
CHAPTER III

APPLICATIONS

1.1. The eigenvalues are λ = 5,−5. An orthonormal basis of eigenvectors consists of

1√
5

[
1
2

]
,

1√
5

[−2
1

]
.

1.2. The eigenvalues are λ = 5,−5. A basis of eigenvectors consists of

[
1
4

]
,

[−1
1

]

which are not perpendicular. However, the matrix is not symmetric, so there is no
special reason to expect that the eigenvectors will be perpendicular.

1.3. The eigenvalues are 0, 1, 2. An orthonormal basis is

 1√

2


−1

0
1


 ,


 0

1
0


 ,

1√
2


 1

0
1





 .

1.4. The columns of the matrix 

− 5√

2
0 5√

2
4√
2

3 4√
2

3√
2

−4 3√
2




form an orthonormal basis of eigenvectors corresponding to the eigenvalues −4, 1, 6.

1.5. (P tAP )t = P tAt(P t)t = P tAP .

2.1. (a) 
 1√

2


 1

0
1


 ,

1√
3


 1

1
−1







(b) 


1√
5




1
0
2
0


 ,

1√
70




4
5

−2
5


 ,

1√
994



−8
25
4

−17







23
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2.2. The eigenvalues are 0 with multiplicity 2 and 3 with multiplicity 1. A basis for
the eigenspace corresponding to the eigenvalue 0 is



−1

1
0


 ,


−1

0
1





 .

Applying Gram Schmidt to this yields
 1√

2


−1

1
0


 ,

1√
6


−1
−1

2





 .

an eigenvector of length 1 for the eigenvalue 3 is

1√
3


 1

1
1


 .

An orthonormal basis of eigenvectors is
 1

sqrt2


−1

1
0


 ,

1√
6


−1
−1

2


 ,

1√
3


 1

1
1





 .

2.3. The characteristic polynomial is −[(λ+1)3−12(λ+1)−16]. Put X = λ+1. Then
the equation becomes X3−12X−16 = 0, and this factors as (X−4)(X+2)2 = 0, so
the roots are X = 4,−2,−2. That means the eigenvalues are λ = 3 with multiplicity
1 and λ = −3 with multiplicity 2. For λ = 4, a normalized eigenvector is

u1 =
1√
3


 1

1
1


 .

For λ = −3,

v2 =


−1

1
0


 ,v3 =


−1

0
1




form a basis of eigenvectors. Applying Gram–Schmidt yields

u2 =
1√
2


−1

1
0


 ,u3 =

1√
6


−1
−1

2


 .

However, it would also make sense to reverse the order and apply Gram–Schmidt
to obtain

u′2 =
1√
2


−1

0
1


 ,u′3 =

1√
6


−1

2
−1


 .
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2.4. (a) v′1 = v1,v′2 = v2 − cv′1 = v2 − cv1 for an appropriate scalar c, so it is clear
that v′2 can’t be zero, unless v2 is a multiple of v1. (b) v′3 = v3 − yv′2 − zv′2
for appropriate scalars y, z. If it were zero, that would say that v3 is a linear
combination of v′1 and v′2, which we know are linear combinations of v1 and v2.
Hence, v2 would be a linear combination of v1 and v2, which by assumption is not
the case.

(The same argument works in general for any number of vectors, as long as they
form a linearly independent set. If any v′i = 0, then that would, after a lot of
algebra, give a way to express vi in terms of v1, . . . ,vi−1.)

3.1. (a)
[√

3/2 −1/2
1/2

√
3/2

]
. (b)

[√
3/2 1/2

−1/2
√

3/2

]
.

3.2. Replacing θ by −θ doesn’t change the cosine entries and changes the signs of the
sine entries.

3.3. The ‘P ’ matrix is [ √
3

2 − 1
2

1
2

√
3

2

]
.

Its inverse is its transpose, so the components of −gj in the new coordinate system
are given by [ √

3
2

1
2

− 1
2

√
3

2

] [
0

−g

]
= −g

[ 1
2√
3

2

]
.

3.4. Such a matrix is
1√
2

[−1 1
1 1

]
.

The diagonal entries are −1, 3.

3.5. Such a matrix is 

− 5

5
√

2
0 5

5
√

2
4

5
√

2
3
5

4
5
√

2
3

5
√

2
−4
5

3
5
√

2




The diagonal entries are −4, 1, 6.

3.6. Let A,B be orthogonal, i.e., they are invertible and At = A−1, Bt = B−1. Then
AB is invertible and

(AB)t = BtAt = B−1A−1 = (AB)−1.

The inverse of an orthogonal matrix is orthogonal. For, if At is the inverse of A,
then A is the inverse of At. But (At)t = A, so At has the property that its transpose
is its inverse.

3.7. The rows are also mutually perpendicular unit vectors. The reason is that an-
other way to characterize an orthogonal matrix P is to say that the P t is the inverse
of P , i.e., P tP = PP t = I. However, it is easy to see from this that P t is also
orthogonal. (Its transpose (P t)t = P is also its inverse.) Hence, the columns of P t

are mutually perpendicular unit vectors. But these are the rows of P .
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4.1. The principal axes are given by the basis vectors

u1 =
1√
2

[−1
1

]
, u2 =

1√
2

[
1
1

]
.

In the new coordinates system the equation is

(x′)2 + 3(y′)2 = 2

which is the equation of an ellipse.

4.2. The eigenvalues are −1, 3. The conic is a hyperbola. The principal axes may be
specified by the unit vectors

u1 =
1√
2

[−1
1

]
, u2 =

1√
2

[
1
1

]
.

The equation in the new coordinates is −(x′)2 + 3(y′)2 = 4. The points closest to

the origin are at x′ = 0, y′ = ± 2√
3
. In the original coordinates, these points are

±(
√

2/3,
√

2/3).

4.3. The principal axes are those along the unit vectors

u1 =
1
5

[−4
3

]
, u2 =

1
5

[
3
4

]
.

The equation in the new coordinate system is

−25(x′)2 + 50(y′)2 = 50.

The curve is a hyperbola. The points closest to the origin are given by x′ = 0, y′ =

±1. In the original coordinates these are the points ±1
5
(4, 3). There is no upper

bound on the distance of points to the origin for a hyperbola.

4.4. The principal axes are along the unit vectors given by

u1 =
1√
6


 1

2
1


 , u2 =

1√
2


−1

0
1


 , u3 =

1√
3


 1
−1

1


 .

The equation in the new coordinates system is

−3(x′)2 + (y′)2 + 3(z′)2 = 1.

This is an elliptic hyperboloid of one sheet centered on the x′-axis.
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5.1. Compare this with Exercise 1 in Section 7.
The equations are

2x = λ(2x + y)

2y = λ(x + 2y)

x2 + xy + y2 = 1

This in effect says that (x, y) give the components of an eigenvector for the matrix[
2 1
1 2

]

with
2
λ

as eigenvalue. However, since we already classified the conic in the afore-
mentioned exercise, it is easier to use that information here. In the new coordi-
nates the equation is (x′)2 + 3(y′)2 = 2. The maximum distance to the origin is at
x′ = ±√2, y′ = 0 and the minimum distance to the origin is at x′ = 0, y′ = ±√

2/3.
Since the change of coordinates is orthogonal, we may still measure distance by√

(x′)2 + (y′)2. Hence, the maximum square distance to the origin is 2 and the
minimum square distance to the origin is 2/3.

Note that the problem did not ask for the locations in the original coordinates
where the maximum and minimum are attained.

5.2. (Look in the previous section for an analogous problem.) The equations are
 1 −2 0
−2 −1 −2

0 −2 1





x

y
z


 = λ


 x

y
z


 , x2 + y2 + z2 = 1.

Thus we need to find eigenvectors of length 1 for the given matrix. However, we
already did this in the aforementioned exercise. The answers are

± 1√
6
(1, 2, 1), ± 1√

2
(−1, 0, 1), ± 1√

3
(1,−1, 1).

The values of the function at these three points are respectively −3, 1, 3. Since
a continuous function on a closed bounded set must attain both a maximum and
minimum values, the maximum is 3 at the third point and the minimum is −3 at
the first point.

5.3. The Lagrange multiplier condition yields the equations

x = λx

y = λy

z = λz

x2 + y2 = z2.

If λ 6= 1, then the first two equations show that x = y = 0. From this, the last
equation shows that z = 0. Hence, (0, 0, 0) is one possible maximum point. If
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λ = 1, then the third equation shows that z = 0, and then the last equation shows
that x = y = 0. Hence, that gives the same point. Finally, we have to consider all
points where ∇g = 〈2x, 2y,−2z〉 = 0. Again, (0, 0, 0) is the only such point. Since
x2 + y2 + z2 ≥ 0 and it does attain the value 0 on the given surface, it follows that
0 is its minimum value.

Note that in this example∇g = 0 didn’t give us any other candidates to examine,
but in general that might not have been the case.

5.4. On the circle x2 +y2 = 1, f(x, y) = 1+4xy, so maximizing f(x, y) is the same as
maximizing xy. The level sets xy = c are hyperbolas. Some of these intersect the
circle x2 + y2 = 1 and some don’t intersect. The boundary between the two classes
are the level curves xy = 1 and xy = −1. The first is tangent to the circle in the first
and third quadrants and the second is tangent in the second and fourth quadrants.
As you move on the circle toward one of these points of tangency, you cross level
curves with either successively higher values of c or successively lower values of c.
Hence, the points of tangency are either maximum or minimum points for xy. The
maximum points occur in the first and third quadrants with xy attaining the value
1 at those points.

Note also that the points of tangency are exactly where the normal to the circle
and the normal to the level curve are parallel.

6.1. The characteristic polynomial of
−1 1 0

1 −2 1
0 1 −1




is

det


−1− λ 1 0

1 −2− λ 1
0 1 −1− λ


 = (−1− λ)((−2− λ)(−1− λ)− 1)− 1(−1− λ)

= −(λ + 1)(λ2 + 3λ) = −(λ + 1)(λ + 3)λ.

Hence, the eigenvalues are −ω2(m/k) = λ = −1,−3, and 0. As indicated in the
problem statement, the eigenvalue 0 corresponds to a non-oscillatory solution in
which the system moves freely at constant velocity.

For λ = −1, we have ω =
√

k/m and
 0 1 0

1 1 1
0 1 0


 →


 1 0 1

0 1 0
0 0 0


 yielding basic eigenvector u =


−1

0
1


 .

This corresponds to both end particles moving with equal displacements in opposite
directions and the middle particle staying still.

For λ = −3, we have ω =
√

3k/m and
 2 1 0

1 1 1
0 1 2


 →


 1 0 −1

0 1 2
0 0 0


 yielding basic eigenvector u =


 1
−2
1


 .

This corresponds to both end particles moving together with equal displacements
in the same direction and the middle particle moving with twice that displacement
in the opposite direction.
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6.2. The characteristic polynomial of
−2 1 0

1 −2 1
0 1 −2




is

det


−2− λ 1 0

1 −2− λ 1
0 1 −2− λ


 = (−2− λ)((−2− λ)(−2− λ)− 1)− 1(−2− λ)

= −(λ + 2)(λ2 + 4λ + 2).

Hence, the eigenvalues are −ω2(m/k) = λ = −2,−2 +
√

2, and = −2 +
√

2.
For λ = −2, we have ω =

√
2k/m and

 0 1 0
1 0 1
0 1


 →


 1 0 1

0 1 0
0 0 0


 yielding basic eigenvector u =


−1

0
1


 .

This corresponds to both end particles moving with equal displacements in opposite
directions and the middle particle staying still.

For λ = −2−√2, we have ω =
√

(2 +
√

2)k/m and



√

2 1 0
1

√
2 1

0 1
√

2


 →


 1 0 −1

0 1
√

2
0 0 0


 yielding basic eigenvector u =


 1
−√2

1


 .

This corresponds to both end particles moving together with equal displacements in
the same direction and the middle particle moving with

√
2 times that displacement

in the opposite direction.

For λ = −2 +
√

2, we have ω =
√

(2−√2)k/m and


−

√
2 1 0

1 −√2 1
0 1 −√2


 →


 1 0 −1

0 1 −√2
0 0 0


 yielding basic eigenvector u =


 1√

2
1


 .

This corresponds to both end particles moving together with equal displacements in
the same direction and the middle particle moving with

√
2 times that displacement

in the same direction. Notice that the intuitive significance of this last normal mode
is not so clear.

6.3. The given information about the first normal mode tells us that a corresponding

basic eigenvector is v1 =
[

2
1

]
. Any basic eigenvector for the second normal mode

must be perpendicular to v1, so we can take v2 =
[

1
−2

]
. Hence, the relation

between the displacements for the second normal mode is x2 = −2x1.
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6.4. For one normal mode, ω =

√
k

m
, and the relative motions of the particles satisfy

x2 = 2x1. For the other normal mode, ω =

√
6k

m
and the relative motions of the

particles satisfy x1 = 2x2.

6.5. For one normal mode, λ = −3 +
√

5 and ω =

√
(3−√5)

k

m
. The eigenspace is

obtained by reducing the matrix

[−1−√5 2
2 1−√5

]
.

Note that this matrix must be singular so that the first row must be a multiple of

the second row. (The multiple is in fact
−1−√5

2
. Check it!) Hence, the reduced

matrix is [
1 (1−√5)/2
0 0

]
.

The relative motions of the particles satisfy x1 =
√

5− 1
2

x2. A similar analysis

show that for the other normal mode, ω =

√
(3 +

√
5)

k

m
, and the relative motions

of the particles satisfy x1 = −
√

5 + 1
2

x2.

6.6. The information given tells us that two of the eigenvectors are


 1

1
1


 and


 1
−2
1


 .

Any basic eigenvector for the third normal mode must be perpendicular to this. If

its components are


 v1

v2

v2


, then we must have

v1 + v2 + v3 = 0 and v2 − 2v2 + v3 = 0.

By the usual method, we find that a basis for the null space of this system is given
by 

−1
0
1




whence we conclude that the relative motions satisfy x1 = −x3, x2 = 0.

7.1. The set is not linearly independent.
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7.2. (a) For λ = 2, a basis for the corresponding eigenspace is



 1

1
1





 .

For λ = −1, a basis for the corresponding eigenspace is



−1

1
0


 ,


−1

0
1





 .

(b) An orthonormal basis of eigenvectors is
 1√

3


 1

1
1


 ,

1√
2


−1

1
0


 ,

1√
6


−1
−1
2





 .

(c) We have

P =


 1/

√
3 −1/

√
2 −1/

√
6

1/
√

3 1/
√

2 −1/
√

6
1/
√

3 0 2/
√

6


 , P tAP =


 2 0 0

0 −1 0
0 0 −1


 .

The answers would be different if the eigenvalues or eigenvectors were chosen in
some other order.

7.3. The columns of P must also be unit vectors.

7.4. (a) For l = 6,
1√
5

[−1
2

]
constitutes a basis for the corresponding eigenspace.

For l = 1,
1√
5

[
2
1

]
constitutes a basis for the corresponding eigenspace.

(b) P =
[−1/

√
5 2/

√
5

2/
√

5 1/
√

5

]
. The equation is 6u2 + v2 = 24.

(c) The conic is an ellipse with principal axes along the axes determined by the
two basic eigenvectors.

7.5. First find an orthonormal basis of eigenvectors for


 2 0 0

0 1 2
0 2 1


. The eigenvalues

are λ = 3, 2,−1. The corresponding basis is
 1√

2


 0

1
1


 ,


 1

0
0


 ,

1√
2


 0
−1
1





 .

Picking new coordinates with these as unit vectors on the new axes, the equation
is 3(x′)2 + 2(y′)2 − (z′)2 = 6. This is a hyperboloid of one sheet. Its axis is the
z′-axis and this points along the third vector in the above list.
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If the eigenvalues had been given in another order, you would have listed the
basic eigenvectors in that order also. You might also have conceivably picked a
negative of one of those eigenvectors for a basic eigenvector. The new axes would
be the same except that they would be labeled differently and some might have
directions reversed. The graph would be the same but its equation would look
different because of the labeling of the coordinates.

Note that just to identify the graph, all you needed was the eigenvalues. The
orthonormal basis of eigenvectors is only necessary if you want to sketch the surface
relative to the original coordinate axes.

7.6. One normal mode x = v cos(ωt) has λ = −1,

ω =

√
k

m
, v =

[
1
1

]
.

In this mode, x1 = x2, so the particles move in the same direction with equal
displacements.

A second normal mode x = v cos(ωt) has λ = −5,

ω =

√
5k

m
, v =

[−1
1

]
.

In this mode, x1 = −x2, so the particles move in the opposite directions with equal
displacements.

7.7. (a) Not diagonalizable. 1 is a triple root of the characteristic equation, but A−I
has rank 2, which shows that the corresponding eigenspace has dimension 1.

(b) If you subtract 2 from each diagonal entry, and compute the rank of the
resulting matrix, you find it is one. So the eigenspace corresponding to l = 2 has
dimension 3− 1 = 2. The other eigenspace necessarily has dimension one. Hence,
the matrix is diagonalizable.

(c) The matrix is real and symmetric so it is diagonalizable.


