
CHAPTER II

DETERMINANTS AND EIGENVALUES

1.1. The first two components of u×v are zero and the third component is the given
determinant, which might be negative.

1.2. (a) (i) 1, (ii) −1, (iii) 1.
(b) In case (ii), the orientation is reversed, so the sign changes. In case (iii), the

two parallelograms can be viewed as having the same base and same height—one
of the sides is shifted—so they have the same area.

1.3. (b) (v×u) ·w = (−u×v) ·w, so the sign changes. A similar argument shows the
sign changes if the second and third columns are interchanged. The last determinant
can be obtained by the two switches

[u v w ] → [u w v ] → [w u v ]

each of which changes the sign, so the net result is no change.
(c) (u + v)× v = u× u + u× v = u× v, so ((u + v)× v) ·w = (u× v) ·w.
(d) The determinant is multiplied by −3.

1.4. We have

[
x
y

]
=

[
a b
c d

]−1 [
e
f

]
=

1
ad− bc

[
d −b
−c a

] [
e
f

]

=
1

ad− bc

[
de− bf

−ce + af

]
.

2.1. (a) −16. (b) 40. (c) 3. (d) 0.

2.2. This is a lot of algebra, which I leave to you.
If you have verified rules (i) and (ii) only for the first row, and you have also

verified rule (iii), then you can verify rules (i) and (ii) for the second row as follows.
Interchange the two rows. The second row is now the first row, but the sign has
changed. Use rules (i) and (ii) on the new first row, then exchange rows again. The
sign changes back and the rules are verified for the second row.

2.3. I leave the algebra to you. The corresponding rule for the second row follows
by exchanging rows, applying the new rule to both sides of the equation and then
exchanging back.
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16 II. DETERMINANTS AND EIGENVALUES

2.4. The matrix is singular if and only if its determinant is zero.

det
[

1 z
z 1

]
= 1− z2 = 0

yields z = ±1.

2.5. det A = −λ3 + 2λ = 0 yields λ = 0,±√2.

2.6. The relevant point is that the determinant of any matrix which has a column
consisting of zeroes is zero. For example, in the present case, if we write out the
formula for the determinant of the above 5× 5 matrix, each term will involve the
determinant of a 4×4 matrix with a column of zeroes. Similarly, in the formula for
the determinant of such a 4× 4 matrix, each term will involve the determinant of
a 3× 3 matrix with a column of zeroes. Continuing this way, we eventually get to
determinants of 2 × 2 matrices, each with a column of zeroes. However, it is easy
to see that the determinant of such a 2× 3 matrix is zero.

Note that we will see later that a formula like that used to define the determinant
works for any column or indeed any row. Hence, if a column (or row) consists of
zeroes, the coefficients in that formula would all be zero, and the net result would
be zero. However, it would be premature to use such a formula at this point.

2.7. det(cA) = cn det A. For, multiplying one row of A by c multiplies its determinant
by c, and in cA, all n rows are multiplied by c.

2.8. By a previous exercise, we have det(−A) = (−1)6 det A = detA. The only way
we could have detA = −det A is if detA = 0, in which case A would be singular.

2.9. Almost anything you come up, with the exception of a few special cases, should
work. For example, suppose detA 6= 0 and B = −A. Then, since A is 2×2, it follows
that det(−A) = (−1)2 det A = det A. Hence, det A + det B = 2det A 6= det 0 = 0.

2.10. (a) The recursive formula for n = 7 uses seven 6 × 6 subdeterminants. Each of
these requires N(6) = 876 multiplications. Since there are 7 of these, this requires
7∗876 = 6132 multiplications. However, in addition, once these 7 subdeterminants
have been calculated, each must be multiplied by the appropriate entry, and this
adds 7 additional multiplications. Hence, the total N(7) = 6132 + 7 = 6139.

(b) The recursive rule is N(n) = nN(n− 1) + n.

3.1. The first matrix has determinant 31, and the second matrix has determinant 1.
The product matrix is 

 6 5 −3
7 9 2

−4 −6 −1




which has determinant 31.

3.2. If A and B both have rank n, they are both non-singular. Hence, detA and
det B are nonzero. Hence, by the product rule, det(AB) = detAdet B 6= 0. Hence,
AB is also non-singular and has rank n.
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3.3. The determinant of any lower triangular matrix is the product of its diagonal
entries. For example, you could just use the transpose rule.

3.4. (a) If A is invertible, then AA−1 = I. Hence, det(AA−1) = 1. Using the product
rule yields detAdet(A−1 = 1. Hence, detA 6= 0, and dividing both sides by it yields

det(A−1) =
1

det A
.

(b) det(PAP−1) = det P det Adet(P−1). But det(P−1) =
1

det P
. detP and

1
det P

cancel, so the net result is detA as claimed.

3.5. Cramer’s rule has detA in the denominator. Hence, the formula is meaningless
if A is singular since in that case detA = 0.

3.6. The determinant of the coefficient matrix is 1. The solution by Cramer’s rule or
by Gauss-Jordan reduction is x1 = −2, x2 = 1, x3 = 4, x4 = 2.

4.1. In each case we give the eigenvalues and for each eigenvalue a basis consisting of
one or more basic eigenvectors for that eigenvalue. (a)

λ = 2,

[
1
1

]
λ = 3,

[
3
2

]
.

(b)

λ = 2,


 6

1
2


 λ = 1,


 2

1
1


 λ = −1,


 0
−1

1


 .

(c)

λ = 2,v1 =


 1

0
0


 ,v2 =


 0
−1

1


 λ = 1,


−1
−2

1


 .

(d)

λ = 3,


 0
−1

1


 .

4.2. Compute

Av =


−2 1 0

1 −2 1
0 1 −2





 1

1
1


 =


−1

0
−1


 .

You see that Av is not a scalar multiple of v, so by definition, it is not an eigenvector
for A. Note that trying to find the eigenvalues and eigenvectors of A would be
much more time consuming. In this particular case, the eigenvalues turn out to be
λ = −2,−2 +

√
2,−2−√2, and the radicals make it a bit complicated to find the

eigenvectors.
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4.3. You say that an eigenvector can’t be zero, so there had to be a mistake somewhere
in the calculation. Either the characteristic equation was not solved correctly to
find the eigenvalue λ or the solution of the system (A − λI)v = 0 was not done
properly to find the eigenspace.

4.4. The eigenvalues of A are the roots of the equation det(A − λI) = 0. λ = 0 is a
root of this equation if and only if det(A−0 I) = 0, i.e., detA = 0. Hence, A would
have to be singular.

4.5. Multiply Av = λv by A. We get

A2v = A(Av) = A(λv) = λAv = λ(λv) = λ2v.

In general, Anv = λnv.

4.6. Av = λv implies that

v = A−1Av = A−1(λv) = λA−1v.

Since A is non-singular, λ 6= 0 by a problem above, so we may divide through by λ
to obtain λ−1v = A−1v. This just says λ−1 is an eigenvalue for A−1.

4.7. (a) and (b) are done by expanding the determinants

[
a11 − λ a12

a21 a22 − λ

] 
 a11 − λ a12 a13

a21 a22 − λ a23

a31 a32 a33 − λ


 .

I leave the details to you.
(c) The coefficient of λn is (−1)n, i.e., it is 1 if n is even and −1 if n is odd.

5.1. (a) λ = 3,v1 =
[

1
1

]
and λ = −1,v2 =

[−1
1

]
. However, other answers are

possible, depending on how you did the problem.

5.2. (a)

λ = −3,v1 =


−2

2
0


 ,v2 =


 1

0
1


 , λ = 6,v3 =


−2
−1

2




{v1,v2,v3} is a basis, but other answers are possible, depending on how you went
about doing the problem,

5.3. (a) λ = 2,v1 = e1 and λ = 1,v2 = e3. (b) For λ = 2, the dimension of the
eigenspace is strictly less than the multiplicity. For λ = 1, the number of basic
eigenvectors does equal the multiplicity; they are both one. A is not diagonalizable
because equality does not hold for at least one of the eigenvalues.
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5.4. (a)

λ = 1,v1 =


−1

1
0


 ,v2 =


−1

0
1


 , λ = 4,v3 =


 1

1
1


 .

However, other answers are possible.
(b) This depends on your answer for part (a). For example,

P = [v1 v2 v3 ] =


−1 −1 1

1 0 1
0 1 1




will work.

5.5. Note that if m1 + m2 + m3 6= 5, that means that the characteristic equation has
complex roots which are not considered candidates for real eigenvalues.

(a) The dimension of the eigenspace equals the multiplicity for each eigenvalue
and the multiplicities add up to five. Hence, the matrix is diagonalizable.

(b) d1 < m1 so the matrix is not diagonalizable.
(c) d1 > m1, which is never possible. No such matrix exists.
(d) m1 + m2 + m3 = 3 < 5. Hence, there are necessarily some complex roots

of the characteristic equation. The matrix is not diagonalizable (in the purely real
theory).

5.6. (a) The characteristic equation is λ2 − 13λ + 36 = 0. Its roots λ = 4, 9 are
distinct, so the matrix is diagonalizable. In Chapter III, we will learn a simpler
more direct way to see that a matrix of this type is diagonalizable.

(b) The characteristic equation is (λ − 1)2 = 0 so the only eigenvalue is λ = 1
and it has multiplicity two. That, in itself, is not enough to conclude the matrix
isn’t diagonalizable. However,[

1− 1 1
0 1− 1

]
=

[
0 1
0 0

]

which has rank 1. Hence, the eigenspace has dimension 2−1 = 1 which is less than
the multiplicity of the eigenvalue. Hence, the matrix is not diagonalizable.

(c) The characteristic equation is λ2+1 = 0. Since its roots are non-real complex
numbers, this matrix is not diagonalizable in our sense, since we restrict attention
to real scalars.

6.1. (a) For any non-negative integer n, we have

An =
[

λn 0
0 µn

]
,

so ∞∑
n=0

tn

n!
An =

[∑∞
n=0 λntn/n! 0

0
∑∞

n=0 µntn/n!

]
=

[
eλt 0
0 eµt

]
.

(b) We have

eAt =




eλ1t 0 . . . 0
0 eλ2t . . . 0
...

... . . .
...

0 0 . . . eλnt
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6.2. (a)

eNt = I + t

[
0 0
1 0

]
=

[
1 0
t 1

]
.

This used the fact that in this case Nk = 0 for k ≥ 2.
(b) In this case Nk = 0 for k ≥ 3.

eNt =


 1 0 0

t 1 0
t2/2 t 1


 .

(c) The smallest such k is n. eNt has the form suggested by the answers in
parts (a) and (b). It is an n × n matrix with ‘1’s on the diagonal, ‘t’s just below
the diagonal, ‘t2/2’s just below that, etc. In the lower left hand corner there is a
‘tn−1/(n− 1)!’.

6.3. (a)

eAt = eλt

{
I + t

[
0 0
1 0

]}
= eλt

[
1 0
t 1

]
.

This used the fact that in this case (A− λI)k = 0 for k ≥ 2.
(b) In this case (A− λI)k = 0 for k ≥ 3.

eAt = eλt


 1 0 0

t 1 0
t2/2 t 1


 .

(c) The smallest such k is n. eAt has the form suggested by the answers in parts
(a) and (b). There is a scalar factor of eλt followed by a lower triangular matrix
with ‘1’s on the diagonal, ‘t’s just below the diagonal, ‘t2/2’s just below that, etc.
In the lower left hand corner there is a ‘tn−1/(n− 1)!’.

6.4. In general PAnP−1 = (PAP−1)n. Hence,

P (
∞∑

n=0

tn/n!An)P−1 =
∞∑

n=0

tn/n!PAnP−1 =
∞∑

n=0

tn/n!(PAP−1)n = ePAP−1t.

6.5.

eB+C =
∞∑

n=0

1
n!

(B + C)n =
∞∑

n=0

1
n!

∑
i+j=n

n!
i!j!

BiCj

=
∑

n = 0∞
∑

i+j=n

1
i!

Bi 1
j!

Cj

=
∞∑

i=0

1
i!

Bi
∞∑

j=0

1
j!

Cj = eBeC .
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6.6. (c) We have

B + C =
[

0 1
−1 0

]
,

so by Example 2,

eB+C =
[

cos 1 sin1
− sin 1 cos 1

]
.

On the other hand,

eBeC =
[

0 1
−1 1

]
,

7.1. This is not an upper or lower triangular matrix. However, after interchanging
the first and third rows, it becomes an upper triangular matrix with determinant
equal to the product of its diagonal entries. The determinant is −6 because we
have to change the sign due to the interchange.

7.2. (a) and (c) are true. (b) is false. The correct rule is det(cA) = cn det A. (d) is
true. One way to see this is to notice that detAt = det A 6= 0.

7.3. The characteristic equation is −(λ− 2)(λ + 1)2 = 0. The eigenvalues are λ = 2
and λ = −1 which is a double root. For λ = 2,



 1

1
1







is a basis for the eigenspace. For λ = −1,



−1

1
0


 ,


−1

0
1







is a basis for the eigenspace.

7.4. Use Gauss Jordan reduction to get an upper triangular matrix. You might speed
things up also by using selected column operations. The answer is −23.

7.5. (a) This is never true. It is invertible if and only if its determinant is not zero.
(b) This condition is the definition of ‘diagonalizable matrix’. There are many

non-diagonalizable matrices. This will happen for example when the dimension of
an eigenspace is less than the multiplicity of the corresponding eigenvalue. (It can
also happen if the characteristic equation has non-real complex roots.)

(c) The statement is only true for square matrices.

7.6. No. Av is not a scalar multiple of v.

7.7. (a) It is not diagonalizable since the dimension of the eigenspace for λ = 3 is one
and the multiplicity of the eigenvalue is two.

(b) There are three distinct eigenvalues, so the matrix is diagonalizable.

7.8. Take v to be the element of Rn with all its entries equal to one. Then the ith
component of Av is just the sum of the entries in the ith row of A. Since these are
all equal to a, it follows that Av = av, so v is an eigenvector with corresponding
eigenvalue a.
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