive line for η.

We assume throughout this section that:

Xη has at least two nonexpansive lines.(H1)

There exists n ∈ N such that Pη(n, 3) ≤ 3n.(H2)

If η is periodic, let ~u ∈ Z2 be a period vector and consider any line ` that is not
parallel to ~u. By taking a neighborhood of ` wide enough to include `± ~u, we have
that ` is expansive. Thus every line apart from possibly the direction determined
by ~u is expansive, so there is at most one nonexpansive line. Thus Hypothesis (H1)
implies that

(8) η is aperiodic.

We begin with some general facts about the shape of an η-generating set. By
Proposition 2.9, if S is an η-generating set, then the boundary ∂S contains an
edge parallel to each nonexpansive direction. By Proposition 2.19, whenever `
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is a nonexpansive direction, the direction antiparallel to ` is also a nonexpansive
direction. Since S ⊂ Rn,3, ∂S cannot consist of more than six edges (at most two
edges are horizontal and the others connect integer points in Rn,3 with different
y-coordinates). Thus there are at most three nonexpansive lines for η, and each
orientation on each line determines a nonexpansive direction.

We start with a construction of a large convex set that is used in Propositions 3.4
and 3.7 to show that η cannot have multiple nonexpansive lines while also having
low complexity.

As noted, we have at most three nonexpansive lines for η. Let

(9) `1, `2 ⊂ R2 or `1, `2, `3 ⊂ R2 denote the nonexpansive lines for η,

depending if there are 2 or 3 nonexpansive lines. We write all statements for three
nonexpansive lines, with the implicit understanding that when there are only 2
nonexpansive lines, we remove any reference to `3.

Without loss of generality, we can assume that all `i pass through the origin.
By Corollary 2.12, we can assume that the nonexpansive lines are rational lines
and without loss of generality we can assume that `1, `3 are not horizontal. By
Proposition 2.19, any choice of orientation on `1, `2, `3 determines nonexpansive
directions for η. For the remainder of this construction, we make a slight abuse of
notation and view `1, `2, `3 as directed lines that determine nonexpansive directions.

Let S ⊂ Rn,3 be an η-generating set. By Proposition 2.9, there exist edges
w1, w2, w3 ∈ E(S) parallel to `1, `2, `3, respectively. By Proposition 2.19, there
exist ŵ1, ŵ2, ŵ3 ∈ E(S) such that wi is antiparallel to ŵi, for i = 1, 2, 3. By
Corollary 2.20, since w1 and w3 are not horizontal, we have that S is w1, ŵ1, w3

and ŵ3-balanced. If w2 is not horizontal, then again applying Corollary 2.20, we
have that S is both w2 and ŵ2-balanced. If w2 is horizontal, then S is balanced for
at least one of w2 and ŵ2. So, without loss of generality, we can assume that

S is w1, ŵ1, w3, ŵ3 and w2-balanced.

Let H ′0 = H(`1), and we recall that this denotes the half-plane with boundary
parallel to `1 whose boundary passes through the origin. Let H ′−1 be the smallest
half-plane strictly containing H ′0 whose boundary contains an integer point (this is
well-defined for any rational line `1). Since `1 is a nonexpansive direction, there
exist f, g ∈ Xη such that f�H ′0 = g�H ′0 but f�H ′−1 6= g�H ′−1. Since `2 is not

parallel to `1 and f�H ′0 = g�H ′0, at most one of f�H ′−1 and g�H ′−1 extends to

a Z2-coloring that is periodic with period vector parallel to `2. Without loss of
generality, suppose f�H ′−1 is an η-coloring of H ′−1 which cannot be extended to a

periodic η-coloring of Z2 with a period vector parallel to `2. By Proposition 2.18, f
is periodic with period vector parallel to `1. Translating if needed, we can assume
that (w1 ∩ Z2) ⊂ H ′−1 \H ′0. It follows that S ⊂ H ′−1 (recall that the boundaries of
both S and H ′−1 are positively oriented).

To make the constructions clearer, it is convenient to make a change of coordi-
nates such that `1 points vertically downward. Since `1 has rational slope, we can
choose A ∈ SL2(Z) such that A(`1) points vertically downward. Define

(10) η̃ := η ◦A−1; f̃ := f ◦A−1; S̃ := A(S),

and

(11) ˜̀
i := A(`i), w̃i := A(wi) and ̂̃wi := A(ŵi), for i = 1, 2, 3.
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Then for any finite, nonempty set T ⊂ Z2, we have Dη(T ) = Dη̃(A(T )). It follows
that η̃ is aperiodic and
(12)

f̃ is vertically periodic (say with minimal period p) and is not doubly periodic.

Further,

(13) S̃ is an η̃-generating set

and

(14) S̃ is w̃1, ̂̃w1, w̃3, ̂̃w3-balanced and is balanced for at least one of w̃2 and ̂̃w2.

For i ∈ Z, define

Hi :=
{

(x, y) ∈ Z2 : x ≥ i
}
.

Note that H0 = A(H ′0) and H−1 = A(H ′−1). For i ∈ N, let Bi be a vertical strip of
width i defined by

(15) Bi := H−1 \Hi−1

and B̄i be the vertical sub-strip of width i− 1 defined by

B̄i := H0 \Hi−1.

Let

(16) d ∈ N be the number of distinct vertical lines passing through S̃

and note that S̃ ⊂ Bd and (S̃ \ w̃1) ⊂ B̄d.
We claim there are infinitely many integers x ≥ 0 such that

(17) f̃�B̄d + (x, 0) does not extend uniquely to an η̃-coloring of Bd + (x, 0).

By construction, x = 0 is such an integer. If there are not infinitely many such
integers, let xmax denote the largest such integer. By (12), f̃ is vertically periodic

and there are only finitely many colorings of the form (T (x,0)f̃)�B̄d; say there are
P such colorings. By the pigeonhole principle, there are distinct integers x1, x2 ∈
{xmax + 1, . . . , xmax + P + 1} such that

(T (x1,0)f̃)�B̄d = (T (x2,0)f̃)�B̄d;

without loss of generality assume that x1 > xmax is the smallest integer for which
there exists x2 with this property. Since (T (x2,0)f̃)�B̄d extends uniquely to an

η̃-coloring of Bd, so does (T (x1,0)f̃)�B̄d. Therefore

(T (x1−1,0)f̃)�B̄d = (T (x2−1,0)f̃)�B̄d.

Since x2−1 > xmax, we have that (T (x2−1,0)f̃)�B̄d extends uniquely to an η̃-coloring

of Bd. Thus so does (T (x1−1,0)f̃)�B̄d, and since (T (xmax,0)f̃)�B̄d does not have this
property, we must have that x1 − 1 > xmax. However, this contradicts the choice
of x1 as the smallest integer with this property and the claim follows.

Let 0 = x1 < x2 < x3 < . . . be a sequence integers satisfying (17). Then

since S̃ is w̃1-balanced by (14) and for all i ∈ N, f�A−1(B̄d + (xi, 0)) satisfies

condition (i) in Proposition 2.18, we have that f�A−1(B̄d + (xi, 0)) has period at

most |w1 ∩ S| − 1 = |w̃1 ∩ S̃| − 1. It follows that for all i ∈ N, f̃�B̄d + (xi, 0) is

vertically periodic of period at most |w̃1 ∩ S̃| − 1.
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Claim 3.1. For all i ≥ d and j ∈ Z, there is no finite set Fi ⊂ Bi such that
(T (0,j)f̃)�Fi extends uniquely to an η̃-coloring of Bi.

Proof. We proceed by contradiction. If not, suppose Fi ⊂ Bi is a finite set and for
some j ∈ Z the coloring (T (0,j)f̃)�Fi extends uniquely to an η̃-coloring of Bi. Since

f̃ ∈ Xη̃, there exists ~u ∈ Z2 such that

f̃�Fi = (T ~uη̃)�Fi,

where the existence of ~u follows from the fact that every finite coloring occurring in
an element of Xη̃ also occurs in η̃. Therefore (T ~uη̃)�Bi = f̃�Bi is vertically periodic
by (12). By Corollary 2.21, we have that η̃ is periodic and thus that η is periodic,
a contradiction of (8). �

We now continue with the construction of the large set needed for the proofs of
Propositions 3.4 and 3.7. We define:

Definition 3.2. If S ⊂ Z2 is a convex set, then T ⊂ Z2 is E(S)-enveloped if

(i) T is convex;
(ii) For all w ∈ E(T ), there exists u ∈ E(S) such that w is parallel to u and
|w| ≥ |u|;

(iii) Either the set

{u ∈ E(S) : ∃w ∈ E(T ) such that w is parallel to u}
is connected (recall Definition 2.1) or T is the set of integer points in a
bi-infinite strip in R2.

Maintaining notation of f̃ and S̃ defined in (10) and Bi defined in (15), we
inductively define a convex set G∞ on which we can control periodicity. For each
i ∈ N, let

(18)
Fi ⊂ Bd+i−1 be a finite, E(S̃)-enveloped set
containing [−1, d+ i− 2]× [−d− i− 2, d+ i+ 2].

and let

(19)

Gi ⊂ Bd+i−1 be a largest (with respect to the partial

ordering by inclusion) E(S̃)-enveloped subset of Bd+i−1
to which f̃�Fi extends uniquely

(we allow the possibilities that Gi = Fi or that Gi is infinite).
By Claim 3.1, Gj 6= Bd+j−1 and so the set

(20) Gj ∩ {(−1, y) : y ∈ Z}
is not bi-infinite. This (finite or semi-infinite) line either has an element of maximal
y-coordinate or of minimal y-coordinate (or both). Therefore there is either a
subsequence {jk}∞k=0 such that Gjk ∩ {(−1, y) : y ∈ Z} has an element of maximal
y-coordinate for all k or there is a subsequence such that Gjk ∩{(−1, y) : y ∈ Z} has
an element of minimal y-coordinate for all k. Without loss of generality (the other
case being similar), suppose that there are infinitely many j ∈ N such that the set
Gj ∩ {(−1, y) : y ∈ Z} has an element of maximal y-coordinate. Without loss of
generality (passing to a subsequence if necessary), we assume Gj ∩{(−1, y) : y ∈ Z}
has an element of maximal y-coordinate for all j ∈ N and let ymax

j be this y-

coordinate. By (12), f̃ is vertically periodic with minimal period p. There exists
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0 ≤ Jmax < p such that for infinitely many j, ymax
j ≡ Jmax (mod p). Passing to

this subsequence and maintaining the same notation on indices j, for each such j,
let kj ∈ Z be such that ymax

j = kj · p+ Jmax. By periodicity, T (0,kj ·p)f̃�Gj = f̃�Gj
and so by (19) f̃�Gj − (0, kj · p) does not extend uniquely to an η̃-coloring of any

larger E(S̃)-enveloped set in Bd+j−1. Our construction yields the following:

(a) For all j ∈ N, the point (−1, Jmax) is the top-most element of

{(−1, y) : y ∈ Z} ∩ (Gj − (0, kj · p)).

(b) The set Gj − (0, kj · p) contains the set

([−1, d+ j − 1]× [−d− j − 1, d+ j + 1])− (0, kj · p),
which is a subset of {(x, y) : x ≥ −1, y ≤ Jmax}.

(c) The set Gj − (0, kj · p) is E(S̃)-enveloped.

Set

(21) G∞ :=

∞⋂
i=1

∞⋃
j=i

(
Gj − (0, kj · p)

)
.

Claim 3.3. The set G∞ is an E(S̃)-enveloped set which contains the semi-infinite

line {(−1, y) ∈ Z2 : y ≤ 0} and is such that f̃�G∞ does not extend uniquely to an

η̃-coloring of any larger E(S̃)-enveloped subset of {(x, y) ∈ Z2 : x ≥ −1}.

Proof. We order the edges of E(S̃) by setting u0 ∈ E(S̃) to be the edge that points
vertically downward and defining ui+1 := pred(ui) (recall Definition (2.1)) for all

i = 0, 1, . . . , |E(S̃)| − 2. For 0 ≤ i ≤ |E(S̃)| − 1, set Li(j) to be the length of

the edge of Gj − (0, kj · p) parallel to ui. Since Gj − (0, kj · p) is E(S̃)-enveloped,
Li(j) > 0 for all i, j. Define

Li(∞) := lim sup
j

Li(j).

Since u0 determines a nonexpansive direction for η̃, S̃ has an edge antiparallel to

u0 (by Corollary 2.19). Let i0 ∈ {1, 2, . . . , |E(S̃)| − 1} be such that ui0 ∈ E(S̃) is
antiparallel to u0. Since Gj − (0, kj · p) contains the set

([−1, d+ j − 1]× [−d− j − 1, d+ j + 1])− (0, kj · p),
there exists 1 ≤ i1 < i0 such that Li1(∞) =∞; without loss of generality let i1 be
the smallest positive index with this property. It follows that for all 1 ≤ k < i1,
E(G∞) has an edge parallel to uk of length Lk(∞), as well as a semi-infinite edge
parallel to ui1 . On the other hand, since Gj − (0, kj · p) contains

([−1, d+ j − 1]× [−d− j − 1, d+ j + 1])− (0, kj · p),
it contains the line segment {(−1, y) : − d − j − 1 − kj · p ≤ y ≤ 0} and so G∞
contains the line segment {(−1, y) ∈ Z2 : y ≤ 0}. There cannot be any other edges

in E(G∞), since Gj− (0, kj ·p) only has edges parallel to those that appear in E(S̃)

for all j. Finally we observe that if f̃�G∞ extended uniquely to a larger E(S̃)-

enveloped subset of {(x, y) ∈ Z2 : x ≥ −1}, then by compactness there would exist

j such that f̃�Gj − (0, kj · p) extends uniquely to a larger E(S̃)-enveloped subset

of Bd+j−1, a contradiction of (19). �
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It follows from the construction that G∞ is an infinite E(S̃)-enveloped set. More-
over, there are infinitely many distinct vertical lines that have nonempty intersection
with G∞ (by (b)). If necessary, we again make a change of coordinates and assume
that Jmax = 0. Thus by Claim 3.3,

(22) G∞ is an E(S̃)-enveloped set that intersects every vertical line in H−1.

By construction, E(G∞) has a semi-infinite edge that points vertically downward
from (−1, 0). By (22),

(23) G∞ has a nonvertical, semi-infinite edge u ∈ E(G∞)

and u is parallel to some edge in E(S̃). This edge determines a nonexpansive

direction for η̃, since by the claim, f̃�G∞ cannot be uniquely extended to any

larger E(S̃)-enveloped set.
Define K ⊃ G∞ such that

(24) K is the smallest E(S̃)-enveloped set containing G∞ with u /∈ ∂K,
meaning that K is the set obtained by extending the successor edge to u back-
wards until it intersects an integer point and then taking the convex hull (note that
successor edge is meant with respect to positive orientation on the boundary). By
construction,

(25) there exists h̃ ∈ Xη̃ such that f̃�G∞ = h̃�G∞ and f̃�K 6= h̃�K.

By (12), f̃ is vertically periodic and so

(26) h̃�G∞ is vertically periodic (with minimal period p) but h̃�K is not.

We use the construction of G∞ to eliminate the case of 2 nonexpansive lines:

Proposition 3.4. Suppose there are exactly two nonexpansive lines for Xη. Then
for all n ∈ N, Pη(Rn,3) > 3n.

Proof. We proceed by contradiction and assume that η has exactly two nonex-
pansive directions and that there exists n ∈ N such that Pη(Rn,3) ≤ 3n. Thus
hypotheses (H1) and (H2) are satisfied. In particular, by (8), η is aperiodic.

We maintain the notation of the nonexpansive lines in (9) (where we assume
only two), the quantities in (10) and (11), and of the construction of the set G∞
defined in (21) satisfying (22). Since there are only two nonexpansive lines for η,

the edge u defined in (23) must either be parallel or antiparallel to ˜̀
2. Let K ⊃ G∞

be defined as in (24) and h̃ as in (25). Then K \G∞ can be written as

K \G∞ =

k0⋃
k=1

(lk ∩K),

where l1, l2, . . . , lk0 are (undirected) lines parallel to ˜̀
2 and k0 is the number of

lines produced in the construction of K. By (26), h̃�K cannot be extended to a
vertically periodic η-coloring of H−1. Let u0 := u and label the edges of G∞ by
ui+1 := succ(ui) for i = 0, . . . , |E(G∞)| − 1, where succ(·) denotes the successor
edge taken with positive orientation.

Suppose uI ∈ E(G∞) is the edge parallel to ˜̀
1, meaning that uI points vertically

downward. Define a sequence of sets

G∞ = L0 ⊂ L1 ⊂ L2 ⊂ · · · ⊂ LI ,
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where Li+1 is obtained from Li by extending the edge of Li parallel to uI−i−1 to be
semi-infinite and taking the intersection of Z2 with the convex hull of the resulting
shape (see Figure 3). Then E(Li+1) = E(Li) \ {uI−i}.

L0

u0

u1
u2

u3

L1 \ L0

L2 \ L1

L3 \ L2

L4 \ L3

u4

Figure 3. The construction of the nested sets L0 ⊂ L1 · · · . In-
teger points at the intersection of two lines are marked with a dot
and the dotted lines show L1 \ L0 = s1 ∪ s2 ∪ · · · .

Claim 3.5. For 0 ≤ i ≤ I, h̃�Li is vertically periodic, but possibly of larger period

than that of h̃�L0
.

Proof. For i = 0, this follows directly from the construction of G∞. For i = 1,
write

L1 \ L0 = s1 ∪ s2 ∪ · · ·
where sj is the semi-infinite line defined by sj := {(−j − 1, y) : y ∈ Z} ∩ L1. For
integers 0 ≤ a ≤ b, write s[a,b] = sa ∪ sa+1 ∪ . . . ∪ sb.

(27) Suppose that h̃�L0 ∪ s[1,j] is vertically periodic.

Let ~vj(i) ∈ Z2 be the translation of S̃ such that the top-most element of w̃1+~vj(i) is

the point (j, i). If for allR < 0 there exists r ≤ R such that (T~vj(r)h̃)�S̃ \ w̃1
extends

uniquely to an η-coloring of S̃, then there is a unique extension of h̃�L0 ∪ s[1,j] to

an η̃-coloring of L0 ∪ s[1,j+1] by (13). In this case, arguing as in Step 1 in the proof

of Proposition 2.18, the restriction of h̃ to L0 ∪ s[1,j+1] is vertically periodic of the
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same period as h̃�L0 ∪ s[1,j]. Otherwise there exists R < 0 such that for all r ≤ R

the coloring (T~vj(r)h̃)�S̃ \ w̃1
does not extend uniquely to an η-coloring of S̃. Then

by Corollary 2.22 the restriction of h̃ to L1 ∩ s[j−m+1,j] is eventually periodic of

period at most |w̃1 ∩ S̃| − 1 and the initial portion which may not be periodic has

length at most |w̃1∩S̃|−1, where m is the number of vertical lines in L1 which have

nonempty intersection with S̃ \ w̃1. So by Corollary 2.23, we have that h̃�L1 ∩ sj+1

is eventually vertically periodic of period at most 2|w̃1 ∩ S̃| − 2 and the initial

portion which may not be periodic again has length at most |w̃1∩S̃|−1. Moreover,

h̃�L0 ∪ s[1,j] is periodic by (27), S is a generating set, the restriction of h̃ to the

union of L0 ∪ s[1,j], and any semi-infinite portion of sj+1 uniquely extends to an η-

coloring of L0∪ s[1,j+1] and so there is no initial portion on which h̃ is not periodic.

It follows by induction that h̃�L1
is vertically periodic and (T (0,|w̃∩S̃|+1)h̃)�L1

is
vertically periodic. If L1 = LI then the claim follows. Otherwise the semi-infinite
edge of L1 parallel to uI−1 determines an expansive direction for η̃. Write

L2 \
(
L0 ∪ (L1 − (0, |w̃ ∩ S̃| − 1))

)
=

k1⋃
i=1

s̃i

where the s̃i are semi-infinite lines parallel to uI−1.

Since uI−1 is expansive, there is a unique extension of h̃�L1 − (0, |w̃ ∩ S̃| − 1) to

an η-coloring of (L1−(0, |w̃∩S̃|−1))∪s̃1 (the uniqueness of this extension to a semi-
infinite portion of s̃1 follows from the block map guaranteed by expansiveness and
since S is η̃-generating, this coloring extebds uniquely to all of s̃1). Since L1−(0, |w̃∩
S̃|−1) is colored in the same way as L1− (0, |w̃∩S̃|−1− q), where q is the vertical
period, and there is a unique way to extend this coloring to an η̃-coloring of (L1 −
(0, |w̃∩S̃|−1))∪ s̃1, we have that the vertical periodicity of h̃�L1 − (0, |w̃ ∩ S̃| − 1)

implies that h̃�
(
L1 − (0, |w̃ ∩ S̃| − 1)

)
∪ s̃1 is also vertically periodic. Inductively

it follows that h̃�L2
is vertically periodic. More generally, suppose that h̃�Li is

vertically periodic for i < I. Then Li has two semi-infinite edges, one of which it
shares with L0 and the other determines an expansive direction for η̃. Write

Li+1 \ Li = t1 ∪ t2 ∪ · · ·

where Li ∪ t[1,j] is convex for all j = 1, 2, . . . , each tj is the intersection of Z2 with
a semi-infinite line parallel to uI−i and contained in Li+1, and t[a,b] = ta ∪ ta+1 ∪
. . . ∪ tb. Suppose that h̃�Li ∪ t[1,j] is vertically periodic. Since uI−i determines an

η̃-expansive direction, again using the same reasoning, there is a unique extension
of Li ∪ t[1,j] to an η̃-coloring of Li ∪ t[1,j+1]. By vertical periodicity, h̃�Li ∪ t[1,j] =

(T (0,−q)h̃)�Li ∪ t[1,j], where q denotes the smallest vertical period of h̃�Li ∪ t[1,j].
By uniqueness, h̃�Li ∪ t[1,j+1]

= (T (0,−q)h̃)�Li ∪ t[1,j+1]
and hence is also vertically

periodic. By induction, this holds for all j and hence h̃�Li+1
is vertically periodic.

�

Let C denote the smallest bi-infinite strip whose edges are parallel to ˜̀
2 that

contains S̃ \ w̃2. Let J ∈ Z be the maximal integer such that C + (0, J) is a subset

of the region in Z2 on which h̃ is vertically periodic, let Cj := C + (0, j), and let
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Q ∈ N be the smallest vertical period of h̃�LI − (0, J). The integer J is well-defined

by (26). Then for all j ≤ J , we have that h̃�Cj = (T (0,−Q)h̃)�Cj .

We claim that for all j ≤ J , h̃�Cj is not periodic with period vector parallel to

˜̀
2. By the preceding remark, it suffices to show that this holds for all sufficiently

small values of j. For all j ∈ Z sufficiently negative that the only edge of L0 that
Cj intersects is the edge parallel to ˜̀

1 (all but finitely many Cj have this property),

recall that h̃�L0
= f̃�L0

. By the construction of f̃ , we have that f̃�H−1 cannot be

extended to an η̃-coloring of Z2 which is periodic with period vector parallel to ˜̀
2.

If h̃�Cj is ˜̀
2-periodic, then by Corollary 2.21 it follows that h̃ itself is ˜̀

2-periodic.

But the sequence (T (0,−k)h̃) has an accumulation point, and any such accumulation

point is also ˜̀
2-periodic. Moreover, the restriction of any such accumulation point to

H−1 is one of the functions f̃�H−1, (T
(0,−1)f̃)�H−1, . . . , (T

(0,−p+1)f̃)�H−1 (where

again p ∈ N is the minimal vertical period of f̃). This contradicts the fact that

f̃�H−1 does not extend to an ˜̀
2-periodic coloring of Z2, and the claim follows.

If `2 is not horizontal, then S̃ is u-balanced, where u is the edge defined in (23).

In this case every line parallel to u that has nonempty intersection with S̃ contains

at least |w̃2∩S̃|−1 integer points. Since h̃�Cj is not ˜̀-periodic, the Morse-Hedlund

Theorem implies that there are at least |w̃2 ∩ S̃| distinct η̃-colorings of S̃ \ w̃2 that
occur in Cj (otherwise the coloring would be periodic). But there are at most

|w̃ ∩ S̃| − 1 η-colorings of S̃ \ w2 that extend non-uniquely to an η-coloring of S̃,
and so by Corollary 12, the coloring of Cj extends uniquely to an η̃-coloring of

Cj ∪Cj+1 for all j ≤ J , via the same reasoning used to show that h̃�Li is vertically

periodic. Since the restriction of h̃ to the region
⋃
j≤J Cj is vertically periodic and

h̃�CJ extends uniquely to an η̃-coloring of CJ ∪ CJ+1, the restriction of h̃ to the
region

⋃
j≤J+1 Cj is vertically periodic. But this contradicts the definition of J . If

`2 is horizontal, then the same argument applies to S`2 in place of S, where S`2 is
an `2-balanced subset of Rn,3 constructed by Proposition 2.16. �

Following standard terminology in the literature (e.g. [6]) we make the following
definition:

Definition 3.6. Suppose T ⊂ Z2 and ~u ∈ Z2. We say that α : T → A is periodic
when restricted to the region T with period vector ~u if α(~x) = α(~x+~u) for all ~x ∈ T
such that ~x+ ~u ∈ T .

Finally we show that the low complexity assumption is not compatible with more
nonexpansive lines. While it may seem, a priori, like this should be a simpler setting
to rule out, it turns out that the more complicated generating shape introduces new
complications.

Proposition 3.7. Suppose there are exactly three nonexpansive lines for η. Then
for all n ∈ N, Pη(Rn,3) > 3n.

Proof. We proceed by contradiction and assume that η has exactly three nonex-
pansive directions and that there exists n ∈ N such that Pη(Rn,3) ≤ 3n. Thus
hypotheses (H1) and (H2) are satisfied. In particular, η is aperiodic (8).

By Proposition 2.9, there exists an η-generating set S ⊂ Rn,3 which satisfies (1)
and every nonexpansive direction for η is parallel to one of the edges of S. By
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Proposition 2.19, the direction antiparallel to any nonexpansive direction is also
nonexpansive. Since there are exactly three nonexpansive lines for η, S has precisely
six edges, all of which determine nonexpansive directions. Since S ⊂ Rn,3, two of
these edges must be horizontal and the remaining four edges each contain exactly
two integer points. Again by Proposition 2.19, every edge of S is antiparallel to
another edge of S, and so ∂S is a hexagon comprised of three pairs of parallel edges.
It follows that the two horizontal edges contain the same number of integer points
and this number is at most n−1. Let w1 ∈ E(S) be the predecessor edge to the top
horizontal edge in E(S) and recursively define wi+1 := succ(wi) for i = 1, 2, 3, 4, 5
(see Figure 4). Then wi+3 is antiparallel to wi for all i, where the indices are
understood to be taken (mod 6).

w2

w1w3

w4

w5

w6
S

Figure 4. The set S with oriented edges labeled.

We summarize: |w2 ∩ Z2| = |w5 ∩ Z2| ≤ n − 1 and |wi ∩ Z2| = |wi+3 ∩ Z2| = 2
for i = 1, 3. It follows that

(28) S is balanced in every nonexpansive direction.

For convenience, define a1, a3, a4, a6 ∈ Z such that

wi is parallel to (ai, 1) for i = 1, 6 and wi is parallel to (ai,−1) for i = 3, 4.

By convexity, one of the statements:

a1, a3 ≤ 0;

a1 ≤ 0, a3 ≥ 0, |a1| > a3;

a1 ≥ 0, a3 ≤ 0, |a3| > a1;

holds. In each case, every horizontal line that has nonempty intersection with S
contains at least

(29) |w2 ∩ S| integer points

(e.g. in the first case the middle horizontal line in S contains |w2 ∩ S|+ |a1|+ |a3|
integer points, and the other cases are similar).1

For j ∈ Z, let Vj be the horizontal half-plane defined by

Vj := {(x, y) : x ∈ Z, y ≤ j} .
Since the direction of w2 is nonexpansive for η, by Proposition 2.18 there exist
f, g ∈ Xη such that f�V0 = g�V0 but f�V1 6= g�V1. At most one of f and g is

1This bound is stronger than our usual bound that every horizontal line that has nonempty
intersection with S intersects in at least |w2 ∩ S| − 1 integer points.
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periodic with period vector parallel to w1, and so we can suppose without loss of
generality that f is not. Furthermore, without loss of generality we can assume
that
(30)
f�V1 does not extend to a periodic η-coloring of Z2 with period vector parallel to w1.

Since S is w2-balanced by (28), it follows from Proposition 2.18 that f is hori-
zontally periodic and the restriction of f to any horizontal strip of height two has
period at most 2|w2 ∩ S| − 2. Set

B :=
{

(x, y) ∈ Z2 : y ∈ {−1, 0}
}

and C := {(x, y) : y ∈ {−1, 0, 1}} .

For any j ∈ Z such that (T−(0,j)f)�B does not extend uniquely to an η-coloring of
C, we have that (T−(0,j)f)�B is horizontally periodic of period at most |w1∩S|−1.
In particular, this holds for j = 0.

We claim that there are infinitely many integers j ≤ 0 such that

(31) (T−(0,j)f)�B does not extend uniquely to an η-coloring of C.

The proof of the claim is similar to that of (17). We proceed by contradiction.
Suppose that there exists an integer J ≤ 0 such that for all j < J , the coloring
(T−(0,j)f)�B extends uniquely to an η-coloring of C and assume that |J | is min-
imal. Since f�V0 is horizontally periodic, there are only finitely many η-colorings

of the form (T−(0,j)f)�B for j ≤ 0. Say there are M such colorings. Then by the
pigeonhole principle, there exist 1 ≤ j1 < j2 ≤M + 2 such that (T−(0,J−j1)f)�B =
(T−(0,J−j2)f)�B. Choose j1 to be the smallest integer such that there exists j2
with this property. Then by construction, (T−(0,J−j1)f)�C = (T−(0,J−j2)f)�C and
hence (T−(0,J−j1+1)f)�B = (T−(0,J−j2+1)f)�B. If j1 > 1, this contradicts the min-
imality of j1. If j1 = 1, then the fact that (T−(0,J−j2+1)f)�B = (T−(0,J)f)�B
extends uniquely to an η-coloring of C contradicts the minimality of |J |. The claim
follows.

Let

SR := S with the rightmost element of every row removed;(32)

SL := S with the leftmost element of every row removed.(33)

Claim 3.8. There do not exist integers y1, y2 ∈ Z such that both of the following
hold simultaneously:

for all x ∈ Z, (T (x,y1)f)�SR extends uniquely to an η-coloring of S;(34)

for all x ∈ Z, (T (x,y2)f)�SL extends uniquely to an η-coloring of S.(35)

Proof. We proceed by contradiction. Suppose instead that such integers y1, y2 ∈ Z
exist and assume y1 ≤ y2 (the other case being similar). Define F := [0, |S|] ×
[y1, y2 + 2] and observe that since f ∈ Xη, there exists ~u ∈ Z2 such that f�F =

(T ~uη)�F . By (34) and (35), T ~uη coincides with f on the set

(36) F ∪ ([0,∞)× [y1, y1 + 2]) ∪ ((−∞, 0]× [y2, y2 + 2]) ,

and so T ~uη is horizontally periodic on this set. Let v ∈ V (S) be the vertex of
intersection of the edges w1 and w2. There is a translation of S that takes v to the
point (|S|+ 1, y1 + 3) and takes S \ v to a subset of F ∪ ([0,∞)× [y1, y1 + 2]). Since
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S is η-generating and T ~uη coincides with f on F ∪ ([0,∞)× [y1, y1 + 2]), we have
that

(T ~u(η))(|S|+ 1, y1 + 3) = f(|S|+ 1, y1 + 3).

It follows by induction that (T ~u(η))(|S|+k, y1 +3) = f(|S|+k, y1 +3) for all k ≥ 1.
A similar induction argument shows that

(T ~u(η))(|S|+ k, y1 + 2 + j) = f(|S|+ k, y1 + 2 + j)

for all k ≥ 1 and all 1 ≤ k ≤ y2 − y1. Therefore T ~uη and f coincide on the set
larger than in (36), defined by:

F ∪ ([0,∞)× [y1, y2 + 2]) ∪ ((−∞, 0]× [y2, y2 + 2]) .

A similar argument, using the vertex v′ ∈ V (S) that is the intersection of the edges
w4 and w5 in place of v, shows that T ~uη and f coincide on the set

(−∞,∞)× [y1, y2 + 2],

and so T ~uη is horizontally periodic on this set. Since S is horizontally balanced
by (28) it follows from Corollary 2.21 that T ~uη is horizontally periodic and hence
η is periodic. This is a contradiction of (8). �

Thus henceforth we assume that for all y ∈ Z, there exists xy ∈ Z such that

(37) (T (xy,y)f)�SR does not extend uniquely to an η-coloring of S.

(The remainder of the proof is analogous if instead, for all y ∈ Z, there exists xy ∈ Z
such that (T (xy,y)f)�SL does not extend uniquely to an η-coloring of S.)

Claim 3.9. There exists a nonpositive integer y such that f�Vy is doubly periodic,

f�Vy+1
is not doubly periodic, and either (−a1,−1) or (−a6,−1) is a period vector

for f�Vy.

Proof. As Vy is a half plane, double periodicity is interpreted in the sense of Defini-
tion 3.6. Recall that B =

{
(x, y) ∈ Z2 : y ∈ {−1, 0}

}
. Let B′ be the thinnest strip

with edges parallel and antiparallel to w1 which contains S \ w1. For x ∈ Z, let

B′x := B′ + (x, 0).

If there exists x0 ∈ Z such that f�B′x0
∩ V0 does not extend uniquely to an η-coloring

of (B′x0
∪B′x0+1)∩V0, then for any ~u ∈ Z2 such that (S \w1 +~u) ⊂ B′x0

∩V0, since S
is η-generating we have that (T−~uf)�S \ w1

extends non-uniquely to an η-coloring

of S. Since S satisfies (1), by Corollary 2.10 we have that Dη(S \ w1) > Dη(S).
Since |w1∩S| = 2, there is precisely one coloring of S\w1 that extends non-uniquely
to an η-coloring of S. In particular, since

B′x0
∩ V0 =

∞⋃
k=2

((S \ w1) + (x0 − ka1,−k))

it follows that f restricted to B′x0
∩ V0 is periodic with period vector (−a1,−1).

Since f�V1 6= g�V1, we have that f�B is horizontally periodic of period at most
|w2 ∩ S| − 1. The region (B′x0

∩ V0) ∩ B is convex and both {(x,−1) : x ∈ Z} and
{(x, 0) : x ∈ Z} intersect it in at least |w2 ∩ S| − 1 integer points by (29), as the
strip B′x0

is only wide enough to contain S \w1. Therefore f(x, 0) = f(x− a1,−1)
for all x ∈ Z.
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Recall that S ⊂ Rn,3, and we assume that the bottom most row of Rn,3 lies on
the x-axis. We have that S+(x0−2a1,−2) is contained in the set (B′x0

∩V0)∪B. If
v ∈ V (S) is the vertex incident to w6 and w1, observe that (S \ v) + (x0 − 3a1,−3)
is also contained in (B′x0

∩ V0) ∪B and moreover that

(T−(x0−2a1,−2)f)�S \ v = (T−(x0−3a1,−3)f)�S \ v.

Since v is η-generated by S,

(T−(x0−2a1,−2)f)�S = (T−(x0−3a1,−3)f)�S.
It follows by induction that the coloring f�(B′x0

∪B′x0+1) ∩ V0 is periodic with

period vector (−a1,−1). Inductively it follows that the restriction of f to V0 ∩⋃∞
k=0B

′
x0+k

is periodic with period vector (−a1,−1) as well. A final induction,
where the vertex v is replaced by the vertex v′ incident to w4 and w5, shows that
f�V0 is doubly periodic and that (−a1,−1) is a period vector. A similar argument
applies if there exists x0 ∈ Z such that f�Bx0

∩ V0 does not extend uniquely to an

η-coloring of (B′x0−1 ∪ B
′
x0

) ∩ V0. Thus we are finished unless for every x ∈ Z the
coloring f�B′x ∩ V0 extends uniquely to an η-coloring of (B′x−1 ∪ B′x ∪ B′x+1) ∩ V0.

If

D(r) :=

r⋃
k=2

(S \ w1) + (−ka1,−k),

it follows that for all x ∈ Z there exists Rx ∈ N such that for all r > Rx, the
coloring (T (x,0)f)�D(r) extends uniquely to an η-coloring of

D̄(r) :=

r⋃
k=2

S + (−ka1,−k) ∪
r⋃

k=2

S + (−ka1 − 1,−k)

(we assume Rx is minimal with this property). Since f�V1 is horizontally periodic,
the set {Rx : x ∈ Z} is finite so R := maxx∈ZRx is well-defined. It also follows
that f�V0 \ V−R is doubly periodic where (−a1,−1) is one period vector and the

horizontal period is at most |w ∩ S| − 1. For s ∈ N, set

E(s) :=

s⋃
k=0

(S \ w6) + (−Ra1 − ka3,−R− k).

As above, if there exists x ∈ Z such that (T (x,0)f)�E(s) extends non-uniquely to

an η-coloring of

Ē(s) :=

s⋃
k=0

S + (−Ra1 − ka3,−R− k) ∪
s⋃

k=0

S + (−Ra1 − ka3 − 1,−R− k),

then f�VR−1 is doubly periodic and (−a6,−1) is a period for it. Otherwise, for all

x ∈ Z, there exists R′x ∈ N such that for all r > R′x, the coloring (T (x,0)f)�E(s)
extends uniquely to an η-coloring of Ē(s) and again R′ := maxx∈ZR

′
x is well-

defined. The claim has been shown unless this last case occurs. In that case, for
all x ∈ Z the coloring (T (x,0)f)�D(R) ∪ E(R′) extends uniquely to an η-coloring of

D̄(R) ∪ Ē(R′). It follows that for all x ∈ Z, the coloring (T (x,0)f)�D(R) ∪ E(R′)
extends uniquely to an η-coloring of V0 \ VR+R′ . Since f ∈ Xη, there exists ~u ∈ Z2

such that (T ~uη)�D(R) ∪ E(R′) = f�D(R) ∪ E(R′) and therefore f�V0 \ VR+R′
=

(T ~uη)�R+R′ is horizontally periodic. By Corollary 2.21, η itself is horizontally
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periodic; a contradiction of (8). Therefore either f�V0 is doubly periodic with
period vector (−a1,−1) or there exists R ∈ N such that f�VR is doubly periodic
with period vector (−a6,−1). �

Thus we can define y0 ≤ 0 to be the integer of least absolute value for which
Claim 3.9 holds. Recalling that f�V1 is not doubly periodic, we have shown:

(38) f�Vy0 is doubly periodic and f�Vy0+1
is not doubly periodic,

and either (−a1,−1) or (−a6,−1) is a period vector for f�Vy0 . Henceforth we

assume that i ∈ {1, 6} is chosen such that (−ai,−1) is a period vector for f�Vy0 .

By (31), there exists j < y0 such that (T (0,j)f)�B is horizontally periodic of
period at most |w2 ∩ S| − 1. Since (−ai,−1) is a period vector for f�Vy0 , it follows

that the horizontal period of f�Vy0 is at most |w2∩S|−1. By (30), f�V1 cannot be

extended to a periodic coloring of Z2 with period vector parallel to wi. It follows
that f�Vy0+1

is not doubly periodic (if y0 < 0 this follows from the definition of

y0 and if y0 = 0 from (30)). Let p1 ∈ V (S) be the vertex at the intersection
of the edges w1 and w2 and let p2 ∈ V (S) be the vertex at the intersection of
the edges w2 and w3. Since S is η-generating, if there exists j ∈ {1, 2} and x ∈ Z
such that (T−(x,y0−1)f)�S \ pj coincides with (T−(x−ai,y0−2)f)�S \ pj , then f�Vy0+1

is doubly periodic, a contradiction. It follows that for all m ∈ Z, there exists
x ∈ {m,m+ 1, . . . ,m+ |w2 ∩ S| − 2} such that

(39) f(x, y0 + 1) 6= f(x− ai, y0).

Let SR be as in (32). By (29), every horizontal line that has nonempty inter-
section with S intersects in at least |w1 ∩ S| integer points, and so every such line
intersects SR in at least |w1 ∩ S| − 1 integer points.

We claim that there are at least three distinct η-colorings of SR which extend
non-uniquely to an η-coloring of S.

First by (37), there exists x ∈ Z such that (T−(x,y0−2)f)�SR does not extend
uniquely to an η-coloring of S and by (38) this coloring of SR is periodic with period
vector (−ai,−1). Thus there is an η-coloring of SR that does not extend uniquely
to an η-coloring of S and this coloring is periodic with period vector (−ai,−1).

Second, consider the set of colorings of SR of the form (T−(x,y0−1)f)�SR. By (37),

there exists xy0−1 ∈ Z such that (T−(xy0−1,y0−1)f)�SR does not extend uniquely
to an η-coloring of S. By (39), there exists a integer point (x, 2) ∈ w2 such that
(T−(xy0−1,y0−1)f)�SR(x, 2) 6= (T−(xy0−1,y0−1)f)�SR(x − ai, 1) but the bottom two
horizontal lines of S are periodic with period vector (−ai,−1) by (38). Therefore
this coloring is distinct from the first coloring of SR.

Third, consider the set of colorings of SR of the form (T−(x,y0)f)�SR. Again

by (37), there exists xy0 ∈ Z such that (T−(xy0
,y0)f)�SR does not extend uniquely

to an η-coloring of S. By (39), there exists an integer point (x, 0) ∈ w5 such
that (T−(xy0

,y0)f)�SR(x, 0) 6= (T−(xy0
,y0)f)�SR(x + ai, 1). Therefore this coloring

is distinct from the first two colorings. Thus we have three distinct η-colorings of
SR which extend non-uniquely to an η-coloring of S.

But since S satisfies (1), we have Dη(SR) > Dη(S). By definition, |SR| = |S|−3,
and so we have Pη(S) ≤ Pη(SR) + 2. Therefore there are at most two colorings of
SR that extend non-uniquely to an η-coloring of S, a contradiction. �
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4. Completing the proof of the main theorem

We recall the statement of Theorem 1.1:

Theorem. Suppose η : Z2 → A and there exists n ∈ N such that Pη(n, 3) ≤ 3n.
Then η is periodic.

Proof. Suppose there exists n ∈ N such that Pη(n, 3) ≤ 3n. By Proposition 2.9
there exists an η-generating set S ⊂ Rn,3. Since S is convex and the endpoints of
any edge of ∂S are integer points in Rn,3, E(S) has at most six edges. Also by
Proposition 2.9 every nonexpansive direction is parallel to an edge in E(S), and
so there are at most six nonexpansive directions for η. By Proposition 2.11, every
nonexpansive line has an orientation that determines a nonexpansive direction. By
Proposition 2.19, the direction antiparallel to any nonexpansive direction is also
nonexpansive (i.e. if ` is a nonexpansive line then both orientations on ` determine
nonexpansive directions). Therefore there are at most three nonexpansive lines for
η.

There are four cases to consider. If there are no nonexpansive lines for η, then η
is doubly periodic by Theorem 1.2. If there is exactly one nonexpansive line for η,
then η is singly (but not doubly) periodic by Theorem 1.3. If there are exactly two
nonexpansive lines for η, then Proposition 3.4 implies that Pη(Rn,3) > 3n, a con-
tradiction. If there are exactly three nonexpansive lines for η, then Proposition 3.7
implies that Pη(Rn,3) > 3n, again a contradiction. The theorem follows. �

5. Further Directions

Sander and Tijdeman [11] conjectured that for η : Z2 → A, if there exists a finite
and convex set S ⊂ Z2 such that Pη(S) ≤ |S|, then η is periodic. Their result in [12]
shows that this conjecture holds for rectangles Rn,2 of height 2. More generally,
rephrasing their arguments in our language, their proof also covers more convex
shapes of height 2. Namely, if S ⊂ Z2 is a finite set that is the restriction of a
convex set in R2 to Z2 satisfying Pη(S) ≤ |S| and such that S is contained in the
union of two adjacent parallel rational lines, then η is periodic. The construction of
a generating set works in the more general setting of such a shape S, and results in a
generating set with 3 or 4 edges, and with the possible exception of a single direction
(the analog of horizontal) it is balanced. There can be at most 2 nonexpansive
directions, and we eliminate the case of 2 in a similar manner to that done for
rectangular shapes.

However, in height 3, we are unable to generalize our result of Theorem 1.1 to
prove the analog for more general convex shapes with a restriction on the height,
meaning a convex shape contained in a strip of width 3. While the construction of
generating sets passes through, resulting in generating sets with at most 6 edges,
we are not able to show that they are balanced in all (but perhaps the analog of
the horizontal) directions. This is the only hurdle remaining for completing a more
general result for configurations of height 3.

For more general rectangles Rn,k with k ≥ 4, the construction of generating
sets, once again, is general. Again, a problem arises with proving the existence of
balanced sets. Furthermore, the counting of configurations seems to be significantly
more difficult in the absence of the simple geometry available in height 3.
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