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Abstract. Using results relating the complexity of a two dimensional sub-

shift to its periodicity, we obtain an application to the well-known conjecture

of Furstenberg on a Borel probability measure on [0, 1) which is invariant un-
der both x 7→ px (mod 1) and x 7→ qx (mod 1), showing that any potential

counterexample has a nontrivial lower bound on its complexity.

1. Introduction

1.1. Complexity and periodicity. A one dimensional symbolic system (X,σ)
is a closed set X ⊂ AZ, where A is a finite alphabet, that is invariant under
the left shift σ : AZ → AZ. The complexity function PX(n), which counts the
number of nonempty cylinder sets of length n in X, is a useful tool for studying
symbolic systems and the Morse-Hedlund Theorem gives a simple relation between
the complexity of the system and periodicity: the system (X,σ) is periodic if and
only if there exists n ∈ N such that PX(n) ≤ n. Both periodicity and complexity
have natural generalizations to higher dimensional systems. For example, for a two

dimensional system (X,σ, τ), meaning that X ⊂ AZ2

is a closed set that is invariant

under the left and down shifts σ, τ : AZ2 → AZ2

, the two dimensional complexity
PX(n, k) is the number of nonempty n by k cylinder sets. In a partial solution
to Nivat’s Conjecture [12], the authors [3] showed that if (X,σ, τ) is a transitive
Z2-subshift and there exist n, k ∈ N such that PX(n, k) ≤ nk/2, then there exists
(i, j) ∈ Z2 \ {(0, 0)} such that σiτ jx = x for all x ∈ X. In this note, we give an
application of this theorem to Furstenberg’s well-known “×p,×q problem.”

1.2. The ×p,×q problem. Let S, T : [0, 1) → [0, 1) denote the maps Sx := px
(mod 1) and Tx := qx (mod 1), where p, q ≥ 1 are multiplicatively independent
integers (meaning that p and q are not both powers of the same integer). In the
1960’s, Furstenberg [5] proved that any closed subset of [0, 1) that is invariant under
both S and T is either all of [0, 1) or is finite. He asked whether a similar statement
holds for measures:

Conjecture 1.1 (Furstenberg). Let µ be a Borel probability measure on [0, 1) that
is invariant under both S and T and is ergodic for the joint action of S and T .
Then either µ is Lebesgue measure or µ is atomic.

Progress was made in the 1980’s with the work of Lyons [10], followed soon
thereafter by Rudolph’s proof that positive entropy hµ(·) of the measure µ with
respect to one of the transformations implies the result for relatively prime p and
q. This was generalized to multiplicatively independent integers by Johnson:

The second author was partially supported by NSF grant 1500670.

1



2 VAN CYR AND BRYNA KRA

Theorem 1.2 (Rudolph [17] and Johnson [7]). Let µ be a Borel probability measure
on [0, 1) that is invariant under both S and T and is ergodic for the joint action of
S and T . If hµ(S) > 0 (or equivalently hµ(T ) > 0), then µ is Lebesgue measure.

One way to interpret this theorem is that the set of 〈S, T 〉-ergodic measures ex-
periences an entropy gap with respect to the one-dimensional action generated by S
(or equivalently by T ). Informally, if µ has high entropy (in this case meaning that
hµ(S) > 0), then its entropy with respect to S is actually log p and µ is Lebesgue
measure. Our main theorem is that the set of 〈S, T 〉-ergodic measures also experi-
ences a complexity gap, in a sense we make precise. We show (Theorem 1.9) that
if µ has low complexity (meaning that a certain function grows subquadratically),
then it actually has bounded complexity (meaning that this function is bounded)
and µ is atomic. Moreover, all atomic measures have bounded complexity.

1.3. Rephrasing ×p,×q in symbolic terms. We begin by recasting Fursten-
berg’s Conjecture and the Rudolph-Johnson Theorem as statements about symbolic
dynamical systems. We start by setting some terminology and notation.

A (measure preserving) system (X,X , µ,G) is a measure space X with an asso-
ciated σ-algebra X , probability measure µ, and an abelian group G of measurable,
measure preserving transformations. If the context is clear, we omit the σ-algebra
from the notation, writing (X,µ,G), and call it a system. The system (X,µ,G) is
free if the set {x ∈ X : gx = x} has measure 0 for every g ∈ G and the system is
ergodic if the only sets invariant under the action of G have either trivial or full
measure. It follows that if (X,µ,G) is an ergodic system with an abelian group
G of transformations, then the action of G is free if gn1

1 ◦ . . . ◦ g
nk

k 6= Id for any
g1, . . . , gk ∈ G and (n1, . . . , nk) 6= (0, . . . , 0).

Two systems (X1,X1, µ1, G) and (X2,X2, µ2, G) are (measure theoretically) iso-
morphic if there exist X ′1 ∈ X1 and X ′2 ∈ X2 with µ1(X ′1) = µ2(X ′2) = 1 such that
gX ′1 ⊂ X ′1 for all g ∈ G and gX ′2 ⊂ X ′2 for all g ∈ G, and there is an invertible
bimeasurable transformation π : X ′1 → X ′2 such that π∗µ1 = µ2 and πg(x) = gπ(x)
for all x ∈ X ′1, g ∈ G.

We are particularly interested in the Z2-system generated by the two commuting
measure preserving transformations S and T . In this case, we write (X,X , µ, S, T )
for the Z2-system.

A (topological) system (X,G), is a compact metric space X and a group G of
homeomorphisms mapping X to itself. If it is clear from the context that we are
referring to a topological system, we call (X,G) a system. A system is said to be
minimal if for any x ∈ X, the orbit {gx : g ∈ G} is dense in X. By the Krylov-
Bogolyubov Theorem, every system (X,G) admits an invariant Borel probability
measure and if this measure is unique, we say that (X,G) is uniquely ergodic. A
system (X,G) is strictly ergodic if it is both minimal and uniquely ergodic.

Let A denote a finite alphabet and let AZ2

be the set of A-colorings of Z2. For

x ∈ AZ2

and ~u ∈ Z2, we denote the element of A that x assigns to ~u by x(~u). With
respect to the metric

d(x, y) := 2− inf{|~u| : x(~u)6=y(~u)},
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AZ2

is compact and the leftward and downward shift maps σ, τ : AZ2 → AZ2

given
by

(σx)(i, j) := x(i+ 1, j), (1)

(τx)(i, j) := x(i, j + 1) (2)

are homeomorphisms. A closed set X ⊂ AZ2

which is invariant under the joint
action of 〈σ, τ〉 is called a Z2-subshift. (The analogous definitions hold for Zd-
subshifts.)

A uniquely ergodic topological system (X̂, ν,G) is said to be a topological model
for the measure preserving system (X,X , µ,G) if there exists a measure theoretic

isomorphism between (X̂, ν,G) and (X,µ,G). Again, we are mainly interested in
topological systems generated by two transformations σ and τ , and in this case we

denote the topological system by (X̂, σ, τ).
The Jewett-Krieger Theorem [6, 9] states that any ergodic Z-system has a strictly

ergodic topological model, meaning that the system is measure theoretically iso-
morphic to a minimal, uniquely ergodic topological system. This was generalized
to cover ergodic Zd-systems by Weiss [19], and further refined by Rosenthal (we
only state it for Z2, as this is the only case relevant for our purposes):

Theorem 1.3 (Rosenthal [16]). Let (X,X , µ, S, T ) be an ergodic, free Z2-system
with entropy less than log k. Then there exists a minimal, uniquely ergodic subshift

X̂ ⊂ {1, . . . , k}Z2

such that if σ, τ : X̂ → X̂ denote the horizontal and vertical shifts

(respectively) and if ν is the unique invariant Borel probability on X̂ and B denotes

the Borel σ-algebra, then (X̂,B, ν, σ, τ) is a topological model for (X,X , µ, S, T ).

We note that in [16], the proof given shows that X̂ ⊂ {1, . . . , k + 1}Z2

and the
result that the shift alphabet can be taken to have only k letters is stated without
proof. However, the size of the alphabet is not relevant for our purposes, other
than the fact that it is a finite number.

The subshift X̂ ⊂ {1, . . . , k}Z2

in the conclusion of Theorem 1.3 is not uniquely
defined, and so we make the following definition:

Definition 1.4. Let (X,X , µ, S, T ) be an ergodic Z2-system. A minimal, uniquely
ergodic Z2-subshift that is measure theoretically isomorphic to (X,X , µ, S, T ) is
called a Jewett-Krieger model for (X,X , µ, S, T ).

Theorem 1.3 guarantees that any free ergodic Z2 system of finite entropy has
a Jewett-Krieger model. However the definition is still valid for non-free, ergodic
Z2 systems; the only difference is that Rosenthal’s Theorem no longer guarantees
that such a model exists. For the case of interest to us, we show (in the proof
of Theorem 1.9) that if µ is 〈S, T 〉-ergodic, then either µ is atomic or the action
of 〈S, T 〉 is free. This motives us to make the following observation: a finite,
ergodic Z2-system cannot be free, but it has a Jewett-Krieger model in a trivial
way, obtained by partitioning the system into individual points.

Using this language, we can rephrase Furstenberg’s Conjecture and the Rudolph-
Johnson Theorem as equivalent statements about Jewett-Krieger models. Fix the
transformations S, T : [0, 1)→ [0, 1) to be the maps Sx := px (mod 1) and Tx := qx
(mod 1), where p, q ≥ 1 are multiplicatively independent integers. The natural
extension is a way of creating an invertible cover for a dynamical system (see Sec-
tion 2.1) and lets us rephrase the conjecture in symbolic terms:
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Conjecture 1.5 (Symbolic Furstenberg Conjecture). Let µ be a Borel probability
measure on [0, 1) with Borel σ-algebra B that is invariant under both S and T

and ergodic for the joint action. If X̂ ⊂ {0, 1}Z2

is a Jewett-Krieger model for

the natural extension of ([0, 1),B, µ, S, T ), then either X̂ is finite or µ is Lebesgue
measure.

Theorem 1.6 (Symbolic Rudolph-Johnson Theorem). Let µ be a Borel probability
measure on [0, 1) with Borel σ-algebra B which is invariant under both S and T and

is ergodic for the joint action. Let X̂ ⊂ {0, 1}Z2

be a Jewett-Krieger model for the

natural extension of ([0, 1),B, µ, S, T ) and let σ, τ : X̂ → X̂ denote the horizontal
and vertical shifts (respectively). If either hν(σ) > 0 or hν(τ) > 0, then µ is
Lebesgue measure.

Proof. An isomorphism of the Z2-systems (X,X , µ, S, T ) and (X̂,B, ν, σ, τ) restricts

to an isomorphism of the Z-systems (X,X , µ, S) and (X̂,B, ν, σ), and so hµ(S) =
hν(σ). Similarly hµ(T ) = hν(τ). The statement then follows immediately from the
Rudolph-Johnson Theorem. �

1.4. Combinatorial rephrasing of measure theoretic entropy. The appeal of
Theorem 1.6 is that the hypothesis that hν(σ) > 0 (or equivalently that hν(τ) > 0)
can be phrased purely as a combinatorial statement about the frequency with which

words in the language of X̂ occur in larger words in the language of X̂. To explain
this, we start with some definitions.

If X ⊂ AZ is a subshift over the finite alphabet A, we write x = (x(n) : n ∈ Z).
A word is a defined to be a finite sequence of symbols contained consecutively in
some x and we let |w| denote the number of symbols in w (it may be finite or
infinite). A word w is a subword of a word u if the symbols in the word w occur
somewhere in u as consecutive symbols. The language L = L(X) of X is defined
to be the collection of all finite subwords that arise in elements of X. If w ∈ L(X),
let [w] denote the cylinder set it determines, meaning that

[w] = {u ∈ L : u(n) = w(n) for 1 ≤ n ≤ |w|}.

These definitions naturally generalize to a two dimensional subshift X ⊂ AZ2

,

and for x ∈ AZ2

we write x = (x(~u) : ~u ∈ Z2). A word is a finite, two dimensional
configuration that is convex and connected (as a subset of Z2), and a subword is a
configuration contained in another word. If F ⊂ Z2 is finite and β ∈ AF , then the
cylinder set of shape F determined by β is defined to be the set

[F ;β] := {x ∈ AZ2

: x(~u) = β(~u) for all ~u ∈ F}.

Lemma 1.7. Let (X̂,B, ν, σ, τ) be a strictly ergodic Z2-subshift. Let w be a (2n+

1)×(2n+1) word in the language of X̂ and let [w] denote the cylinder set determined
by placing the word w centered at (0, 0). Let u1, u2, u3, . . . be words in the language

of X̂ such that ui is a square of size (2n + 2i + 1) × (2n + 2i + 1). If N(w, ui)
denotes the number of times w occurs as a subword of ui, then

ν[w] = lim
i→∞

N(w, ui)/(2i+ 1)2.

Proof. By unique ergodicity, the Birkhoff averages of a continuous function con-
verge uniformly to the integral of the function. In particular, this applies to the
continuous function 1[w], so the limit exists and is independent of the sequence
{ui}∞i=1. �
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For m,n ∈ N, let P(m,n) be the partition of X̂ according to cylinder sets of
shape [0,m − 1] × [−n + 1, n − 1]. Observe that (recall that σ, as defined in (1),
denotes the left shift)

P(m,n) =

k∨
i=0

σ−iP(1, n)

and that
∨k
i=−k σ

iP(1, n) is the partition of X̂ into symmetric (2m+ 1)× (2n+ 1)-
cylinders centered at the origin. Therefore, {P(1, n)}∞n=1 is a sufficient (in the sense
of Definition 4.3.11 in [8]) family of partitions to generate the Borel σ-algebra of the

system (X̂,B, ν, σ), where we view this as a Z-system with respect to the horizontal

shift σ. Let hν(σ,Q) denote the measure theoretic entropy of the system (X̂,B, ν, σ)
with respect to the partition Q and let hν(σ) denote the measure theoretic entropy
of the system. It follows that

hν(σ) = sup
n
hν(σ,P(1, n))

= lim
n→∞

hν (σ,P(1, n))

= − lim
n→∞

lim
m→∞

1

m

∑
w∈P(m,n)

ν[w] log ν[w]

= − lim
n→∞

lim
m→∞

lim
i→∞

1

m

∑
w∈P(m,n)

N(w, ui)

(2i+ 1)2
· log

N(w, ui)

(2i+ 1)2

by Lemma 1.7. In other words, the Rudolph-Johnson Theorem is equivalent to:

Theorem 1.8 (Combinatorial Rudolph-Johnson Theorem). Let µ be a Borel prob-
ability measure on [0, 1) with Borel σ-algebra B and assume that µ is invariant

under both S and T , and ergodic for the joint action. Let X̂ be a Jewett-Krieger
model for the natural extension of ([0, 1),B, µ, S, T ) and without loss of generality,

suppose the horizontal shift on X̂ is intertwined with S under this isomorphism. If

− lim
n→∞

lim
m→∞

lim
i→∞

1

m

∑
w∈P(m,n)

N(w, ui)

(2i+ 1)2
· log

N(w, ui)

(2i+ 1)2
> 0,

then the value of this limit is log p and µ is Lebesgue measure.

1.5. Complexity of subshifts. If X ⊂ AZ2

is a nonempty subshift, then its
complexity function is the function PX : {finite subsets of Z2} → N given by

PX(F ) :=
∣∣{β ∈ AF : [F ;β] ∩X 6= ∅}

∣∣.
Let Rn := {(i, j) ∈ Z2 : 1 ≤ i, j ≤ n} denote the n× n rectangle in Z2. A standard

notion of the complexity of a subshift X ⊂ AZ2

is the asymptotic growth rate
of PX(Rn). Observe that PX(Rn) is bounded (in n) if and only if X is finite.
Moreover, PX(Rn) grows exponentially (meaning that lim log(PX(Rn))/n2 > 0) if
and only if (X,σ, τ) has positive topological entropy.

We are now in a position to state our main technical result.

Theorem 1.9. Let µ be a Borel probability measure on [0, 1) with Borel σ-algebra
B. Assume that µ is invariant under both S and T and ergodic for the joint ac-

tion, and let X̂ ⊂ {0, 1}Z2

be a Jewett-Krieger model for the natural extension of
([0, 1),B, µ, S, T ). If there exists n ∈ N such that PX̂(Rn) ≤ 1

2n
2, then PX̂(Rn) is

bounded (independent of n) and X̂ is finite. In particular, µ is atomic.
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This gives a nontrivial complexity gap for the set of 〈S, T 〉-ergodic probability
measures, which is our main result:

Corollary 1.10 (Complexity gap). Let µ be a Borel probability measure on [0, 1)

which is invariant under both S and T and ergodic for the joint action, and let X̂ ⊂
{0, 1}Z2

be a Jewett-Krieger model for the natural extension of ([0, 1),B, µ, S, T ).
Then either PX̂(Rn) is bounded (and µ is atomic) or

lim inf
n→∞

PX̂(Rn)

n2
≥ 1

2
.

This gap is nontrivial in the following sense: there exist infinite (i.e. not doubly
periodic), strictly ergodic Z2-subshifts whose complexity function is o(n2). The
statement made by Corollary 1.10 is that any such subshift cannot be a Jewett-
Krieger model of any 〈×p,×q〉-ergodic measure on [0, 1).

Example 1.11. Let X ⊂ {0, 1}Z be a Sturmian shift (see [11] for the definition).

Then X is strictly ergodic and PX(n) = n + 1 for all n ∈ N. Let Y ⊂ {0, 1}Z2

be
the subshift whose points are obtained by placing each x ∈ X along the x-axis in
Z2 and then copying vertically (i.e. each point in Y is vertically constant and its
restriction to the x-axis is an element of X). It follows that Y is strictly ergodic
and that PY (Rn) = n + 1 for all n ∈ N. Corollary 1.10 shows that Y is not a
Jewett-Krieger model for any 〈×p,×q〉-ergodic measure on [0, 1). Note that the
action in this example is not free, and so can not arise as a Jewett-Krieger model of
a ×p,×q invariant system, and we show that this happens generally: a shift with
sufficiently low complexity generates actions that are not free.

1.6. Remarks on complexity growth. We conclude our introduction with a few
brief remarks on Theorem 1.9 and Corollary 1.10. We show (Lemma 2.1) that any

Jewett-Krieger model X̂ for an atomic 〈S, T 〉-ergodic measure is a strictly ergodic
Z2-subshift containing only doubly periodic Z2-colorings, meaning that there are

only finitely many points in X̂. From this, it is easy to deduce that PX̂(Rn) is

bounded independently of n (by the number of points in X̂). Moreover, we show

that if X̂ is a Jewett-Krieger model for µ and if X̂ contains only doubly periodic
Z2-colorings, then µ is atomic.

A strategy for proving Theorem 1.9 is therefore to find a nontrivial growth rate

of PX̂(Rn) which implies that X̂ contains only doubly periodic Z2-colorings. A
simple example of such a rate follows from the classical Morse-Hedlund Theo-

rem [11]: if there exists n ∈ N such that PX̂(Rn) ≤ n, then X̂ contains only

doubly periodic Z2-colorings (see e.g. the proof of Theorem 1.2 in [14]). In fact
this bound is sharp: there exist Z2-colorings that are not doubly periodic and yet
satisfy PX̂(Rn) = n + 1 for all n ∈ N. Many other subquadratic growth rates can

also be realized by strictly ergodic Z2-subshifts that do not contain doubly periodic
points (see, for example, [13]). Therefore, a weak version of Theorem 1.9 that re-
places the assumption that there exists n ∈ N such that PX̂(Rn) ≤ 1

2 · n
2 with the

stronger assumption that there exists n ∈ N such that PX̂(Rn) ≤ n, follows from
the Morse-Hedlund Theorem. However, this weak theorem relies on the fact that
there are simply no strictly ergodic Z2-subshifts for which PX̂(Rn) is unbounded
but for which PX̂(Rn) ≤ n (for some n). The complexity gap provided by this
weak theorem is therefore trivial in the sense that there are no strictly ergodic
Z2-subshifts whose complexity function lies in this gap.
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On the other hand, there do exist strictly ergodic Z2-subshifts with unbounded
complexity and such that PX̂(Rn) < 1

2 · n
2. This is the interest in Theorem 1.9

and Corollary 1.10. The content of the theorem is that although such Z2-systems
exist, they can not be Jewett-Krieger models of 〈S, T 〉-ergodic measures on [0, 1).
This is analogous to Theorem 1.8, which says that although there are strictly er-
godic Z2-subshifts that have small but positive entropy, they are not Jewett-Krieger
models of 〈S, T 〉-ergodic measures on [0, 1). Moreover, analogous to the hypoth-
esis of Corollary 1.10 which relies on the growth rate of PX̂(·), the hypothesis of
Theorem 1.8 is a condition on the growth rate of the relative complexity function
N(·, ·) of Lemma 1.7, with respect to the action of the horizontal shift (a similar
statement holds for the vertical shift).

2. Proof of Theorem 1.9

Throughout this section, we assume that p, q ≥ 2 are multiplicatively indepen-
dent integers and that µ is a Borel probability measure on [0, 1) which is invariant
under both

Sx := px (mod 1);

Tx := qx (mod 1)

and is ergodic with respect to the joint action 〈S, T 〉. Let B denote the associated
Borel σ-algebra on [0, 1)

2.1. The natural extension. Let X be the natural extension of the N2-system
([0, 1),B, µ, S, T ). Specifically (following [15]), let

X :=
{
y ∈ [0, 1)Z

2

: y(i+ 1, j) = Sy(i, j) and y(i, j + 1) = Ty(i, j) for all i, j ∈ Z
}
,

and for (i, j) ∈ Z2 let π(i,j) : X → [0, 1) be the map π(i,j)(y) = y(i, j). Define a
countably additive measure µX on the σ-algebra

∞⋃
i=0

π−1(−i,−i)B

by setting µX(π−1(−i,−i)A) := µ(A). Let X be the completion of this σ-algebra with

respect to µX . Let SX , TX : X → X be the left shift and the down shift, respec-
tively. Thus π(0,0) defines a measure theoretic factor map from (X,X , µX , SX , TX)
to ([0, 1),B, µ, S, T ). Moreover, µX is ergodic if and only if µ is ergodic. By con-
struction, hµ(S) = hµX

(SX), hµ(T ) = hµX
(TX), and hµ(〈S, T 〉) = hµX

(〈SX , TX〉).
The advantage of working with (X,X , µX , SX , TX) instead of the original system

is that the natural extension is an ergodic Z2-system.

2.2. Jewett-Krieger models and periodicity. Given a two dimensional system
(X,X , µX , SX , TX), a one dimensional subsystem is the action generated by some
fixed SiT j for some (i, j) 6= (0, 0). If the two dimensional entropy of a system
is positive, then the entropy of every one dimensional subsystem is infinite (for a
proof, see, for example, [18]). In our setting, since hµ(S) ≤ htop(S) = log(p) (and
hµ(T ) ≤ htop(T ) = log(q)), it follows that the measure theoretic entropy of the joint
action generated by 〈S, T 〉 on [0, 1) with respect to µ is also zero. It follows that the
measure theoretic entropy with respect to µX of the joint action on X generated by
〈SX , TX〉 is zero. Therefore, by Theorem 1.3, there exists a strictly ergodic subshift
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X̂ ⊂ {0, 1}Z2

such that (X,X , µX , SX , TX) is measure theoretically isomorphic to

(X̂, X̂ , ν, σ, τ), where X̂ is the Borel σ-algebra on X̂, σ, τ : X̂ → X̂ denote the
left shift and down shift (respectively), and ν is the unique 〈σ, τ〉-invariant Borel

probability measure. Note that the choice of X̂ is not necessarily unique.

Lemma 2.1. If (X,X , µX , SX , TX) is an atomic system, then any Jewett-Krieger

model (X̂, X̂ , ν, σ, τ) for (X,X , µX , SX , TX) is finite.

Proof. Let π : (X̂, X̂ , ν, σ, τ)→ (X,X , µX , SX , TX) be an isomorphism and let x ∈
X be an atom. Then there exist full measure sets X̂1 ⊂ X̂ and X1 ⊂ X such that
π : X̂1 → X1 is a bijection which interwines the Z2 actions. Every atom in X is

contained in X1, and if x ∈ X1 is an atom then there exists unique y ∈ X̂1 such

that π(y) = x. It follows that ν({y}) = µX({x}) > 0 and so y is an atom in X̂.
By the Poincaré Recurrence Theorem, there exists (i, j) ∈ Z2 \ {(0, 0)} such that

SiXT
j
Xy = y. Let Vy := {(i, j) ∈ Z2 \ {(0, 0)} : SiXT

j
Xy = y} be the (nonempty) set

of nontrivial period vectors for y. If dim(Span(Vy)) = 1, then

lim
N→∞

1

(2N + 1)2

∑
−N≤i,j≤N

1{y}(S
i
XT

j
Xy) = 0 < ν({y}),

which contradicts the pointwise ergodic theorem. Therefore dim(Span(Vy)) = 2

and y ∈ AZ2

is doubly periodic. Moreover, for ν-a.e. z ∈ X̂ we have SiXT
j
Xz = y

for some (i, j) ∈ Z2 and so z is also doubly periodic (with periods equal to those of

y). Thus there are only finitely many points z ∈ X̂. �

Since X̂ is minimal, and hence transitive, we can use the following tool for
studying the dynamics of (X,X , µX , SX , TX):

Theorem 2.2 (Cyr & Kra [3]). If (X,σ, τ) is a transitive Z2-subshift and there
exist n, k ∈ N such that PX(n, k) ≤ nk/2, then there exists (i, j) ∈ Z2 \ {(0, 0)}
such that σiτ jx = x for all x ∈ X.

Lemma 2.3. If there exists (i, j) ∈ Z2 \ {(0, 0} such that σiτ jx = x for every

x ∈ X̂, then SiXT
j
Xx = x for µ-almost every x ∈ X.

Proof. Let ψ : X̂ → X be an isomorphism. Thus there exist X̂1 ⊂ X̂ and X1 ⊂ X

such that ν(X̂1) = µX(X1) = 1, ψ : X̂1 → X1 is a bi-measurable bijection, the
push forward ψ∗ν of the measure ν under ψ satisfies ψ∗ν = µX , and furthermore
ψ ◦ σ = SX ◦ ψ, and ψ ◦ τ = TX ◦ ψ. Let E = {x ∈ X1 : SiXT

j
Xx 6= x}. Since

ψ−1(E) = {y ∈ X̂1 : σiτ jy 6= y}, it follows that µX(E) = ν(ψ−1(E)) = 0. �

Theorem 2.4. If there exist n, k ∈ N such that PX̂(n, k) ≤ nk/2, then µ is

atomic. Moreover, if Ŷ is any other Jewett-Krieger model for ([0, 1),B, µ, S, T ),
then PŶ (n, k) is bounded independent of n, k ∈ N.

Proof. Combining Theorem 2.2 and Lemma 2.3, there exist (i, j) ∈ Z2\{(0, 0} such

that SiXT
j
Xx = x for µX -a.e. x ∈ X. Therefore (SiXT

j
Xx)(0, 0) = x(0, 0) for µX -a.e.

x ∈ X. It is immediate that we also have (S−iX T−jX x)(0, 0) = x(0, 0) for µX -a.e.
x ∈ X. So there are two cases to consider, depending on the the sign of i · j.
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Case 1. Suppose i·j ≥ 0. Then, replacing by −i and −j if necessary, we can assume
that both i and j are nonnegative. Set E := {y ∈ [0, 1) : SiT jy 6= y} and let y ∈ E.

Then if x ∈ π−1(y), we have that SiXT
j
Xx 6= x. Thus µ(E) = µX(π−1(E)) = 0 and

so SiT jy = y for µ-a.e. y ∈ [0, 1).
Now observe that SiT jy = y is equivalent to the statement that

piqjy = y (mod 1),

which only has finitely many solutions in the interval [0, 1). Therefore, µ is sup-
ported on a finite set. Since µ is 〈S, T 〉-invariant, this set must be S- and T -
invariant. Therefore there exist a, b ∈ N such that Sa and T b are both equal to the
identity µ-almost everywhere.

Case 2. Suppose i·j < 0. Again, replacing by−i and−j if necessary, we can assume
that i < 0 and j > 0. Now set E := {y ∈ [0, 1) : S−iy 6= T jy}. Thus if y ∈ E and
x ∈ π−1(y), then x(−i, j) 6= x(0, 0) = y as S−i(x(−i, j)) = x(0, j) = T j(x(0, 0))
by construction. Therefore SiT jx 6= x and so µ(E) = µX(π−1(E)) = 0. It follows
that S−iy = T jy for µ-a.e. y ∈ [0, 1).

Finally observe that S−iy = T jy is equivalent to

p−iy = qjy (mod 1).

As p and q are multiplicatively independent, there are only finitely many solutions
in the interval [0, 1). Therefore, again, µ is supported on a finite set and there exist
a, b ∈ N such that Sa and T b are both equal to the identity µ-almost everywhere.

This establishes the first claim of the theorem. By Lemma 2.1, any Jewett-
Krieger model of an atomic system is finite, and the second statement follows. �

We use this to complete the proof of Theorem 1.9:

Proof of Theorem 1.9. Let µ be a Borel probability measure on [0, 1) that is 〈S, T 〉-
ergodic. If this two dimensional action is not free, arguing as in the proof of
Theorem 2.4 that µ is an atomic measure, we are done. Thus we can assume that
the action is free, and similarly the action for the natural extension is also free.

Let (X̂, X̂ , ν, σ, τ) be a Jewett-Krieger model for the natural extension of the
system ([0, 1),B, µ, S, T ). If there is no such model satisfying the additional prop-
erty that there exist n, k ∈ N satisfying PX̂(n, k) ≤ nk/2, then the conclusion of
the Theorem holds vacuously. Thus it suffices to assume that there exists a Jewett-

Krieger model (X̂, X̂ , ν, σ, τ) with the property that there exist n, k ∈ N satisfying
PX̂(n, k) ≤ nk/2. By Theorem 2.4, ([0, 1),B, µ, S, T ) is atomic. �

3. Higher dimensions

For a Z2-subshift X, there is a natural two dimensional extension of the complex-
ity function PX(n, n) obtained by counting the number of n× n cylinder sets (and
similarly one can define the analog for higher dimensional subshifts or for more
generally shaped cylinder sets). Theorem 1.9 shows that if µ is any nonatomic
×p, ×q ergodic measure then the natural extension of ([0, 1),X , µ, S, T ) cannot
be measurably isomorphic to a Z2-subshift whose complexity function satisfies
PX(n, n) = o(n2). It is natural to ask whether this result can be generalized
to higher dimensions. In particular, if p1, . . . , pd are a multiplicatively independent
set of integers and µ is a nonatomic ×p1, . . . ,×pd ergodic measure, we can ask if the
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natural extension of (X,X , µ,×p1, . . . ,×pd) could have a topological model whose
complexity function is o(nd).

The same method used in the two dimensional case suggests a path to proving
this result. If one could show that any free, strictly ergodic Zd-subshift whose com-
plexity function is o(nd) is periodic, then it would follow that no such topological
model for µ exists. However, the analog of Theorem 2.2 in dimension d > 2 is false.
Julien Cassaigne [2] has shown that for d > 2, there exists a minimal Zd-subshift
X whose elements are not periodic in any direction, and is such that for any ε > 0
we have PX(n, n, . . . , n) = o(n2+ε). On the other hand, the authors have recently
shown [4] that the analog of Theorem 2.2 does hold for dimension d > 2 if a certain
expansiveness assumption is imposed on the subshift.

If Y ⊂ AZd

is a subshift, then we say that the x-axis in Zd is strongly expansive
if whenever x, y ∈ X have the same restriction to the x-axis, we have x = y. This
is a stronger version of the general notion of an expansive subspace introduced by
Boyle and Lind [1], where we restrict to a single dimension and require that the
expansive radius be less than one. In this case, if X ⊂ AZ is the subshift ob-
tained by restricting elements of Y to the x-axis, then there exist homeomorphisms
τ1, . . . , τd−1 : X → X which commute pairwise and with the shift σ and are such

that for any y ∈ Y we have y(i1, i2, . . . , id) =
(
τ i11 τ

i2
2 · · · τ

id−1

d−1 σ
idπX(y)

)
(0) for all

i1, . . . , id ∈ Zd, where πX(y) denotes the restriction of y to the x-axis. In previous
work, we have shown that:

Theorem 3.1 (Cyr & Kra [4]). Let X ⊂ AZ be a minimal subshift and let
τ1, . . . , τd−1 : X → X be homeomorphisms of X that commute with the shift σ.
If 〈σ, τ1, . . . , τd−1〉 ∼= Zd, then lim infn→∞ PX(n)/nd > 0.

With some additional effort, the same result can be shown if the assumption that
(X,σ) is minimal (as a Z-system) is relaxed to only require that (X,σ, τ1, . . . , τd) is
minimal (as a Zd-system). Thus, the only obstruction to generalizing Theorem 1.9
to the higher dimensional setting is the following:

Conjecture 3.2. For every nonatomic Borel probability µ on [0, 1) which is er-
godic for the joint action of ×p1, . . . ,×pd, there is a strongly expansive, minimal
topological model for (X,X , µ,×p1, . . . ,×pd).

If this conjecture holds, then it follows that any such system is measurably isomor-
phic to a subshift whose complexity function grows on the order of nd.
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