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Abstract. Aiming at a simultaneous extension of Khintchine’s and Fursten-
berg’s Recurrence theorems, we address the question if for a measure pre-
serving system(X,X,µ,T) and a setA ∈ X of positive measure, the set
of integersn such thatµ(A∩TnA∩T2nA∩ . . .∩TknA) > µ(A)k+1− ε is
syndetic. The size of this set, surprisingly enough, depends on the length
(k+ 1) of the arithmetic progression under consideration. In an ergodic
system, fork = 2 andk = 3, this set is syndetic, while fork≥ 4 it is not.
The main tool is a decomposition result for the multicorrelation sequence∫

f (x) f (Tnx) f (T2nx) . . . f (Tknx)dµ(x), wherek andn are positive integers
and f is a bounded measurable function. We also derive combinatorial con-
sequences of these results, for example showing that for a set of integersE
with upper Banach densityd∗(E) > 0 and for allε > 0, the set

{n∈ Z : d∗
(
E∩ (E +n)∩ (E +2n)∩ (E +3n)

)
> d∗(E)4− ε}

is syndetic.

1. Introduction

1.1. Ergodic theory results

We begin by recalling two classical results of early ergodic theory. Let
(X,X,µ,T) be a measure preserving probability system with an invertible

? The first author was partially supported by NSF grant DMS-0245350 and the third
author was partially supported by NSF grant DMS-0244994.
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measure preserving transformationT. (For brevity, we call(X,X,µ,T) a
system.) Let A∈ X be a set of positive measure. The Poincaré Recurrence
Theorem states that

µ(A∩TnA) > 0 for infinitely many values of n.

The Khintchine Recurrence Theorem [K] states that the measureµ(A∩
TnA) is ‘large’ for many values ofn. Before stating the result precisely, we
need a definition:

Definition 1.1. A subset E of the integersZ is syndeticif Z can be covered
by finitely many translates of E.

In other words,E hasbounded gaps, meaning that there exists an integer
L > 0 such that every interval of lengthL contains at least one element of
E.

In [K], Khintchine strengthened the Poincaré Recurrence Theorem, show-
ing that under the same assumptions:

For everyε > 0,
{

n∈ Z : µ(A∩TnA) > µ(A)2− ε
}

is syndetic.

More recently, Furstenberg proved a Multiple Recurrence Theorem:

Theorem (Furstenberg [F1]).Let (X,X,µ,T) be a system, let A∈X be a
set withµ(A) > 0 and let k≥ 1 an integer. Then

liminf
N−M→+∞

1
N−M

N−1

∑
n=M

µ(A∩TnA∩T2nA∩·· ·∩TknA) > 0 .

The liminf is actually a limit; see [HK]. (See also [Z2].)
In particular, there exist infinitely many integersn such thatµ(A∩TnA∩

T2nA∩ ·· · ∩TknA) > 0. Furstenberg’s Theorem can thus be considered as
a far reaching generalization of the Poincaré Recurrence Theorem, which
corresponds tok = 1. Our interest is in the existence of a theorem that has
the same relation to the Khintchine Recurrence Theorem as Furstenberg’s
Theorem has to the Poincaré Recurrence Theorem. More precisely, under
the same assumptions we ask if the set{

n∈ Z : µ
(
A∩TnA∩·· ·∩TknA

)
> µ(A)k+1− ε

}
(1.1)

is syndetic for every positive integerk and everyε > 0. While it follows
from Furstenberg’s Theorem that for some constantc = c(A) > 0, the set
{n∈ Z : µ(A∩TnA∩·· ·∩TknA) > c} is syndetic, we are asking if this can
be strengthened to make the set in (1.1) syndetic for every positive integer
k andc = µ(A)k+1− ε for everyε > 0.

Under the hypothesis of ergodicity, the answer is positive fork = 2 and
k = 3 and surprisingly enough, is negative for allk≥ 4. Under the assump-
tion of ergodicity, we generalize the Khintchine Recurrence Theorem:
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Theorem 1.2.Let (X,X,µ,T) be an ergodic system and let A∈ X be a set
of positive measure. Then for everyε > 0, the subsets{

n∈ Z : µ(A∩TnA∩T2nA) > µ(A)3− ε
}

(1.2)

and {
n∈ Z : µ(A∩TnA∩T2nA∩T3nA) > µ(A)4− ε

}
(1.3)

of Z are syndetic.

While ergodicity is not needed for Khintchine’s Theorem, it is essential
in Theorem 1.2. Theorem 2.1 provides a counterexample in the general
(nonergodic) case.

For arithmetic progressions of length≥ 5, the result analogous to Theo-
rem 1.2 does not hold. Using the result of Ruzsa contained in the Appendix,
in Section 2.3 we show

Theorem 1.3.There exists an ergodic system(X,X,µ,T) such that for all
integers̀ ≥ 1, there exists a set A= A(`) ∈ X with µ(A) > 0 and

µ
(
A∩TnA∩T2nA∩T3nA∩T4nA

)
≤ µ(A)`/2 (1.4)

for every integer n6= 0.

In fact, we find the slightly better upper boundµ(A)−clogµ(A) for some set
A of positive arbitrarily small measure and some positive constantc.

1.2. Combinatorial results

We recall a definition:

Definition 1.4. Theupper Banach densityof a subset E ofZ is:

d∗(E) = lim
N→+∞

sup
M∈Z

1
N

∣∣E∩ [M,M +N−1]
∣∣ .

Note that the limit exists by subadditivity and is the infimum of the
sequence. Furstenberg used his Multiple Recurrence Theorem to make the
beautiful connection between ergodic theory and combinatorics and prove
Szemerédi’s Theorem:

Theorem (Szemerédi [S]).A subset of integers with positive upper Ba-
nach density contains arithmetic progressions of arbitrary finite length.

Using a variation of Furstenberg’s Correspondence Principle (Proposition 3.1)
and Theorem 1.2, we immediately deduce:
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Corollary 1.5. Let E be a set of integers with positive upper Banach den-
sity. Then for everyε > 0, the sets{

n∈ Z : d∗
(
E∩ (E +n)∩ (E +2n)

)
> d∗(E)3− ε

}
and {

n∈ Z : d∗
(
E∩ (E +n)∩ (E +2n)∩ (E +3n)

)
> d∗(E)4− ε

}
are syndetic.

Roughly speaking, this means that given a setE with positive upper
Banach density, for ‘many’ values ofn, E contains ‘many’ arithmetic pro-
gressions of length 3 (or of length 4) with differencen. (Thedifferenceof
the arithmetic progression{a,a+n, . . . ,a+kn} is the integern > 0.)

The following result follows from the proof of Theorem 1.3 and shows
that the analogous result does not hold for longer progressions:

Corollary 1.6. For every positive integer̀, there exists a set of integers
E = E(`) with positive upper Banach density such that

d∗
(
E∩ (E +n)∩ (E +2n)∩ (E +3n)∩ (E +4n)

)
≤ d∗(E)`/2

for every nonzero integer n.

1.3. Nilsequences

We now explain the main ideas behind the ergodic theoretic results of Sec-
tion 1.1.

Fix an integerk ≥ 1. Given an ergodic system(X,X,µ,T) and a set
A∈ X of positive measure, the key ingredient for our ergodic results is the
analysis of the sequence

µ
(
A∩TnA∩T2nA∩·· ·∩TknA

)
.

More generally, for a real valued functionf ∈ L∞(µ), we consider themul-
ticorrelationsequence

I f (k,n) :=
∫

f (x) · f (Tnx) · . . . · f (Tknx)dµ(x) . (1.5)

Whenk = 1, Herglotz’s Theorem states that the correlation sequence
I f (1,n) is the Fourier transform of some positive finite measureσ = σ f on
the torusT:

I f (1,n) :=
∫

f · f ◦Tndµ = σ̂(n) :=
∫

T
e2π int dσ(t) .

By decomposing the measureσ into its continuous partσc and its discrete
partσd, we can write the sequenceI f (1,n) as the sum of two sequences

I f (1,n) = σ̂c(n)+ σ̂d(n) .

The sequence{σ̂c(n)} tends to 0 in uniform density:
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Definition 1.7. Let {an : n ∈ Z} be a bounded sequence. We say that an
tends to zero in uniform density, and we writeUD-Lim an = 0, if

lim
N→+∞

sup
M∈Z

1
M

M+N−1

∑
n=M

|an|= 0 .

Equivalently, UD-Liman = 0 if and only if for anyε > 0, the set{n ∈
Z : |an| > ε} has upper Banach density zero (cf. Bergelson [Ber], defini-
tion 3.5).

The sequence{σ̂d(n)} is almost periodic, and hence there exists a com-
pact abelian groupG, a continuous real valued functionφ on G, anda∈ G

such that̂σd(n) = φ(an) for all n.
The compact abelian groupG is an inverse limit of compact abelian Lie

groups. Thus any almost periodic sequence can be uniformly approximated
by an almost periodic sequence arising from a compact abelian Lie group.

We find a similar decomposition for the multicorrelation sequencesI f (k,n)
for k≥ 2. The notion of an almost periodic sequence is replaced by that of
anilsequence, which we now define:

Definition 1.8. Let k≥ 1 be an integer and let X= G/Λ be a k-step nil-
manifold. Letφ be a continuous real (or complex) valued function on G
and let a∈ G and e∈ X. The sequence{φ(an ·e)} is called abasick-step
nilsequence. A k-step nilsequenceis a uniform limit of basic k-step nilse-
quences.

(For the precise definition of a nilmanifold, see section 4.1.) Note that
a 1-step nilsequence is the same as an almost periodic sequence. Examples
of 2-step nilsequences are given in Section 4.3.

While an inverse limit of compact abelian Lie groups is a compact
group, an inverse limit ofk-step nilmanifolds is not, in general, the ho-
mogeneous space of some locally compact group (see Rudolph [R]). This
explains why the definition of a nilsequence is not a direct generalization
of the definition of an almost periodic sequence.

The general decomposition result is:

Theorem 1.9.Let (X,X,µ,T) be an ergodic system, let f∈ L∞(µ) and
let k≥ 1 be an integer. The sequence{I f (k,n)} is the sum of a sequence
tending to zero in uniform density and a k-step nilsequence.

We explain how Theorems 1.9 and 1.2 are related.

Definition 1.10.Let {an : n∈ Z} be a bounded sequence of real numbers.
Thesyndetic supremumof this sequence is

synd-supan := sup
{

c∈ R : {n∈ Z : an > c} is syndetic
}

.
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In Section 4.3, we show that the syndetic supremum of a nilsequence is
equal to its supremum.

We use the following simple lemma several times:

Lemma 1.11.Let {an} and{bn} be two bounded sequences of real num-
bers. IfUD-Lim(an−bn) = 0, thensynd-supan = synd-supbn.

Therefore, the syndetic supremums of the sequences{µ(A∩TnA∩T2nA)}
and{µ(A∩TnA∩T2nA∩T3nA)} are equal to the supremums of the associ-
ated nilsequences and we are reduced to showing that they are greater than
or equal toµ(A)3 andµ(A)4, respectively. This is carried out in Section 8,
completing the proof of Theorem 1.2.

1.4. Conventions and notation

Given a system(X,X,µ,T), in general we omit theσ -algebra from our
notation and write(X,µ,T).

For a system(X,µ,T), a factor is used with two meanings: it is aT-
invariant sub-σ -algebraY or a system(Y,ν ,S) and a measurable mapπ :
X →Y such thatπµ = ν andS◦π = π ◦T. These two definitions coincide
under the identification of theσ -algebraY of Y with the invariant sub-σ -
algebraπ−1(Y) of X.

In a slight abuse of vocabulary, we say thatY is a factor ofX. If f is an
integrable function onX, we denote the conditional expectation off on the
factorY by E( f | Y). We writeE( f | Y) for the function onY defined by
E( f | Y) = E( f |Y)◦π. This expectation is characterized by

for all g∈ L∞(ν),
∫

X
f ·g◦π dµ =

∫
Y

E( f |Y) ·gdν .

Throughout the article, we implicitly assume that the term “bounded
function” means bounded and measurable.

1.5. Outline of the paper

In Section 2, we construct two examples, the first showing that ergodicity
is a necessary assumption for Theorem 1.2 and the second, a counterexam-
ple for progressions of length≥ 5 (Theorem 1.3). In Section 3, we use a
variant of Furstenberg’s Correspondence Principle to derive combinatorial
consequences of the ergodic theoretic statements. The bulk of the paper is
devoted to describing the decomposition of multicorrelation sequences and
proving Theorem 1.2. We start by reviewing nilsystems and construction
of certain factors in Section 4, and then in Section 5 explicitly describe the
limit of an average along arithmetic progressions in a nilsystem. In Sec-
tion 6, we introduce technical notions needed for the decomposition and in
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Section 7 we complete the proof of the decomposition. Section 8 combines
these results and proves Theorem 1.2.

Acknowledgments: We thank I. Ruzsa for the combinatorial construction
(contained in the Appendix) which is the starting point for the construction
of the counterexample of Theorem 1.3. We also thank E. Lesigne for point-
ing us to the version of the Correspondence Principle we use and A. Leib-
man for useful explanations about nilsystems.

2. Combinatorial and ergodic counterexamples

In this section,c denotes a universal constant, with the understanding that
its value may change from one use to the next. LetmT denote the Haar
measure on the torusT = R/Z.

2.1. A counterexample for a nonergodic system

In order to show that ergodicity is necessary in Theorem 1.2, we use the
following result of Behrend:

Theorem (Behrend [Beh]).For every integer L> 0, there exists a sub-
setΛ of {0,1, . . . ,L−1} having more than Lexp(−c

√
logL) elements that

does not contain any nontrivial arithmetic progression of length3.

Theorem 2.1.There exists a (nonergodic) system(X,µ,T) and, for every
integer`≥ 1, there exists a subset A of X of positive measure so that

µ
(
A∩TnA∩T2nA

)
≤ 1

2
µ(A)` . (2.1)

for every nonzero integer n.

We actually construct a setA of arbitrarily small positive measure with
µ
(
A∩TnA∩T2nA

)
≤ µ(A)−clog(µ(A)) for every integern 6= 0 and a positive

universal constantc.

Proof. Let X = T×T, endowed with its Haar measureµ = mT×mT and
with the transformationT given byT(x,y) = (x,y+ x). Let Λ be a subset
of {0,1, . . . ,L−1}, not containing any nontrivial arithmetic progression of
length 3. Define

B =
⋃
j∈Λ

[ j
2L

,
j

2L
+

1
4L

)
, (2.2)

which we consider as a subset of the torus and setA = T×B.
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For every integern 6= 0 we haveTn(x,y) = (x,y+nx) and

µ
(
A∩TnA∩T2nA

)
=
∫∫

T×T
1B(y)1B(y+nx)1B(y+2nx)dmT(y)dmT(x)

=
∫∫

T×T
1B(y)1B(y+x)1B(y+2x)dmT(y)dmT(x) .

We now bound this last integral. Letx,y∈ T be such that the expression
in this integral is nonzero. The three pointsy,y+ x andy+2x belong toB
and we can write

y =
i

2L
+a ; y+x =

j
2L

+b ; y+2x =
k

2L
+c

for integersi, j,k belonging toΛ anda,b,c∈ [0,1/4L) (mod 1). Then

i−2 j +k
2L

=−a+2b−c∈ (
−1
2L

,
1

2L
)

and thusi−2 j + k = 0. The integersi, j,k form an arithmetic progression
in Λ and so the only possibility is that they are all equal, giving that the
three pointsy,y+x,y+2x belong to the same subinterval ofB. Therefore,
x∈ (−1/(8L),1/(8L)) (mod 1) and, for everyn 6= 0,

µ
(
A∩TnA∩T2nA

)
=
∫∫

T×T
1B(y)1B(y+x)1B(y+2x)dmT(y)dmT(x)

≤mT(B)
4L

.

We havemT(B) = |Λ |/(4L). By Behrend’s Theorem, we can chooseΛ of
cardinality on the order ofLexp(−c

√
logL). By takingL sufficiently large,

an easy computation gives the bound (2.1).ut

2.2. Quadratic configurations

Out next goal is to show that the results of Theorem 1.2 do not hold for
arithmetic progression of length≥ 5. We start with a definition designed to
describe certain patterns that do not occur.

Definition 2.2. An integer polynomialis a polynomial taking integer values
on the integers. When P is a nonconstant integer polynomial of degree≤ 2,
the subset {

P(0),P(1),P(2),P(3),P(4)
}

of Z is called aquadratic configuration of 5 terms, written QC5 for short.
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Note that any QC5 contains at least 3 distinct elements. An arithmetic pro-
gression of length 5 is a QC5, corresponding to a polynomial of degree
1.

We mimic the construction in Theorem 2.1 for this setup:

Lemma 2.3.LetΛ be a subset of{0,1, . . . ,L−1} not containing any QC5.
For j ∈Λ , let I j ⊂ T be the interval

I j = [
j

4L
,

j
4L

+
1

16L
) .

and let B be the union of the intervals Ij for j ∈ Λ . Let x,y,z∈ T be such
that the five points

ai = x+ iy+ i2z (mod 1), i = 0,1, . . . ,4

belong to B. Then2y belongs (mod 1) to the interval
(−1

4L
,

1
4L

)
.

Proof. We considera0, . . . ,a4 as real numbers belonging to the interval
[0,1); by the definition ofB, they actually all belong to[0,1/4). For i =
0, . . . ,4, let j i ∈ E be the integer such thatai ∈ I j i .

The five elementsa0, . . . ,a4 of T satisfy the relations

a3 = a0−3a1 +3a2 (mod 1) anda4 = a1−3a2 +3a3 (mod 1) .

The real numbera0−3a1 +3a2 belongs to the interval

J =
( j0−3 j1 +3 j2

4L
− 3

16L
,

j0−3 j1 +3 j2
4L

+
1

4L

)
and this interval is contained in(−3/4,1). Asa3 = a0−3a1+3a2 (mod 1)
and a3 ∈ [0,1/4), the equalitya3 = a0− 3a1 + 3a2 holds in R and thus
a3 ∈ J.

Moreovera3 ∈ I j3 and, for everyj 6= j0−3 j1 +3 j2, the intervalI j has
empty intersection with the intervalJ. We get thatj3 = j0−3 j1 +3 j2. By
the same computation we have thatj4 = j1−3 j2 +3 j3.

From these two relations it follows that there exists an integer polyno-
mial Q with j i = Q(i) for i = 0, . . . ,4. This polynomial must be constant, for
otherwise{ j0, . . . , j4}would be a QC5 inΛ . Therefore the five pointsai , i =
0, . . . ,4 belong to the same subintervalI j of B. Since 2y =−3a0 +4a1−a2

(mod 1), we have that 2y∈ (−1
4L , 1

4L). ut

The next counterexample relies on a combinatorial construction communi-
cated to us by Imre Ruzsa; his construction is reproduced in the Appendix.

Theorem 2.4 (I. Ruzsa).For every integer L> 0 there exists a subsetΛ of
{0,1, . . . ,L−1} having more than Lexp(−c

√
logL) elements that does not

contain any QC5.
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2.3. Counterexample for longer progressions in ergodic theory.

Proof (Proof of Theorem 1.3).We first define a particular system. Recall
thatT denotes the torus andmT its Haar measure. DefineX = T×T and
µ = mT×mT.

Let α ∈T be an irrational and letX be endowed with the transformation
T given by

T(x,y) = (x+α,y+2x+α) .

It is classical that this system is ergodic. This also follows from the discus-
sion in Section 4.2.

LetΛ be a subset of{0, . . . ,L−1} not containing any QC5,B the subset
of T defined in Lemma 2.3 andA = T×B.

For every integern and every(x,y) ∈ X we have

Tn(x,y) = (x+nα,y+2nx+n2
α) .

Thus forn 6= 0 we have

µ(A∩TnA∩T2nA∩T3nA∩T4nA)

=
∫∫

T×T
1B(y)1B(y+2nx+n2

α)1B(y+4nx+4n2
α)

1B(y+6nx+9n2
α)1B(y+8nx+16n2

α)dmT(x)dmT(y) .

Let x,y∈ T andn 6= 0 be such that the expression in the last integral is not
zero. By Lemma 2.3, 4nx belongs (mod 1) to the interval(−1

4L , 1
4L). Since

y∈ B, we have

µ(A∩TnA∩T2nA∩T3nA∩T4nA)≤ mT(B)
2L

=
|Λ |

32L2 .

By Ruzsa’s Theorem, we can chooseΛ of cardinality on the order of
Lexp(−c

√
logL). By choosingL sufficiently large, an easy computation

gives the bound (1.4).ut

2.4. Counterexample for longer progressions for sets of integers with
positive density.

Proof (Proof of Corollary 1.6).Let (X,µ,T) andA be the system and the
subset ofX defined in Section 2.3. Fix somex ∈ X and defineE = {m∈
Z : Tmx∈ A}.

It is classical that the topological dynamical system(X,T) is uniquely
ergodic; this also follows from the discussion in Section 4.2 and Theo-
rem 4.1. Since the boundary ofA has zero measure, we haved∗(E) = µ(A).
By the same argumentd∗

(
E∩ (E+n)∩ (E+2n)∩ (E+3n)∩ (E+4n)

)
=

µ(A∩TnA∩T2nA∩T3nA∩T4nA). The same argument as in the proof of
Theorem 1.3 gives the announced result.ut
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3. Translation between combinatorics and ergodic theory

3.1. Correspondence principle

In order to obtain combinatorial corollaries of our ergodic theoretic results,
we need the following version of Furstenberg’s Correspondence Principle:

Proposition 3.1.Let E be a set of integers with positive upper Banach den-
sity. There exist an ergodic system(X,X,µ,T) and a set A∈X with µ(A) =
d∗(E) such thatµ(Tm1A∩·· ·∩TmkA)≤ d∗

(
(E+m1)∩·· ·∩ (E+mk)

)
for

all integers k≥ 1 and all m1, . . . ,mk ∈ Z.

The observation that it suffices to prove the ergodic theoretic results for
ergodic systems was transmitted to us by Lesigne (personal communica-
tion); the proof we give is almost entirely contained in Furstenberg [F2].

Proof. We proceed as in the proof of Lemma 3.7 of [F2].
Let {0,1}Z be endowed with the product topology and the shift mapT

given by(Tx)n = xn+1 for all n∈ Z. Definee∈ {0,1}Z by settingen = 1
if n∈ E anden = 0 otherwise. LetX be the closure of the orbit ofe under
T, meaning the closure of

{
Tme: m∈ Z

}
. SetA = {x∈ X : x0 = 1}. It is a

clopen (closed and open) subset ofX. It follows from the definition that for
every integern, we haveTne∈ A if and only if n∈ E.

By definition of d∗(E), there exist two sequences{Mi} and {Ni} of
integers, withNi →+∞, such that

lim
i→∞

1
Ni

∣∣E∩ [Mi ,Mi +Ni −1]
∣∣→ d∗(E) .

In the proof of Lemma 3.7 in [F2], it is shown that there exists an invariant
probability measureν on X such thatν(A) is equal to the above limit and
thus is equal tod∗(E). By using the ergodic decomposition ofν underT,
we have that there exists an ergodic invariant probability measureµ on X
with µ(A)≥ d∗(E).

Let m1, . . . ,mk be integers. The setTm1A∩·· ·∩TmkA is a clopen set. Its
indicator function is continuous and by Proposition 3.9 of [F2], there exist
two sequences{Ki} and{Li} of integers, withLi →+∞, such that

µ(Tm1A∩·· ·∩TmkA) = lim
i

1
Li

Ki+Li−1

∑
n=Ki

1Tm1A∩···∩TmkA(Tne)

= lim
i

1
Li

∣∣(E +m1)∩·· ·∩ (E +mk)∩{Ki , . . . ,Ki +Li −1}
∣∣

≤ d∗
(
(E +m1)∩·· ·∩ (E +mk)

)
.

By using this bound withk = 1 andm1 = 0, we have thatµ(A) ≤ d∗(E)
and thusµ(A) = d∗(E). ut

Using the modified correspondence principle and Theorem 1.2, we im-
mediately deduce Corollary 1.5.
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3.2. Combinatorial consequence for progressions of length3 and4

Szemerédi’s Theorem can be formulated in a finite version:

Theorem (Szemerédi [S]).For every integer k≥ 1 and everyδ > 0, there
exists N(k,δ ) such that for all N≥N(k,δ ), any subset E of{1, . . . ,N} with
at leastδN elements contains an arithmetic progression of length k.

Similar to the finite version of Szemerédi’s Theorem, we can derive a
finite version, albeit a somewhat weaker one, of Corollary 1.5. We begin
with a remark.

Write bxc for the integer part of the real numberx. From the finite ver-
sion of Szemerédi’s Theorem, it is not difficult to deduce that every subset
E of {1, . . . ,N} with at leastδN elements contains at leastbc(k,δ )N2c
arithmetic progressions of lengthk, wherec(k,δ ) is some constant. There-
fore the setE contains at leastbc(k,δ )Nc progressions of lengthk with the
same difference.

In view of Corollary 1.5, it is natural to ask the following question:

Question.Is it true that for everyδ > 0 and everyε > 0, there existsN(ε,δ )
such that for everyN > N(ε,δ ), every subsetE of {1, . . . ,N}with |E| ≥ δN
elements contains at least(1− ε)δ 3N arithmetic progressions of length 3
with the same difference and at least(1−ε)δ 4N arithmetic progressions of
length 4 with the same difference?1

We are not able answer this question but can prove a weaker result with
a relatively intricate formulation:

Corollary 3.2. For all real numbersδ > 0 andε > 0 and every integer K>
0, there exists an integer M(δ ,ε,K) > 0 such that for all N> M(δ ,ε,K)
and every subset E⊂ {1, . . . ,N} with |E| ≥ δN there exist:

• a subinterval J of{1, . . . ,N} with length K and an integer s> 0 such
that ∣∣E∩ (E−s)∩ (E−2s)∩J

∣∣≥ (1− ε)δ 3K . (3.1)

• a subinterval J′ of {1, . . . ,N} with length K and an integer s′ > 0 such
that ∣∣E∩ (E−s′)∩ (E−2s′)∩ (E−3s′)∩J

∣∣≥ (1− ε)δ 4K . (3.2)

Statement (3.1) means thatE∩J contains at least(1−ε)δ 3K starting points
of arithmetic progressions of length 3 included inE, all with the same
difference. Statement (3.2) has the analogous meaning for progressions of
length 4.

1 Recently Ben Green gave a positive answer to this question for progressions of length
3 (preprint available at http://www.arxiv.org, math.CO/0310476).
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Proof. We only prove the result for progressions of length 3, as the proof
for progressions of length 4 is identical.

Assume that the result does not hold. Then there existδ > 0, ε > 0,K >
0, a sequence{Ni} tending to+∞ and for everyi a subsetEi of {1, . . . ,Ni}
with |Ei | ≥ δNi such that for every subintervalJ of lengthK of {1, . . . ,Ni},
relation (3.1) (withEi substituted forE) is false.

We can assume thatNi > K for every i. By induction, we build a se-
quence{Mi} of positive integers withMi+1 > 2Mi +2Ni andMi+1 > Mi +
Ni + Ni+1 for every i. Define the setE to be the union of the setsMi + Ei .
We haved∗(E) = limsupi |Ei |/Ni ≥ δ .

Fix an integers > 0. By construction, for every integerM there exist
i and an intervalJ of length K, included in [Mi + 1,Mi + Ni ], such that
E∩ [M,M +K−1]⊂ E∩J. We deduce that

sup
M

∣∣E∩ (E−s)∩ (E−2s)∩ [M,M +K−1]|

= sup
i

sup
J⊂[Mi+1,Mi+Ni ]

|J|=K

∣∣E∩ (E−s)∩ (E−2s)∩J
∣∣ . (3.3)

By construction, if for some integerm∈ E we havem+s∈ E, m+2s∈ E
andm∈ [Mi +1,Mi +Ni ], then the integersm+sandm+2salso belong to
the same interval. Therefore, forJ⊂ [Mi +1,Mi +Ni ],

E∩ (E−s)∩ (E−2s)∩J =
(
Ei ∩ (Ei −s)∩ (Ei −2s)∩ (J−Mi)

)
+Mi .

Putting this into Equation (3.3), we have that

sup
M

∣∣E∩ (E−s)∩ (E−2s)∩ [M,M +K−1]|

= sup
i

sup
I⊂{1,...,Ni}

|I |=K

∣∣Ei ∩ (Ei −s)∩ (Ei −2s)∩ I
∣∣≤ (1− ε)δ 3K

by definition of the setsEi .
We deduce that for everys> 0, we haved∗

(
E∩ (E−s)∩ (E−2s)

)
≤

(1− ε)δ 3 and Corollary 1.5 provides a contradiction.ut

The answer to the similar question for longer arithmetic progressions is
negative: there exist significant subsets of{1, . . . ,N} that contain very few
arithmetic progressions of length≥ 5 with the same difference.

Proposition 3.3.For all integers` > 0, there existsδ > 0 such that for
infinitely many values of N, there exists a subset E of{1, . . . ,N} with |E| ≥
δN that contains no more than12δ `N arithmetic progressions of length5
with the same difference.
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We give only the main ideas of the proof, as it lies a bit far from the
main focus of this paper.

Let L andB be as in the proof of Theorem 1.3 (Sections 2.2 and 2.3).
Let α be an irrational which is well approximated by a sequence{p j/q j}
of rationals withq j prime and define:

F = {n∈ N : n2
α ∈ B (mod 1)} .

Let N be one of the primesq j andE = F ∩{1, . . . ,N}.
Then|E|/N is close tom(B). Let s be a positive integer.
Let the integernbe such that the arithmetic progression{n,n+s, . . . ,n+

4s} is included inE. By Lemma 2.3, 2nsα belongs modulo 1 to the interval
(−1

4L , 1
4L). Note thatn ands are smaller thanN = q j . By approximatingα

by p j/q j and using the primality ofq j we see that the number of possible
values ofn for a givens is bounded bycN/L for some positive constantc.

ThereforeE contains fewer thancN/L progressions of length 5 with the
same difference. ForL sufficiently large we get the announced bound. Once
again, the bound we actually find isδ−clog(δ )N for some constantc> 0. ut

4. Preliminaries

4.1. Nilsystems

We review some definitions and properties needed in the sequel. The nota-
tion introduced here is used throughout the rest of this paper.

Let G be a group. Forg,h∈G we write[g,h] = g−1h−1gh. WhenA and
B are two subsets ofG we write [A,B] for the subgroup ofG spanned by
{[a,b] : a∈ A, b∈ B}. The lower central series

G = G1 ⊃ G2 ⊃ ·· · ⊃ G j ⊃ G j+1 ⊃ . . .

of G is defined by

G1 = G andG j+1 = [G,G j ] for j ≥ 1 .

Let k≥ 1 be an integer. We say thatG is k-step nilpotentif Gk+1 = {1}.
Let G be ak-step nilpotent Lie group and letΛ be a discrete cocompact

subgroup. The compact manifoldX = G/Λ is called ak-step nilmanifold.
The groupG acts naturally onX be left translation and we write(g,x) 7→
g·x for this action. There exists a unique Borel probability measureµ onX
invariant under this action, called theHaar measureof X.

The fundamental properties of nilmanifolds were established by Mal-
cev [M]. We make use of the following property several times, which ap-
pears in [M] for connected groups and is proved in Leibman [Lei2] in a
similar way for the general case:

– For every integer j≥ 1, the subgroups Gj andΛG j are closed in G. It
follows that the groupΛ j = Λ ∩G j is cocompact in Gj .
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Let t be a fixed element ofG and letT : X → X be the transformation
x 7→ t ·x. Then(X,T) is called ak-step topological nilsystemand(X,µ,T)
is called ak-step nilsystem.

Fundamental properties of nilsystems were established by Auslander,
Green and Hahn [AGH] and by Parry [Pa1]. Further ergodic properties were
proven by Parry [Pa2] and Lesigne [Les] when the groupG is connected,
and generalized by Leibman [Lei2].

We summarize various properties of nilsystems that we need:

Theorem 4.1.Let (X = G/Λ ,µ,T) be a k-step nilsystem with T the trans-
lation by the element t∈ G. Then:

1. (X,T) is uniquely ergodic if and only if(X,µ,T) is ergodic if and only
if (X,T) is minimal if and only if(X,T) is transitive (that is, if there
exists a point x whose orbit{Tnx: n∈ Z} is dense).

2. Let Y be the closed orbit of some point x∈ X. Then Y can be given the
structure of a nilmanifold, Y= H/Γ , where H is a closed subgroup of
G containing t andΓ is a closed cocompact subgroup of H.

3. For any continuous function f on X and any sequences of integers{Mi}
and{Ni} with Ni →+∞ the averages

1
Ni

Mi+Ni−1

∑
n=Mi

f (Tnx)

converge for all x∈ X.

Assume furthermore that

(H) G is spanned by the connected component of the identity and the ele-
mentt.

Then:

4. The groups Gj , j ≥ 2, are connected.
5. The nilsystem(X,µ,T) is ergodic if and only if the rotation induced by

t on the compact abelian group G/G2Λ is ergodic.
6. If the nilsystem(X,µ,T) is ergodic then its Kronecker factor is Z=

G/G2Λ with the rotation induced by t and with the natural factor map
X = G/Λ → G/G2Λ = Z.

For connected groups, parts 1, 2 and 3 of this theorem can be deduced
from [AGH], [F3] and [Pa1], while parts 4 and 6 are proved in [Pa1]. When
G is connected and simply connected and, more generally, whenG can be
imbedded as a closed subgroup of a connected simply connectedk-step
nilpotent Lie group, all parts of this theorem were proved in [Les]. In the
case that the group is simply connected, the result follows from Lesigne’s
proof. The general case for parts 1, 2, 3, 4 and 6 follow from [Lei2]. The
proof of part 4 was transmitted to us by Leibman (personal communication)
and we outline it here.
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Proof. (Part 4) Assume that property (H) holds and letG(0) be the con-
nected component of the identity 1 ofG. The second commutatorG2 is
spanned by the commutators of the generators ofG. Since[t, t] = 1, there-
fore we haveG2 = [G(0),G]. For h ∈ G, the mapg 7→ [g,h] is continuous
from G(0) to G2 and maps 1 to 1. Thus its range is included in the connected
component of 1 inG2. We get thatG2 is connected.

We proceed by induction for the commutator subgroups of higher order.
Assume that then-th commutator subgroupGn is connected. Proceeding
as above, using the connectedness ofGn, we have that forg∈ Gn andh∈
G, [g,h] belongs to the connected component of 1 inGn+1. ThusGn+1 is
connected. ut

We also use (in Section 5.2) a generalization of part 5 of Theorem 4.1
for two commuting translations on a nilmanifold, but it is just as simple to
state it for` commutating translations:

Theorem 4.2 (Leibman [Lei2], Theorem 2.17).Let X= G/Λ be a k-step
nilmanifold endowed with its Haar measureµ. Let t1, . . . , t` be commuting
elements of G and let T1, . . . , T̀ be the associated translations on X. Assume
that

(H’) G is spanned by the connected component of the identity and the ele-
mentst1, . . . , t`.

Then the action ofZ` on X spanned by T1, . . . , T̀ is ergodic if and only if
the induced action on G/G2Λ is ergodic.

We return to the case of a single transformation. Let(X,µ,T) be an
ergodic k-step nilsystem. There are several ways to representX as a nil-
manifold G/Λ . For our purposes, we reduce to a particular choice of the
representation.

Assume thatX = G/Λ and lett ∈ G be the element definingT. The
connected componentG(0) of the identity inG projects to an open sub-
set ofX. By ergodicity, the subgroup〈G(0), t〉 of G spanned byG(0) andt
projects ontoX. Substituting this group forG andΛ ∩ 〈G(0), t〉 for Λ , we
have reduced to the case that hypothesis (H) is satisfied.

Let Λ ′ be the largest normal subgroup ofG included inΛ . Substituting
G/Λ ′ for G andΛ/Λ ′ for Λ , hypothesis (H) remains valid and we have
reduced to the case that

(L) Λ does not contain any nontrivial normal subgroup of G.

4.2. Two examples

We start by reviewing the simplest examples of 2-step nilsystems.
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4.2.1. Let G = Z×T×T, with multiplication given by

(k,x,y)∗ (k′,x′,y′) = (k+k′,x+x′,y+y′+2kx′) .

ThenG is a Lie group. Its commutator subgroup is{0}×{0}×T andG is
2-step nilpotent. The subgroupΛ = Z×{0}×{0} is discrete and cocom-
pact. LetX denote the nilmanifoldG/Λ and we maintain the notation of the
preceding Section, with one small modification. HereZ = T, m= mT is the
Haar measure ofT, and the factor mapπ : X → Z is given by(k,x,y) 7→ x;
it is thus more natural to use additive notation forZ.

Let α be an irrational point inT, a= (1,α,α) andT : X → X the trans-
lation bya. Then(X,µ,T) is a 2-step nilsystem. Note that hypotheses (H)
and (L) are satisfied. Sinceα is irrational the rotation(Z,m,T) is ergodic
and(X,µ,T) is ergodic by part 6 of Theorem 4.1.

We give an alternate description of this system. The map(k,x,y) 7→
(x,y) from G to T2 induces a homeomorphism ofX ontoT2. IdentifyingX
with T2 via this homeomorphism, the measureµ becomes equal tomT ×
mT, and the transformationT of X is given for(x,y) ∈ T2 = X by

T(x,y) = (x+α,y+2x+α) .

This is exactly the system used in the construction of the counterexample
in Section (2.3).

4.2.2. We also review another standard example of a 2-step ergodic nil-
system. LetG be the Heisenberg groupR×R×R, with multiplication
given by

(x,y,z)∗ (x′,y′,z′) = (x+x′,y+y′,z+z′+xy′) . (4.1)

Then G is a 2-step nilpotent Lie group. The subgroupΛ = Z× Z× Z
is discrete and cocompact. LetX = G/Λ and letT be the translation by
t = (t1, t2, t3) ∈ G with t1, t2 independent overQ andt3 ∈ R. We have that
(G/Λ ,T) is a nilsystem. Hypothesis (H) is obviously satisfied sinceG is
connected. Here the compact abelian groupG/G2Λ is isomorphic toT2

and the rotation onT2 by (t1, t2) is ergodic. Therefore the system(G/Λ ,T)
is uniquely ergodic.

Note that hypothesis (L) is not satisfied byG and Λ . The reduction
explained above consists here in taking the quotient ofG and Λ by the
subgroupΛ ′ = {0}×{0}×Z. We get thatX is the quotient ofG/Λ ′ by
Λ/Λ ′ whereG/Λ ′ = R×R×T with multiplication given by (4.1) and
Λ/Λ ′ = Z×Z×{0}.

4.3. Nilsequences

For clarity, we repeat some of the definitions given in the introduction. Let
X = G/Λ be ak-step nilmanifold,φ be a continuous function onX, e∈ X
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andt ∈G. The sequence{an} given byan = φ(tn ·e) is called ak-stepbasic
nilsequence. We say that a bounded sequence is ak-step nilsequenceif it is
a uniform limit ofk-step basic nilsequences.

Let X, e, t andφ be as above and letY be the closed orbit ofe. By part 2
of Theorem 4.1,(Y,T) can be given the structure of a nilsystem. Since this
system is transitive, it is minimal by part 1 of the same theorem. LetS=
supn∈Z an andε > 0. The setU = {x∈Y : φ(x) > S−ε} is a nonempty open
subset ofY. By minimality of (Y,T), the set{n∈ Z : tn ·e∈U} is syndetic
and thus synd-supan ≥ S− ε. Therefore for every basic nilsequence{an},
we have

synd-supan = sup
n∈Z

an .

This property passes to uniform limits and is therefore valid for every nilse-
quence.

The Cartesian product of twok-step nilsystems is again ak-step nil-
system and so the family of basick-step nilsequences is a subalgebra of
`∞. Therefore the family ofk-step nilsequences is a closed subalgebra of
`∞. This algebra is clearly invariant under translation and invariant under
complex conjugation.

We give two examples of 2-step nilsequences, arising from the two ex-
amples of 2-step nilsystems given above.

4.3.1. Let (X,T) be the nilsystem defined in Section 4.2.1. We identify
X with T×T. Lete= (0,0). For every integern, we haveTne= (nα,n2α).
Let k and` be two integers and letφ be the function onX given byφ(x,y) =
exp(2π i(kx+ `y)). The sequence{

exp(2π i(kn+ `n2)α)
}

is a 2-step nilsequence.

4.3.2. Let (X,T) denote the system defined in Section 4.2.2. We use the
first representation of this system.

We first define a continuous function onX. Let f be a continuous func-
tion onR, tending sufficiently fast to 0 at infinity. For(x,y,z) ∈ R3, define

ψ(x,y,z) := exp(2π iz) ∑
k∈Z

exp(2π ikx) f (y+k) .

Thenψ is a continuous function onR3 and an immediate computation gives
that for all(x,y,z) ∈ R3 and for all(p,q, r) ∈ Z3,

ψ
(
(x,y,z)∗ (p,q, r)

)
= ψ(x,y,z) .

Therefore the functionψ on G = R3 induces a continuous functionφ on
the quotientX of G by Λ = Z3. Let e be the image of(0,0,0) in X. For
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every integern we haveφ(tn ·e) = ψ(tn) andtn = (nt1,nt2,nt3+ n(n−1)
2 t1t2).

Therefore the sequence{an} given by

an = exp
(
2π int3)exp(2π i

n(n−1)
2

t1t2) ∑
k∈Z

exp(2π iknt1) f (nt2 +k)

is a 2-step nilsequence.

4.4. Construction of certain factors

In this Section,(X,µ,T) is an ergodic system.
We review the construction of some factors in Host and Kra [HK]. These

are the factors that control the limiting behavior of the multiple ergodic
averages associated to the expressionsI f (k,n). We begin recalling some
well known facts about the Kronecker factor.

4.4.1. The Kronecker factor and the ergodic decomposition ofµ ×µ Let
(Z(X),m,T) denote the Kronecker factor of(X,µ,T) and letπ : X → Z(X)
be the factor map.

When there is no ambiguity, we writeZ instead ofZ(X). We recall that
Z is a compact abelian group, endowed with a Borelσ -algebraZ and Haar
measurem. The transformationT : Z → Z has the formz 7→ αz for some
fixed elementα of Z.

For s∈ Z, we define a measureµs onX×X by∫
X×X

f (x) f ′(x′)dµs(x,x′) =
∫

Z
E( f | Z)(z) · E( f ′ | Z)(sz)dµ(z) . (4.2)

For everys∈ Z the measureµs is invariant underT ×T and is ergodic for
m-almost everys. The ergodic decomposition ofµ ×µ underT×T is

µ ×µ =
∫

Z
µsdm(s) .

4.4.2. The factors Zk. We recall some constructions of Sections 3 and 4
in [HK]. For an integerk≥ 0, we writeX[k] = X2k

andT [k] : X[k] → X[k] for
the mapT×T× . . .×T, taken 2k times.

We define a probability measureµ [k] on X[k], invariant underT [k] by
induction. Setµ [0] = µ. Fork≥ 0, letI [k] be theσ -algebra ofT [k]-invariant
subsets ofX[k]. Thenµ [k+1] is the relatively independent square ofµ [k] over
I [k]. This means that ifF ′,F ′′ are bounded functions onX[k],∫

X[k+1]
F ′(x′)F ′′(x′′)dµ

[k+1](x′,x′′) :=
∫

X[k]
E(F ′ |I [k])E(F ′′ |I [k])dµ

[k] ,

(4.3)
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wherex = (x′,x′′) is an element ofX[k+1], considered under the natural
identification ofX[k+1] with X[k]×X[k].

For a bounded functionf onX we can define

||| f |||k :=

(∫
X[k]

2k−1

∏
j=0

f (x j)dµ
[k](x)

)1/2k

(4.4)

because this last integral is nonnegative. It is shown in [HK] that for every
integerk≥ 1, ||| · |||k is a seminorm onL∞(µ).

The seminorms define factors ofX. Namely, the sub-σ -algebraZk−1(X)
of X is characterized by

for f ∈ L∞(µ), E( f |Zk−1(X)) = 0 if and only if ||| f |||k = 0 . (4.5)

The factorZk(X) is the factor ofX associated toZk(X). This gives that
Z0(X) is the trivial factor,Z1(X) is the Kronecker factor. When there is no
ambiguity, we writeZk andZk instead ofZk(X) andZk(X).

4.4.3. The factors associated to the measuresµs For eachs∈ Z such that
(X×X,µs,T ×T) is ergodic, for each integerk≥ 1, a measure(µs)[k] on
(X×X)[k] can be defined in the way thatµ [k] was defined fromµ. Further-
more, a seminorm‖ · ‖s,k on L∞(µs) can be associated to this measure, in
the same way that the seminorm‖ · ‖k is associated toµ [k]. In Section 3
of [HK], it is shown that under the natural identification of(X×X)[k] with
X[k+1], we have

µ
[k+1] =

∫
Z
(µs)[k] dm(s) .

It follows from definition (4.4) that for everyf ∈ L∞(µ),

||| f |||2k+1

k+1 =
∫

Z
||| f ⊗ f |||2k

s,k dm(s) .

From this we immediately deduce:

Proposition 4.3.Let k≥ 2 be an integer and let f be a bounded function
on X. If f has zero conditional expectation onZk, then for m-almost every
s∈ Z the function f⊗ f , considered as a function on(X×X,µs), has zero
conditional expectation onZk−1(X×X,µs,T×T).

4.4.4. Inverse limits of nilsystems.We say that the system(X,T) is an
inverse limitof a sequence of factors{(Xj ,T)} if {X j} j∈N is an increasing
sequence of sub-σ -algebras invariant under the transformationT such that∨

j∈N X j = X up to null sets. If each system(Xj ,T) is isomorphic to ak-step
nilsystem, then we say that(X,T) is aninverse limit of k-step nilsystems.

Theorem 10.1 of [HK] states that for every ergodic system(X,µ,T) and
every integerk≥ 1 the systemZk(X) is an inverse limit ofk-step nilsystems.
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4.5. Arithmetic progressions

We continue assuming that(X,µ,T) is an ergodic system. From Theo-
rem 12.1 of [HK] and the characterization (4.5) of the factorZk−1 we have:

Theorem 4.4.Let k≥ 2 be an integer and f0, f1, . . . , fk bounded functions
on X. If at least one of these functions has zero conditional expectation on
Zk−1 then for all sequences{Mi} and{Ni} of integers with Ni →+∞,

lim
i→∞

1
Ni

Mi+Ni−1

∑
n=Mi

∫
f0(x) f1(Tnx) f2(T2nx) . . . fk(Tknx)dµ(x) = 0 .

Corollary 4.5. Let k≥ 2 be an integer and let f0, f1, . . . , fk be bounded
functions on X. If at least one of these functions has zero conditional ex-
pectation onZk then∫

f0(x) f1(Tnx) f2(T2nx) . . . fk(Tknx)dµ(x)

converges to zero in uniform density.

Proof. Let {Mi} and{Ni} be two sequences of integers, withNi → +∞.
Form-almost everys∈ Z, one of the functionsf0⊗ f0, . . . , fk⊗ fk has zero
conditional expectation onZk(X×X,µs,T×T) by Proposition 4.3 and thus
the averages on{Mi , . . . ,Mi +Ni −1} of∫

f0(x) f0(x′) f1(Tnx) f1(Tnx′) . . . fk(Tknx) fk(Tknx′)dµs(x,x′)

converge to zero by Theorem 4.4 applied to the system(X×X,µs,T ×T)
and to the functionsf0⊗ f0, . . . , fk⊗ fk. Integrating with respect toswe get

1
Ni

Mi+Ni−1

∑
n=Mi

(∫
f0(x) f1(Tnx) . . . fk(Tknx)dµ(x)

)2
→ 0

and the result follows. ut

Recall that for a bounded measurable functionf on X and an integer
k≥ 1, we defined

I f (k,n) =
∫

f (x) f (Tnx) . . . f (Tknx)dµ(x) .

Even more generally, one can consider the same expression withk+ 1
distinct bounded functionsf0, . . . , fk. However, this gives no added infor-
mation for the problems we are studying and so we restrict to the above
case.

Corollary 4.6. Let k≥ 1 be an integer, let f be a bounded function on X
and let g= E( f | Zk). Then If (k,n)− Ig(k,n) converges to zero in uniform
density.
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Let k, f andg be as in this Corollary. We considerg as a function defined
onZk. Note that the functionsf andg have the same integral.

Since the systemZk is an inverse limit of a sequence ofk-step nilsys-
tems, the functiong can be approximated arbitrarily well inL1-norm by its
conditional expectation on one of these nilsystems. We use this remark in
the proof of Theorem 1.2 in Section 8.

5. The limit of the averages

In this sectionk ≥ 1 is an integer,(X = G/Λ ,µ,T) is an ergodick-step
nilsystem and the transformationT is translation by the elementt ∈ G. We
keep the notation of Section 4.1 and assume that hypotheses (H) and (L)
are satisfied.

Recall that we letG j denote thej-th commutator ofG and thatΛ j =
Λ ∩G j . We have thatG = G1, but sometimes it is convenient to use both
notations in the same formula.

For f ∈ L∞(µ), we first study the averages of the sequenceI f (k,n). This
establishes a short proof of a recent result by Ziegler [Z1]. We use some al-
gebraic constructions based on ideas of Petresco [Pe] and Leibman [Lei1].

We explain the idea behind this construction. It is natural to define an
arithmetic progression of lengthk+ 1 in G as an element ofGk+1 of the
form (g,hg,h2g, . . . ,hkg) for someg,h∈ G. Unfortunately, these elements
do not form a subgroup ofGk+1. However such elements do span the sub-
groupG̃ (defined in the next section), which could thus be calledthe group
of arithmetic progressions of length k+1 in G.

Similarly, one is tempted to define an arithmetic progression of length
k+1 in X as a point inXk+1 of the form(x,h ·x,h2 ·x, . . . ,hk ·x) for some
x∈ X andh∈G. Once again, it is more fruitful to take a broader definition,
calling an arithmetic progression inX a point from the set̃X (again defined
below), which is the image of the group̃G under the natural projection on
Xk+1.

5.1. Some algebraic constructions

Define the mapj : G×G1×G2×·· ·×Gk → Gk+1 by

j(g,g1,g2, . . . ,gk) =
(
g,gg1,gg2

1g2, . . . ,gg
(k

1)
1 g

(k
2)

2 · · ·g(k
k)

k

)
and letG̃ denote the range of the mapj:

G̃ = j(G×G1×G2×·· ·×Gk) .

Similarly, we define a mapj∗ : G1×G2×·· ·×Gk → Gk by

j∗(g1,g2, . . . ,gk) =
(
g1,g

2
1g2, . . . ,g

(k
1)

1 g
(k

2)
2 · · ·g(k

k)
k

)
.
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Finally we define

G̃∗ = j∗(G1×G2×·· ·×Gk)

=
{
(h1,h2, . . . ,hk) ∈ Gk : (1,h1,h2, . . . ,hk) ∈ G̃

}
.

The following results are found in Leibman [Lei1]:

Theorem 5.1.

1. G̃ is a subgroup of Gk+1.
2. The commutator group(G̃)2 of G̃ is

(G̃)2 = G̃∩Gk+1
2 = j(G2×G2×G2×G3×·· ·×Gk) .

It follows from part 1 that

3. G̃∗ is a subgroup ofGk.

Moreover, forg∈ G, (h1,h2, . . . ,hk) ∈ G1×G2×·· ·×Gk and

(g1,g2, . . . ,gk) = j∗(h1,h2, . . . ,hk) ,

we have

(g−1g1g,g−1g2g, . . . ,g−1gkg) = j∗(g−1h1g,g−1h2g, . . . ,g−1hkg) (5.1)

It follows that

4. For(g1,g2, . . . ,gk) ∈ G̃∗ andg∈ G, we have

(g−1g1g,g−1g2g, . . . ,g−1gkg) ∈ G̃∗ .

The mapsj and j∗ are injective, continuous and proper (the inverse image
of a compact set is compact). It follows thatG̃ andG̃∗ are closed subgroups
of Gk+1 andGk, respectively, and thus are Lie groups.

We also define the two elements

t̃ = (1, t, t2, . . . , tk) andt∆ = (t, t, . . . , t)

of G̃ and the element

t̃∗ = (t, t2, . . . , tk)

of G̃∗. Write T̃ andT∆ for the translations bỹt andt∆ onXk+1, respectively,
andT̃∗ for the translation bỹt∗ onXk.
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5.2. The nilmanifoldX̃.

DefineΛ̃ = G̃∩Λ k+1.
ThenΛ̃ is a discrete subgroup of̃G and it is easy to check that̃Λ =

j(Λ ×Λ1×Λ2×·· ·×Λk). ThereforeΛ̃ is cocompact inG̃. We write

X̃ = G̃/Λ̃

and letµ̃ denote the Haar measure of this nilmanifold. Note thatX̃ is imbed-
ded inXk+1 in a natural way. Sincẽt andt∆ belong toG̃, this nilmanifold is
invariant under the transformationsT̃ andT∆ .

Lemma 5.2.The nilmanifoldX̃ is ergodic (and thus uniquely ergodic) for
the action spanned bỹT and T∆ .

Proof. Since the groupsG j , j > 1, are connected andG satisfies condi-
tion (H), it follows that the groupG̃ is spanned bỹt, t∆ and the connected
component of the identity. By Theorem 4.2, it suffices to show that the ac-
tion induced byT̃ andT∆ on G̃/(G̃)2Λ̃ is ergodic.

By part 2 of Theorem 5.1, the map

(g1,g2, . . . ,gk) 7→ (g1 modG2,g2 modG2)

induces an isomorphism from̃G/(G̃)2 ontoG/G2×G/G2. Thus the com-
pact abelian group̃G/(G̃)2Λ̃ can be identified withG/G2Λ ×G/G2Λ , and
the transformations induced bỹT andT∆ are Id×T andT×T, respectively.
The action spanned by these transformations is obviously ergodic.ut

5.3. The nilmanifolds̃Xx.

For x∈ X we define

X̃x =
{
(x1,x2, . . . ,xk) ∈ Xk : (x,x1,x2, . . . ,xk) ∈ X̃

}
.

Clearly, for everyx∈X the compact set̃Xx is invariant under translations by
elements ofG̃∗. We give to each of these sets the structure of a nilmanifold,
quotient of this group.

Fix x ∈ X and leta be a lift of x in G. The point(x,x, . . . ,x) (k times)
clearly belongs toX̃x. Let (x1,x2, . . . ,xk) ∈ X̃x. The point(x,x1,x2, . . . ,xk)
belongs toX̃ and we can lift it to an element of̃G that we can write
(g,gg1,gg2, . . . ,ggk) with g∈G and(g1,g2, . . . ,gk)∈ G̃∗. Writing λ = a−1g
andhi = aλgiλ

−1a−1 for 1≤ i ≤ k, we haveλ ∈ Λ , (1,h1,h2, . . . ,hk) be-
longs toG̃ by Remark 4 above and

(g,gg1,gg2, . . . ,ggk) = (1,h1,h2, . . . ,hk) · (a,a,a, . . . ,a) · (λ ,λ ,λ , . . . ,λ ) .

This gives that(x1,x2, . . . ,xk) is the image of(x,x, . . .x) under translation
by (h1,h2, . . . ,hk), which belongs toG̃∗.
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Therefore the action of̃G∗ onX̃x is transitive. The stabilizer of(x,x, . . . ,x)
for this action is the group

Λ̃x :=
{
(aλ1a−1,aλ2a−1, . . . ,aλka

−1) : (λ1,λ2, . . . ,λk) ∈Λ
k∩ G̃∗} .

Λ k∩ G̃∗ is a discrete subgroup of̃G∗ and it is easy to check that it is equal
to j∗(Λ1×Λ2×·· ·×Λk) and thus is cocompact iñG∗. It follows thatΛ̃x is
a discrete and cocompact subgroup ofG̃∗.

We can thus identifỹXx with the nilmanifoldG̃∗/Λ̃x. Let µ̃x denote the
Haar measure of̃Xx.

Lemma 5.3.µ̃ =
∫

X
δx⊗ µ̃xdµ(x).

Proof. Let µ̃ ′ be the measure defined by this integral. This measure is con-
centrated oñX. By Lemma 5.2 it suffices to show that it is invariant under
T̃ andT∆ .

Recall thatT̃∗ is the translation bỹt∗ = (t, t2, . . . , tk), which belongs to
G̃∗ and thus this transformation preservesX̃x andµ̃x for everyx. Therefore,
for everyx∈ X, the measureδx⊗ µ̃x is invariant under̃T = Id×T̃∗ and so
µ̃ ′ is invariant under this transformation.

Let x∈ X. Consider the image of̃µx underT ×·· ·×T (k times). This
measure is concentrated onXTx and by remark 4 in Section 5.1, it is easy
to check that it is invariant under̃G∗. Thus it is equal to the Haar measure
µ̃Tx. Therefore the image ofδx⊗ µ̃x underT∆ is δTx⊗ µ̃Tx. It follows that
µ̃ ′ is invariant underT∆ . ut

5.4. The limit of the averages.

Given this background, we give a short proof of Ziegler’s result [Z1]:

Theorem 5.4 (Ziegler [Z1]). Let f1, f2, . . . , fk be continuous functions on
X and let{Mi} and{Ni} be two sequences of integers such that Ni →+∞.
For µ-almost every x∈ X,

1
Ni

Mi+Ni−1

∑
n=Mi

f1(Tnx) f2(T2nx) . . . fk(Tknx)

→
∫

f1(x1) f2(x2) . . . fk(xk)dµ̃x(x1,x2, . . . ,xk) (5.2)

as i→ ∞

Proof. For x ∈ X, the point(x,x, . . . ,x) belongs to the nilmanifold̃Xx. By
part 3 of Theorem 4.1 applied to the nilsystem(X̃x, T̃∗) and this point, the
averages in Equation (5.2) converge everywhere to some functionφ . There-
fore we are left with computing this function.
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Let f be a continuous function onX. We have

∫
f (x)φ(x)dµ(x)

= lim
i→∞

∫
1
Ni

Mi+Ni−1

∑
n=Mi

f (x)
k

∏
j=1

f j(T jnx)dµ(x)

= lim
i→∞

∫
1

N2
i

Mi+Ni−1

∑
m=Mi

Mi+Ni−1

∑
n=Mi

f (Tmx)
k

∏
j=1

f j(T jn+mx)dµ(x) .

The point (x,x, . . . ,x) belongs toX̃ and for all n and m, its image un-
der T̃n(T∆ )m is the point(Tmx,Tn+mx, . . . ,Tkn+mx). By Lemma 5.2,X̃ is
uniquely ergodic for the action spanned byT̃ andT∆ and the average in the
last integral converges everywhere to∫

X̃
f (x0) f1(x1) . . . fk(xk)dµ̃(x0,x1, . . . ,xk) .

Using Lemma 5.3, we have

∫
X

f (x)φ(x)dµ(x) =
∫

X̃
f (x0) f1(x1) . . . fk(xk)dµ̃(x0,x1, . . . ,xk)

=
∫

X
f (x)

(∫
X̃x

f1(x1) . . . fk(xk)dµ̃x(x1, . . . ,xk)
)

dµ(x)

and the result follows. ut

Corollary 5.5. For µ-almost every x∈ X, the nilsystem(X̃x, µ̃x, T̃∗) is er-
godic.

Proof. Recall thatT̃∗ preserves̃µx for everyx. LetF be a countable family
of continuous functions onX that is dense inC (X) in the uniform norm.
By Theorem 5.4, there exists a subsetX0 of X, with µ(X0) = 1, such that

1
N

N−1

∑
n=0

k

∏
j=1

f j(T jnx)→
∫ k

∏
j=1

f j(x j)dµ̃x(x1,x2, . . . ,xk)

asN →+∞ for everyx∈ X0 and for all functionsf1, f2, . . . , fk ∈F . Since
F is dense, the same result holds for arbitrary continuous functions. It
follows that forx ∈ X0, the orbit of(x,x, . . . ,x) underT̃∗ is dense in the
support of the measurẽµx. Since the support of this measure isX̃x, we have
that the action ofT̃∗ on X̃x is transitive. By Theorem 4.1,(X̃x, µ̃x, T̃∗) is
ergodic. ut
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Corollary 5.6. Let f1, f2, . . . , fk be continuous functions on X and let{Mi}
and{Ni} be two sequences of integers such that Ni → +∞. For µ-almost
every x∈ X and for every(g1,g2, . . . ,gk) ∈ G̃∗,

1
Ni

Mi+Ni−1

∑
n=Mi

f1(Tng1 ·x) f2(T2ng2 ·x) . . . fk(Tkngk ·x)

→
∫

f1(x1) f2(x2) . . . fk(xk)dµ̃x(x1,x2, . . . ,xk) (5.3)

as i→ ∞

Proof. Let x ∈ X be such that the nilsystem(X̃x, µ̃x, T̃∗) is ergodic. For
every(g1,g2, . . . ,gk) ∈ G̃∗, the point(g1 · x,g2 · x, . . . ,gk · x) belongs toX̃x
and the convergence in Formula (5.3) follows from the unique ergodicity
of (X̃x, T̃∗). ut

6. Using the Cartesian square

In this section, we begin the proof of Theorem 1.9. We first construct a
nilsystem in order to replace the sequenceI f (k,n) (defined in 1.5) by an-
other sequenceJf (k,n) so that the difference between the two sequences
tends to 0 in uniform density. In the next section, we complete the proof of
Theorem 1.9 by showing that the sequenceJf (k,n) is a nilsequence.

To pass from the convergence results obtained in the preceding section
to a more precise description of the sequence{I f (k,n)}, we consider the
Cartesian square of the groups, manifolds, etc. studied in the previous sec-
tion. This enables passage from the uniform Cesaro convergence results to
uniform density convergence results.

6.1. The group H.

Define
H =

{
(g,h) ∈ G×G : hg−1 ∈ G2

}
.

H is a closed subgroup ofG×G and is ak-step nilpotent Lie group. By
induction, its commutator subgroupsH j , j ≥ 1, are given by

H j =
{
(g,h) ∈ G j ×G j : hg−1 ∈ G j+1

}
.

We build the groups̃H andH̃∗ from H in the same way that the groupsG̃
andG̃∗ were built fromG (in Section 5.1), using the maps

i : H×H1×H2×·· ·×Hk → Hk+1

and
i∗ : H1×H2×·· ·×Hk → Hk ,
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defined analogously to the mapsj and j∗. By part 1 of Theorem 5.1,̃H is
a subgroup ofHk+1 and thusH̃∗ is a subgroup ofHk. These subgroups are
closed and thus̃H andH̃∗ are Lie groups.

The groupH̃∗ is included in(G×G)k. We identify this last group with
Gk×Gk in the obvious way and consider̃H∗ as a subset ofGk×Gk. For(
(g1,h1),(g2,h2), . . . ,(gk,hk)

)
∈ H1×H2×·· ·×Hk, we have

i∗
(
(g1,h1),(g2,h2), . . . ,(gk,hk)

)
=
(

j∗(g1,g2, . . . ,gk), j∗(h1,h2, . . . ,hk)
)

.
(6.1)

In a similar way, we consider̃H as a subset ofGk+1×Gk+1.

6.2. The nilmanifolds Xs, X̃s andX̃s(x,y).

Recall the ergodic decomposition

µ ×µ =
∫

Z
µsdm(s)

of µ×µ underT×T, wherem is the Haar measure of the Kronecker factor
Z of X.

By part 6 of Theorem 4.1,Z is equal toG/G2Λ and the factor map
π : X → Z is the natural projectionG/Λ → G/G2Λ . When f is a bounded
function onX andg∈ G, we write f ◦g for the functionx 7→ f (g ·x) on X.
We have

E( f ◦g | Z)(z) = E( f | Z)(π(g)z) .

Therefore it follows from definition (4.2) ofµs that for everys∈ Z, this
measure is concentrated on the closed subset

Xs =
{
(x,y) ∈ X×X : π(y)π(x)−1 = s

}
(6.2)

of X×X. It also follows that for alls∈ Z, all bounded functionsf , f ′ onX
and all(g,h) ∈ H,∫

f ◦g(x) f ′ ◦h(x)dµs(x,x′) =
∫

f (x) f ′(x′)dµs(x,x′) .

This means that the measureµs is invariant under translation by elements
of H.

Let s∈ Z. By its definition (6.2), the setXs is invariant under the action
of H by translation and this action is transitive. We giveXs the structure of
a nilmanifold, quotient of this group. Write

Θ = H ∩ (Λ ×Λ) =
{
(λ ,λ ′) ∈Λ ×Λ : λ

′
λ
−1 ∈Λ2

}
.

This group is discrete and cocompact inH. Let a∈G be a lift ofs in G and
let eX be the base point ofX (that is, the image inX of the unit element 1
of G). Then the stabilizer inH of the point(eX,a·eX) of Xs is

Θa =
{
(λ ,aλ

′a−1) : (λ ,λ ′) ∈Θ
}
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and this group is a discrete cocompact subgroup ofH. Thus we can identify
Xs with the nilmanifoldH/Θa. Since the measureµs is concentrated onXs
and is invariant under the action ofH, it is equal to the Haar measure of this
nilmanifold.

Let s ∈ Z be such thatµs is ergodic forT × T. Then the nilsystem
(Xs,µs,T×T) is ergodic (note thatT×T is the translation by the element
(t, t) of H).

Thek-step nilpotent Lie groupH, its subgroupΘa and its element(t, t)
satisfy properties (H) and (L) (see Section 4.1) that were used forG,Λ andt
in the preceding Section. Therefore all the constructions of this Section can
be carried out withH, Θa and(t, t) substituted forG,Λ andt. In particular,
we can define the nilmanifold̃Xs, its Haar measurẽµs and, for(x,y) ∈ Xs,
the nilmanifoldX̃s(x,y) and its Haar measurẽµs(x,y). Note thatX̃s is included

in (X×X)k+1. We identify this set withXk+1×Xk+1 in the natural way
and consider̃Xs as contained inXk+1×Xk+1. Similarly, X̃s(x,y) is included
in Xk×Xk.

We rewrite Corollary 5.6 for this situation. We consider only the case
that all the functions onXs are equal tof ⊗ f for some functionf onX.

Corollary 6.1. Let f be a continuous function on X and let{Mi} and{Ni}
be two sequences of integers with Ni →+∞. For m-almost every s∈ Z, for
µs-almost every(x,y)∈Xs and for every

(
(g1,g2, . . . ,gk), (h1,h2, . . . ,hk)

)
∈

H̃∗,
1
Ni

Mi+Ni−1

∑
n=Mi

k

∏
j=1

f (T jng j ·x) f (T jnh j ·y)

converges as i→ ∞ to∫ k

∏
j=1

f (x j) f (y j)dµ̃s(x,y)
(
(x1,x2, . . . ,xk),(y1,y2, . . . ,yk)

)
.

In order to use this result, we need a more precise description of the
measures̃µs(x,y) and thus of the groups̃H andH̃∗.

6.3. The groups~G∗ and~G

Clearly,H̃∗ ⊂ G̃∗× G̃∗. Define

~G∗ = {g = (g1,g2, . . . ,gk) ∈ G̃∗ :
(
(1,1, . . . ,1),(g1,g2, . . . ,gk)

)
∈ H̃∗} .

Then ~G∗ is a closed subgroup ofGk and thus is a Lie group. By Equa-
tion (6.1), the injectivity ofj∗, and the above description of the groupsH j
we have

~G∗ = j∗(G2×G3×·· ·×Gk+1) .
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Moreover, wheng = (g1,g2, . . . ,gk) ∈ G̃∗ we have(g,g) ∈ H̃∗. It follows
that

H̃∗ =
{
(g,h) ∈ G̃∗× G̃∗ : hg−1 ∈ ~G∗} (6.3)

and that~G∗ is a normal subgroup of̃G∗.
The following Lemma is taken from [Lei1]:

Lemma 6.2.For g∈ G and(g1,g2, . . . ,gk) ∈ G̃∗, we have(
[g1,g], [g2,g], . . . , [gk,g]

)
∈ ~G∗ .

Proof. Let (h1,h2, . . . ,hk) ∈ G1×G2× ·· · ×Gk be the inverse image of
(g1,g2, . . . ,gk) under j∗. For 1≤ ` ≤ k, we have[g,h`] ∈ G`+1 and thus
(h`,g−1h`g) ∈ H`. We get that(

(g1,g2, . . . ,gk),(g−1g1g,g−1g2g, . . . ,g−1gkg)
)

=
(

j∗(h1,h2, . . . ,hk), j∗(g−1h1g,g−1h2g, . . . ,g−1hkg)
)

= i∗
(
(h1,g

−1h1g),(h2,g
−1h2g), . . . ,(hk,g

−1hkg)
)
∈ H∗

and the result follows from characterization (6.3) ofH̃∗. ut

In particular, it follows that

if (g1,g2, . . . ,gk) ∈ ~G∗ andg∈ G,

then(gg1g−1,gg2g−1, . . . ,ggkg
−1) ∈ ~G∗ . (6.4)

We also define

~G =
{
(g,gh1,gh2, . . . ,ghk) : g∈ G, (h1,h2, . . . ,hk) ∈ ~G∗}

= j(G×G2×G3×·· ·×Gk+1) .

It follows from Remark (6.4) that~G is a subgroup ofGk+1. It is clearly
included inG̃. By using the normality of~G∗ in G̃∗ and Lemma 6.2, we have
that~G is a normal subgroup of̃G. As j is a proper map,~G is closed inGk+1

and is a Lie group.

6.4. The nilmanifold~X and the nilmanifolds~Xx.

Define~Λ := ~G∩Λ k+1. It is a discrete subgroup of~G and it is easy to check
that~Λ = j(Λ ×Λ2×Λ3×·· ·×Λk+1). Thus~Λ is cocompact in~G. We write

~X = ~G/~Λ

and let~µ denote the Haar measure of this nilmanifold.~X is imbedded in
Xk+1 in a natural way and~X ⊂ X̃ since~G⊂ G̃.
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Lemma 6.3.The nilmanifold~X and its Haar measure~µ are invariant un-
der translation by any element ofΛ̃ = Λ k+1∩ G̃.

Proof. Let x= (x,x1,x2, . . . ,xk)∈ ~X and letλ ∈ Λ̃ . We show thatλ ·x (with
the obvious interpretation) belongs to~X.

The pointx is the image in~X of an elementg of ~G. Thusλ · x is the
image inX̃ of the elementλg=(λgλ

−1)λ of G̃and thus also of the element
λgλ

−1. Since~G is a normal subgroup of̃G, this last element belongs to~G
andλ ·x∈ ~G.

Let λ ∈ Λ̃ . The measure~µ is invariant under the action of~G and thus its
image under translation byλ is invariant under the action ofλ ~Gλ

−1 = ~G.
Since this measure is concentrated on~X, it is equal to~µ. ut

For x∈ X we write

~Xx =
{
(x1,x2, . . . ,xk) ∈ Xk : (x,x1,x2, . . . ,xk) ∈ ~X} .

Let x∈ X. Proceeding as in Subsection 5.3 we note that~Λ ∗ := ~G∗∩Λ k =
j∗(Λ2×Λ3×·· ·×Λk+1) is a discrete cocompact subgroup of~G∗ and that
for everyx ∈ X, the compact set~Xx can be identified with a nilmanifold,
quotient of the group~G∗ by some conjugate~Λx of the group~Λ ∗.

Let~µx be the Haar measure of~Xx.

Lemma 6.4.~µ =
∫

X
δx⊗~µxdµ(x).

Proof. The proof is similar to the proof of Lemma 5.3. The measure de-
fined by the integral above is concentrated on~X and thus it suffices to prove
that~X is invariant under~G. It is clearly invariant under translation by ele-
ments of the form(1,g1,g2, . . . ,gk) with (g1,g2, . . . ,gk)∈ ~G∗ and so we are
reduced to showing that~X is invariant under translation by(g,g,g, . . . ,g)
(k+1 times) for everyg∈ G.

Letg∈Gand letx∈X. Since~X is invariant under translation by(g,g,g, . . . ,g),
we have that the image of~Xx underg = (g,g, . . . ,g) (k times) is~Xg·x. The
image of~µx under translation byg is thus concentrated on~Xx. It is invariant
under translation byg~G∗g−1 and this group is equal to~G∗ by (6.4). Thus
this measure is equal to~µg·x.

Taking the integral overx ∈ X, we have that the measure given by the
integral in the Lemma is invariant under(g,g,g, . . . ,g). ut

6.5. Approximating the sequence{I f (k,n)} up to density zero.

For a bounded functionf onX, an integerk≥ 1 and an integern, we define:

Jf (k,n) =
∫
~X

f (x0) f (Tnx1) . . . f (Tknxk)d~µ(x0,x1, . . . ,xk) . (6.5)
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Proposition 6.5.Let f be a bounded function on X and let k≥ 1 be an
integer. Then the sequence{I f (k,n)−Jf (k,n)} converges to zero in uniform
density.

Proof. Given a sequence{(Mi ,Mi + Ni)} of intervals withNi → +∞ we
show that for anyf ∈ L∞(µ),

1
Ni

Mi+Ni−1

∑
n=Mi

(
I f (k,n)−Jf (k,n)

)2 → 0 . (6.6)

Since the continuous functions are dense, we can restrict to the case that
the functionf is continuous.

Let g = (g1,g2, . . . ,gk) andh = (h1,h2, . . . ,hk) be two elements of~G∗.
The four elements(

(1, . . . ,1),(1, . . .1)
)

,
(
(g1, . . . ,gk),(1, . . . ,1)

)
,(

(1, . . . ,1),(h1, . . . ,hk)
)

and
(
(g1, . . . ,gk),(h1, . . . ,hk)

)
of Gk×Gk belong toH̃∗ by formula (6.3).

We use Corollary 6.1 with these four elements. The four limits given by
this Corollary are the same. Taking differences, we have that form-almost
everys∈ Z, for µs-almost every(x,y), for everyg andh∈ ~G∗, the averages
on [Mi ,Mi +Ni −1] of the product

(
f (x)

k

∏
j=1

f (T jng j ·x)− f (x)
k

∏
j=1

f (T jnx)
)
·

(
f (y)

k

∏
j=1

f (T jnh j ·y)− f (y)
k

∏
j=1

f (T jny)
)

converge to zero.
Let ~m∗ be the Haar measure of~G∗. Fix s∈ Z and (x,y) ∈ Xs. Recall

that~µx is the Haar measure of the nilmanifold~Xx = ~G∗/~Λx. Let K ⊂ ~G∗ be
a fundamental domain of the projection~G∗ → ~Xx. Then the image of the
measure 1K ·~m∗ under this projection is equal to a constant multiple of~µx.
Similarly, whenL is a fundamental domain for the projection~G∗ → ~Xy, the
image of 1L ·~m∗ under this projection is a constant multiple of~µy. Taking
the integral forg∈ K andh∈ L with respect to the measure~m∗ in the last
convergence we have:

Form-almost everys∈ Z and forµs-almost every(x,y), the averages on
[Mi ,Mi +Ni −1] of
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(∫
f (x)

k

∏
j=1

f (T jnx j)d~µx(x1,x2, . . . ,xk)− f (x)
k

∏
j=1

f (T jnx)
)
·

(∫
f (y)

k

∏
j=1

f (T jny j)d~µy(y1,y2, . . . ,yk)− f (y)
k

∏
j=1

f (T jny)
)

converge to zero. Since this holds form-almost everys∈ Z and for µs-
almost every(x,y), it holds forµ × µ-almost every(x,y) ∈ X×X. Taking
the integral with respect toµ × µ and using Lemma 6.4 we have the con-
vergence (6.6). ut

7. Jf (k,n) is a nilsequence

In this Section we show that the sequence{Jf (k,n)} introduced in Sec-
tion 6.5 is a nilsequence.

We first explain the idea behind the construction. Two arithmetic pro-
gressions inX (see the discussion in the beginning of Section 5) are equiva-
lent if one can pass from one to the other using translation by some element
of ~G. The strategy of the proof is the following:I f (k,n) is the average of
the function

(x0,x1, . . . ,xk) 7→ f (x0) f (x1) . . . f (xk)

on the set of progressions of the form(x, tnx, . . . , tknx). In Proposition 6.5,
we have shown that up to a small error, one can replace this average by the
average on the set of arithmetic progressions that are equivalent to these.
In Proposition 7.2, we define a continuous functionφ(y), wherey ∈ Y is
an equivalence class of arithmetic progressions, that is exactly this average.
The transformation onY can be viewed as multiplying the difference of a
progression byt, meaning that

(x0,x1,x2, . . . ,xk) 7→ (x0, t ·x1, t
2x2, . . . , t

kxk)

induces the transformationSonY.

7.1. The nilsystem(Y,ν ,S).

We first build an ergodic nilsystem. LetK denote the group̃G/~G, let p: G̃→
K be the natural projection and letΓ = p(Λ̃).

Since~G/~Λ = ~G/(Λ̃ ∩ ~G) is compact, it follows that~GΛ̃ is closed inG̃.
ThusΓ is a closed subgroup ofK. It is discrete because it is countable and
it is cocompact becauseGΓ̃ is cocompact inG̃.

LetY denote the nilmanifoldK/Γ , ν be its Haar measure,s= p(t̃) ∈ K
andSbe the translation bys onY.
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Lemma 7.1.The nilsystem(Y,ν ,S) is ergodic (and thus is uniquely ergodic
and minimal).

Proof. We know thatG̃ is spanned by its connected component of the iden-
tity and the elementst∆ and t̃. Sincet∆ ∈ ~G, it follows thatK is spanned
by the connected component of the identity ands. Therefore by part 6 of
Theorem 4.1 we only have to show that the rotation induced byS on the
compact abelian groupK/(K2Γ ) is ergodic. We identifyK/(K2Γ ) with
G/((G̃)2~GΛ̃).

We have already noted that the map

q : (g,g1, . . . ,gk) 7→ (g modG2,g1 modG2)

induces an isomorphism from̃G/(G̃)2 onto (G/G2)× (G/G2). We have
q(~G) = {(u,u) : u∈ G/G2} and

q(Λ̃) = {(λ modG2,λ
′ modG2) : λ ,λ ′ ∈Λ} .

Therefore the map(g,g1, . . . ,gk) 7→ g1g−1 modG2Λ induces an isomor-
phism

K/(K2Γ ) = G̃/
(
(G̃)2~GΛ̃

)
→ G/(G2Λ) .

The image ofs under this map is equal to the image oft under the natural
projectionG 7→G/G2Λ . AsX is ergodic, the rotation by this element of the
compact abelian groupG/G2Λ is ergodic. Therefore, the rotation induced
by SonK/(K2Λ) is ergodic. ut

7.2. Two examples

We give a description of the nilsystem(Y,ν ,S) whenX is each of the two
systems described in Subsection 4.2.

We first study the general case of an ergodic 2-step nilsystem(X =
G/Λ ,µ,T), assuming that hypotheses (H) and (L) are satisfied. The com-
mutator map(g,h) 7→ [g,h] is an antisymmetric bilinear map fromG×G to
G2 and it is trivial onG2×G and onG×G2. Therefore it induces a bilinear
mapB : G/G2×G/G2 → G2.

We have:

G̃ =
{
(g,gg1,gg2

1g2) : g,g1 ∈ G, g2 ∈ G2
}

~G =
{
(h,hh2,hh2

2) : h∈ G, h2 ∈ G2
}

.

Let K′ = (G/G2)×G2 with multiplication given by

(v,w)∗ (v′,w′) =
(
vv′,ww′B(v,v′)

)
.

Then it is easy to check thatK′ is a group and that the map

(g,gg1,gg2
1g2) 7→ (g1 modG2,g2)
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is a group homomorphism from̃G onto K′. The kernel of this homomor-
phism is~G. Therefore we can identify the groupsK = G̃/~G andK′. Under
this identification,Γ is equal toM×{1}, whereM is the image ofΛ in
G/G2 under the natural projectionG→G/G2. The elementsof K is (β ,1),
whereβ is the image oft in G/G2 under the natural projection.

7.2.1. The example of Section 4.2.1HereG/G2 = Z×T andG2 = {0}×
{0}×T is identified withT. We haveK = Z×T×T, Γ = Z×{0}×{0}
ands= (1,α,0). The bilinear mapB: (Z×T)× (Z×T)→ T is given by

B
(
(k,x),(k′,x′)

)
= 2(kx′−k′x)

and multiplication onK is given by

(k,x,y)∗ (k′,x′,y′) =
(
k+k′,x+x′,y+y′+2(kx′−k′x)

)
.

The map(k,x,y) 7→ (x,y+ 2kx) induces a homeomorphism ofY = K/Γ

ontoT2, mapping the Haar measure ofY to the Haar measuremT×mT of
T2. Under this identification ofY with T2, the transformationS takes the
form

S(x,z) = (x+α,z+2α +4x) .

ThusY is a factor ofX, with factor map(x,y) 7→ (x,2y).

7.2.2. The example of Section 4.2.2We use the reduced representation of
this system. HereG/G2 = R×R, K = R×R×T, Γ = Z×Z×{0} ands=
(t1, t2). For(x,y) and(x′,y′) ∈G/G2 = R×R, B

(
(x,y),(x′,y′)

)
= xy′−x′y.

The multiplication inK is given by

(x,y,z)∗ (x′,y′,z′) = (x+x′,y+y′,z+z′+xy′−x′y) .

7.3. A nilsequence

Proposition 7.2.Let (Y,ν ,S) be the ergodic nilsystem of Lemma 7.1. Let f
be a bounded function on X and let k≥ 1 be an integer. Then there exists a
continuous functionφ on Y such that Jf (k,n) = φ(SneY) for every integer n,
where eY denotes the base point in Y . In particular, the sequence{Jf (k,n)}
is a basic nilsequence.

Proof. Define the functionψ on G̃ by

ψ(g0,g1, . . . ,gk) =
∫
~X

k

∏
j=0

f (g j ·x j)d~µ(x0,x1, . . . ,xk) . (7.1)

The functionψ is clearly continuous and satisfiesψ(t̃n) = Jf (k,n) for every
integern.
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The measure~µ is invariant under (left) translation by elements of~G by
definition, and by left translation by elements ofΛ̃ by Lemma 6.3. Thus the
functionψ is invariant under (right) translations by elements of~GΛ̃ .

Writing r for the natural projectioñG→Y = G̃/~GΛ̃ , we get that there
exists a continuous functionφ onY with ψ = φ ◦ r. For every integern we
haver(t̃n) = sneY and thusJf (k,n) = φ(SneY). ut

7.4. A decomposition

We are ready to prove Theorem 1.9.

Proof. Assume thatk≥ 1 is an integer and letf ∈ L∞(µ). Without loss of
generality, we can assume that‖ f‖∞ ≤ 1.

Let f̃ = E( f | Zk(X)). Then by Corollary 4.6 the sequence{I f (k,n)−
I f̃ (k,n)} converges to zero in uniform density. Thus it suffices to prove the
theorem for the functioñf substituted forf , meaning that we can assume
that f is measurable with respect toZk(X).

Zk(X) is the inverse limit of a sequence of ergodick-step nilsystems (see
Section 4.4). Letr be a positive integer. There exists a factorX′ of Zk(X),
which is ak-step nilsystem, such that

‖ f −E( f | X′)‖1 ≤ 1/(k+1)r .

Let f ′ = E( f | X′). For everyn, |I f (k,n)− I f ′(k,n)| ≤ 1/r. By Proposi-
tion 6.5 and Proposition 7.2 the sequence{I f ′(k,n)} can be decomposed as
a sum of ak-step nilsequence and a sequence tending to zero in uniform
density. We thus have

I f (k,n) = ar(n)+br(n)+cr(n)

where|ar(n)| ≤ 1/r for everyn, UD-Limbr(n) = 0 andcr(n) is an elemen-
taryk-step nilsequence. Fors 6= r we have

cr(n)−cs(n) =
(
ar(n)−as(n)

)
+
(
br(n)−bs(n)

)
.

We have UD-Lim
(
br(n)−bs(n)

)
= 0 and supn|ar(n)−as(n)| ≤ 1/r +1/s.

Thus by Lemma 1.11, synd-sup|cr(n)− cs(n)| ≤ 1/r + 1/s. Since the se-
quence{cr(n)− cs(n)} is a nilsequence, supn|cr(n)− cs(n)| ≤ 1/r + 1/s.
Therefore{cr(n)} is a Cauchy sequence iǹ∞ for uniform convergence,
and it converges uniformly to some sequence{c(n)}. This sequence is
a k-step nilsequence and one can immediately check that the sequence
{I f (k,n)−c(n)} converges to zero in uniform density.ut
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8. Proof of Theorem 1.2

Theorem 1.2 follows immediately from the next one, withf = 1A.

Theorem 8.1.Let(X,µ,T) be an ergodic system and f a nonnegative bounded
function on X. Then

synd-supI f (2,n)≥
(∫

f dµ

)3
. (8.1)

synd-supI f (3,n)≥
(∫

f dµ

)4
. (8.2)

Let us summarize the steps already proved. Letk be equal to either 2 or
to 3. We proceed as in the proof of Theorem 1.9, first replacingf by its con-
ditional expectation onZk(X) and then by its conditional expectation on a
k-step nilsystem factor ofZk(X). We note that the operators of conditional
expectation preserve the integral. By Corollary 4.5 and Lemma 1.11 the
first conditional expectation does not change the synd-sup of the sequence
{I f (k,n)}; if the k-step nilsystem is well chosen the second expectation
changes the synd-sup of this sequence by less than any given positive num-
ber. Therefore we are left with showing the theorem under the additional
hypothesis that(X,µ,T) is an ergodick-step nilsystem. We use the nota-
tion of Sections 5, 6 and 7.

By Proposition 6.5, the difference between the sequences{I f (k,n)} and
{Jf (k,n)} converges to zero in uniform density and thus they have the same
synd-sup by Lemma 1.11. Letφ be the function onY defined as in Propo-
sition 7.2 and letψ be the function onG̃ defined by Equation (7.1) in the
proof of the same proposition. Since(Y,S) is minimal, we have

synd-supJf (k,n) = synd-supφ(SneY) = sup
n

φ(SneY)

= sup
y∈Y

φ(y) = sup
g∈G̃

ψ(g) .

and we are reduced to showing that

sup
g∈G̃

ψ(g)≥
(∫

f dµ

)k+1
(8.3)

for k = 2 andk = 3.

8.1. One more reduction.

Recall that the groupGk is connected and closed. SinceG is k-step nilpo-
tent,Gk is included in the center ofG and so is abelian. By hypothesis (L),
Gk∩Λ = {1} and thusGk is compact. More precisely,Gk is a torus. We
write mk for its Haar measure.
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Let G′ = G/(GkΛk−1), p : G→ G′ be the natural projection,t ′ = p(t)
andΛ ′ = Λ/Λk−1.

ThenG′ is a(k−1)-step nilpotent Lie group but we actually consider it
as ak-step nilpotent group.Λ ′ is a discrete cocompact subgroup ofG′. We
write X′ = G′/Λ ′, µ ′ for its Haar measure andT ′ for the translation byt ′

on X′. (X′,µ ′,T ′) is a(k−1)-step nilsystem but we actually consider it as
ak-step nilsystem. This system is a factor of(X,µ,T) in a natural way. Let
q : X → X′ be the factor map. For any bounded functionf onX we have

E( f | X′)(q(x)) =
∫

Gk

f (u·x)dmk(x) . (8.4)

The hypotheses (H) and (L) are satisfied and thus we can build the groups

G̃′,
−→
G′,. . . and the nilmanifolds

−→
X′,. . . associated toG′ and X′, with the

same properties.

We note that(Gk)k+1 ⊂ G̃ and thus that̃G′ = G̃/(Gk)k+1. Also,
−→
X′ is

the image of~X under the natural projectionXk+1 → X′k+1 and the Haar
measure~µ ′ is the image of~µ under the same map.

Let f be a bounded function onX, ψ the function onG̃ associated to
f as above,f ′ = E( f | X′) andψ ′ the function onX̃′ associated tof ′. By
Equation (8.4), we have

ψ
′(p(g0), p(g1), . . . , p(gk)

)
=
∫

(Gk)k+1
ψ(u0g0,u1g1, . . . ,ukgk)dmk(u0)dmk(u1) . . . dmk(uk) .

In particular, supg∈G̃ ψ(g) ≥ supg′∈G̃′ ψ
′(g′). Since f ′ is nonnegative and

has the same integral asf , we are left with showing inequality (8.3) with
G′ substituted forG, f ′ substituted forf andψ ′ substituted forψ. In other
words we can assume without loss thatG is (k−1)-step nilpotent and that
Λk−1 = Gk−1∩Λ is trivial.

Note thatGk+1
k−1 is not included inG̃. For this reason, the same method

cannot be used to reduce the level of the nilmanifold once again.

8.2. The case k= 2.

In this case we can assume thatG is a compact abelian group and thatΛ is
trivial. We haveX = G andµ is its Haar measure. The nilmanifold~X is the
diagonal

{
(x,x,x) : x∈ X

}
and its Haar measure~µ is the image ofµ under

the mapx 7→ (x,x,x).
Let f be a bounded function onX and letψ be the associated function

on G̃. For(g0,g1,g2) ∈ G̃ we have

ψ(g0,g1,g2) =
∫

X
f (g0x) f (g1x) f (g2x)dµ(x)
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and thus

sup
g∈G̃

ψ(g)≥ ψ(1,1,1) =
∫

X
f (x)3dµ(x)≥

(∫
X

f dµ

)3

and the proof is complete.

8.3. The case k= 3.

In this case we can assume thatG3 is trivial and thatG2∩Λ is trivial. G2
is connected, compact and included in the center ofG and thus is abelian.
Therefore it is a torus. We writem2 for its Haar measure. We have

G̃ =
{
(g,gh,gh2u,gh3u3) : g,h∈ G,u∈ G2

}
;

~X =
{
(x,v·x,v2 ·x,v3 ·x) : x∈ X, v∈ G2

}
and~µ is the image ofµ ×m2 under the map(x,v) 7→ (x,v·x,v2 ·x,v3 ·x).

Let f be a bounded function onX and letψ be the associated function
on G̃. For(g,gh,gh2u,gh3u3) ∈ G̃,

ψ(g,gh,gh2u,gh3u3)

=
∫ (∫

f (g·x) f (ghv·x) f (gh2uv2 ·x) f (gh3u3v3 ·x)dm2(v)
)

dµ(x) .

We have

sup
g∈G̃

ψ(g)≥
∫

G2×G2×G2

ψ(g,gh,gh2u,gh3u3)dm2(g)dm2(h)dm2(u)

=
∫

X

(∫
G2×G2×G2

f (g·x) f (ghv·x) f (gh2uv2 ·x) f (gh3u3v3 ·x)

dm2(v)dm2(g)dm2(h)
)

dµ(x)

=
∫

X

(∫
G2×G2×G2

f (g·x) f (h·x) f (hw·x) f (gw3 ·x) (8.5)

dm2(g)dm2(h)dm2(w)
)

dµ(x) .

Let Ĝ2 be the dual group of the compact abelian groupG2, that is the
group of continuous group homomorphisms fromG2 to the circle. Forx∈X
we write f̂x for the Fourier transform of the functionfx defined onG2 by
fx(u) = f (u·x):

for γ ∈ Ĝ2, f̂x(γ) =
∫

G2

f (u·x)γ(u)dm2(u) .

The inner integral in the double integral (8.5) is equal to

∑
γ∈Ĝ2

| f̂x(γ) f̂x(γ3)|2 ≥
∣∣∣ f̂x(1)

∣∣∣4 =
∣∣∣∫ f (u·x)dm2(u)

∣∣∣4
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We obtain

sup
g∈G̃

ψ(g)≥
∫ ∣∣∣∫ f (u·x)dm2(u)

∣∣∣4dµ(x)

≥
(∫

f (u·x)dm2(u)dµ(x)
)4

=
(∫

f dµ

)4

and the proof is complete.

Appendix: a combinatorial example by Imre Ruzsa (proof of Theo-
rem 2.4)

We use the definitions of Section 2.2.

Lemma 8.2.Let d> 0 be an integer and a0,a1, . . . ,a4 five points inRd, all
having the same Euclidean norm and satisfying the relations

a0−3a1 +3a2−a3 = 0 , (8.6)
a1−3a2 +3a3−a4 = 0 . (8.7)

Then these points are equal.

Proof. By adding relations (8.6) and (8.7), we have that

a0 +2a3 = a4 +2a1 .

Settings= (a0 +2a3)/3, a = a1−s andb = a3−s, we have

a0 = s−2b ; a1 = s+a ; a2 = s+a+b ; a3 = s+b ; a4 = s−2a . (8.8)

Taking the square of the norm of these vectors and subtracting‖s‖2, we
find that the five following numbers are equal:

‖a‖2 +2〈a,s〉 ; (8.9)

4‖a‖2−4〈a,s〉 ; (8.10)

‖b‖2 +2〈b,s〉 ; (8.11)

4‖b‖2−4〈b,s〉 ; (8.12)

‖a‖2 +‖b‖2 +2〈a,b〉+2〈a,s〉+2〈b,s〉 . (8.13)

Equality between (8.9) and (8.10) yields〈a,s〉 = ‖a‖2/2, and the equality
(8.11)= (8.12) yields〈b,s〉 = ‖b‖2/2. From equality (8.9)= (8.11), we
have that‖a‖ = ‖b‖. The common value of the four first numbers is then
2‖a‖2, and (8.13) is equal to 4‖a‖2 + 2〈a,b〉. As these values are equal,
〈a,b〉=−‖a‖2 and this is possible only ifb =−a. Now 〈a,s〉=−〈a,s〉=
‖a‖2 and so indeeda = b = 0. We conclude thata0 = a1 = a2 = a3 = a4.
ut
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From this point the proof follows the line of Behrend’s argument [Beh]
for three-term arithmetic progressions. Letm,d, r be positive integers, and
let Λ be defined to be{

x0 +x1m+ · · ·+xd−1md−1 : xi ∈ Z, 0≤ xi < m/4,
d−1

∑
i=0

xi = r
}

. (8.14)

We claim thatΛ does not contain any QC5. LetP be a quadratic integer
polynomial such thatP(0),P(1), . . . ,P(4) belong toΛ . For j = 0,1, . . . ,4
we write

P(i) =
d−1

∑
j=0

xi, jm
j with xi, j ∈ Z, 0≤ xi, j < m/4,

d−1

∑
i=0

xi, j = r .

The integersP(0),P(1), . . . ,P(4) are related by the equations:

P(0)−3P(1)+3P(2)−P(3) = 0 andP(1)−3P(2)+3P(3)−P(4) = 0

and we have that
d−1

∑
j=0

(
x0, j −3x1, j +3x2, j −x3, j

)
mj = 0 ;

d−1

∑
j=0

(
x1, j −3x2, j +3x3, j −x4, j

)
mj = 0 .

The left hand side of each of these equations is the value atmof some poly-
nomial whose coefficients are integers belonging to the interval(−m,m).
As m is a root of this polynomial, it is identically zero and

x0, j −3x1, j +3x2, j −x3, j = 0 andx1, j −3x2, j +3x3, j −x4, j = 0

for j = 0,1, . . . ,d−1. The five pointsa0,a1, . . . ,a4 ∈ Rd given by

ai = (xi,0,xi,1, . . . ,xi,d−1)

satisfy relations (8.6) and (8.7) and all have the same Euclidean norm. By
Lemma 8.2 they are equal and thusP(0) = P(1) = · · ·= P(4); P is constant
and our claim is proven.

For d,m given, letF be the set of integers of the formx0 +x1m+ · · ·+
xd−1md−1 wherexi ∈ Z and 0≤ xi < m/4 for 0≤ i ≤ d− 1. If two vec-
tors (x0,x1, . . . ,xd−1) and (x′0,x

′
1, . . . ,x1d−1) of this form give the same

element ofF , then
d−1

∑
i=0

(xi −x′i)m
i = 0

and by the same argument as above the vectors(x0,x1, . . . ,xd−1) and(x′0,x
′
1, . . . ,x

′
d−1)

are equal. Therefore,F has at least(m/4)d elements and there existsr, 0≤
r < d(m/4)2, such that the setΛ defined by (8.14) has at least(m/4)d−2d−1

elements. Note thatΛ ⊂ {0, . . . ,L−1} for L = md. Choosingm= 2d, we
have a setΛ of the announced order of magnitude.ut
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