
CHAPTER I

LINEAR ALGEBRA, BASIC NOTIONS

1. Introduction

In your previous calculus courses, you studied differentiation and integration for
functions of more than one variable. Usually, you couldn’t do much if the number of
variables was greater than two or three. However, in many important applications,
the number of relevant variables can be quite large. In such situations, even very
basic algebra can get quite complicated. Linear algebra is a tool invented in the
nineteenth century and further extended in the twentieth century to enable people
to handle such algebra in a systematic and understandable manner.

We start off with a couple of simple examples where it is clear that we may have
to deal with a lot of variables.

Example 1. Professor Marie Curie has ten students in a chemistry class and
gives five exams which are weighted differently in order to obtain a total score for
the course. The data as presented in her grade book is as follows.

student/exam 1 2 3 4 5
1 78 70 74 82 74
2 81 75 72 85 80
3 92 90 94 88 94
4 53 72 65 72 59
5 81 79 79 82 78
6 21 92 90 88 95
7 83 84 76 79 84
8 62 65 67 73 65
9 70 72 76 82 73
10 69 75 70 78 79

The numbers across the top label the exams and the numbers in the left hand
column number the students. There are a variety of statistics the teacher might
want to calculate from this data. First, she might want to know the average score
for each test. For a given test, label the scores x1, x2, x3, x4, x5, x6, x7, x8, x9, x10

so that xi is the score for the ith student. Then the average score is

x1 + x2 + x2 + x4 + x5 + x6 + x7 + x8 + x9 + x10

10
=

1
10

10∑
i=1

xi.

For example, for the second test the average is

1
10

(70 + 75 + 90 + 72 + 79 + 92 + 84 + 65 + 72 + 75) = 77.4.

1
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Suppose she decides to weight the five scores as follows: the first, third, and fifth
scores are weighted equally at 20 percent or 0.2, the second score is weighted 10
percent or 0.1, and the fourth score is weighted 30 percent or 0.3. Then if the scores
for a typical student are denoted y1, y2, y3, y4, y5, the total weighted score would be

0.2 y1 + 0.1 y2 + 0.2 y3 + 0.3 y4 + 0.2 y5.

If we denote the weightings a1 = a3 = a5 = 0.2, a2 = 0.1, a4 = 0.3, then this could
also be written

a1y1 + a2y2 + a3y3 + a4y4 + a5y5 =
5∑

i=1

aiyi.

For example, for the third student, the total score would be

0.2 · 92 + 0.1 · 90 + 0.2 · 94 + 0.3 · 88 + 0.2 · 94 = 91.4.

As you see, in both cases we have a number of variables and we are forming what
is called a linear function of those variables, that is, an expression in which each
variable appears simply to the first power (with no complicated functions). When
we only have two or three variables, the algebra for dealing with such functions is
quite simple, but as the number of variables grows, the algebra becomes much more
complex.

Such data sets and calculations should be familiar to anyone who has played
with a spreadsheet.

Example 2. In studying complicated electrical circuits, one uses a collection of
rules called Kirchhoff’s laws. One of these rules says that the currents converging
at a node in the circuit add up algebraically to zero. (Currents can be positive or
negative.) Other rules put other restrictions on the currents. For example, in the
circuit below

10

15

10

20

5

50 volts

x 1
x 2

x
3

5

4

Numerical resistances in ohms
x

x

Kirchhoff’s laws yield the following equations for the currents x1, x2, x3, x4, x5 in
the different branches of the circuit.

10x1 + 10x2 = 50
20x3 + 5x4 = 50

x1 − x2 − x5 = 0
−x3 + x4 − x5 = 0

10x1 + 5x4 + 15x5 = 50



1. INTRODUCTION 3

Don’t worry if you don’t know anything about electricity. The point is that the
circuit is governed by a system of linear equations. In order to understand the
circuit, we must have methods to solve such systems. In your high school algebra
course, you learned how to solve two equations in two unknowns and perhaps three
equations in three unknowns. In this course we shall study how to solve any number
of equations in any number of unknowns. Linear algebra was invented in large part
to discuss the solutions of such systems in an organized manner. The above example
yielded a fairly small system, but electrical engineers must often deal with very
large circuits involving many, many currents. Similarly, many other applications in
other fields require the solution of systems of very many equations in very many
unknowns.

Nowadays, one uses electronic computers to solve such systems. Consider for
example the system of 5 equations in 5 unknowns

2x1 + 3x2 − 5x3 + 6x4 − x5 = 10
3x1 − 3x2 + 6x3 + x4 − x5 = 2
x1 + x2 − 4x3 + 2x4 + x5 = 5

4x1 − 3x2 + x3 + 6x4 + x5 = 4
2x1 + 3x2 − 5x3 + 6x4 − x5 = 3

How might you present the data needed to solve this system to a computer? Clearly,
the computer won’t care about the names of the unknowns since it doesn’t need
such aids to do what we tell it to do. It would need to be given the table of
coefficients

2 3 −5 6 −1
3 −3 6 1 −1
1 1 −4 2 1
4 −3 1 6 1
2 3 −5 6 −1

and the quantities on the right—also called the ‘givens’

10
2
5
4
3

Each such table is an example of a matrix , and in the next section, we shall
discuss the algebra of such matrices.

Exercises for Section 1.

1. A professor taught a class with three students who took two exams each. The
results were

student/test 1 2
1 100 95
2 60 75
3 100 95
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(a) What were the average scores on each test?
(b) Are there weightings a1, a2 which result in either of the following weighted

scores?
student score

1 98
2 66
3 98

or

student score
1 98
2 66
3 97

2. Solve each of the following linear systems by any method you know.
(a)

2x + 3y = 3
x + 3y = 1

(b)

x + y = 3
y + z = 4

x + y + z = 5

(c)

x + y = 3
y + z = 4

x + 2y + z = 5

(d)

x + y + z = 1
z = 1

2. Matrix Algebra

In the previous section, we saw examples of rectangular arrays or matrices such
as the table of grades 



78 70 74 82 74
81 75 72 85 80
92 90 94 88 94
53 72 65 72 59
81 79 79 82 78
21 92 90 88 95
83 84 76 79 84
62 65 67 73 65
70 72 76 82 73
69 75 70 78 79
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This is called a 10 × 5 matrix. It has 10 rows and 5 columns. More generally, an
m× n matrix is a table or rectangular array of the form


a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . .
...

am1 am2 . . . amn




It has m rows and n columns. The quantities aij are called the entries of the
matrix. They are numbered with subscripts so that the first index i tells you which
row the entry is in, and the second index j tells you which column it is in.

Examples. [−2 1
1 −2

]
is a 2× 2 matrix

[
1 2 3 4
4 3 2 1

]
is a 2× 4 matrix

[x1 x2 x3 x4 ] is a 1× 4 matrix


x1

x2

x3

x4


 is a 4× 1 matrix

Matrices of various sizes and shapes arise in applications. For example, every
financial spreadsheet involves a matrix, at least implicitly. Similarly, every system
of linear equations has a coefficient matrix.

In computer programming, a matrix is called a 2-dimensional array and the entry
in row i and column j is usually denoted a[i, j] instead of aij . As in programming,
it is useful to think of the entire array as a single entity, so we use a single letter
to denote it

A =




a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . .
...

am1 am2 . . . amn


 .

There are various different special arrangements which play important roles. A
matrix with the same number of rows as columns is called a square matrix. Matrices
of coefficients for systems of linear equations are often square. A 1× 1 matrix

[ a ]

is not logically distinguishable from a number or scalar , so we make no distinction
between the two concepts. A matrix with one row

a = [ a1 a2 . . . an ]
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is called a row vector and a matrix with one column

a =




a1

a2
...

an




is called a column vector.
This terminology requires a bit of explanation. In three dimensional calculus, a

vector is completely determined by its set of components [ v1 v2 v3 ]. Much of
the analysis you encountered in that subject was simplified by using vector notation
v to stand for the vector rather than emphasizing its components. When we wish
to generalize to larger numbers of variables, it is also useful to think of a set of
components

[ v1 v2 . . . vn ]

as constituting a higher dimensional vector v. In this way we can use geometric
insights which apply in two or three dimensions to help guide us—by analogy—
when discussing these more complicated situations. In so doing, there is a formal
difference between specifying the components horizontally, as above, or vertically
as in 


v1

v2
...

vn




but logically speaking the same data is specified. In either case, the entity under
consideration should be viewed as a higher dimensional analogue of a vector. For
technical reasons which will be clear shortly, we shall usually specify such objects
as column vectors.

Matrices are denoted in different ways by different authors. Most people use
ordinary (non-boldface) capital letters, e.g., A,B,X,Q. However, one sometimes
wants to use boldface for row or column vectors, as above, since boldface is com-
monly used for vectors in two and three dimensions and we want to emphasize that
analogy. Since there are no consistent rules about notation, you should make sure
you know when a symbol represents a matrix which is not a scalar.

Matrices may be combined in various useful ways. Two matrices of the same
size and shape are added by adding corresponding entries. You are not allowed to
add matrices with different shapes.

Examples. 
 1 −1

2 1
0 1


 +


 1 1

0 3
−1 −2


 =


 2 0

2 4
−1 −1





 x + y

y
0


 +


−y
−y
x


 =


x

0
x


 .
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The m × n matrix with zero entries is called a zero matrix and is usually just
denoted 0. Since zero matrices with different shapes are not the same, it is some-
times necessary to indicate the shape by using subscripts, as in ‘0mn’, but usually
the context makes it clear which zero matrix is needed. The zero matrix of a given
shape has the property that if you add it to any matrix A of the same shape, you
get the same A again.

Example. [
1 −1 0
2 3 −2

]
+

[
0 0 0
0 0 0

]
=

[
1 −1 0
2 3 −2

]

A matrix may also be multiplied by a scalar by multiplying each entry of the
matrix by that scalar. More generally, we may multiply several matrices with the
same shape by different scalars and add up the result:

c1A1 + c2A2 + · · ·+ ckAk

where c1, c2, . . . , ck are scalars and A1, A2, . . . , Ak are m×n matrices with the same
m and n. This process is called linear combination.

Example.

2




1
0
1
0


 + (−1)




0
1
0
1


 + 3




1
1
1
1


 =




2
0
2
0


 +




0
−1

0
−1


 +




3
3
3
3


 =




5
2
5
2


 .

Sometimes it is convenient to put the scalar on the other side of the matrix, but
the meaning is the same: each entry of the matrix is multiplied by the scalar.

cA = Ac.

We shall also have occasion to consider matrix valued functions A(t) of a scalar
variable t. That means that each entry aij(t) is a function of t. Such functions are
differentiated or integrated entry by entry.

Examples.

d

dt

[
e2t e−t

2e2t −e−t

]
=

[
2e2t −e−t

4e2t e−t

]
∫ 1

0

[
t
t2

]
dt =

[
1/2
1/3

]

There are various ways to multiply matrices. For example, one sometimes multi-
plies matrices of the same shape by multiplying corresponding entries. This is useful
only in very special circumstances. Another kind of multiplication generalizes the
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dot product of vectors. In three dimensions, if a has components [ a1 a2 a3 ] and
b has components [ b1 b2 b3 ], then the dot product a · b = a1b1 + a2b2 + a3b3;
that is, corresponding components are multiplied and the results are added. If

[ a1 a2 . . . an ]

is a row vector of size n, and 


b1

b2
...

bn




is a column vector of the same size n, the row by column product is defined to be
the sum of the products of corresponding entries

[ a1 a2 . . . an ]




b1

b2
...

bn


 = a1b1 + a2b2 + · · ·+ anbn =

n∑
i=1

aibi.

This product is of course a scalar , and except for the distinction between row and
column vectors, it is an obvious generalization of notion of dot product in two or
three dimensions. You should be familiar with its properties.

More generally, let A be an m × n matrix and B an n × p matrix. Then each
row of A has the same size as each column of B. The matrix product AB is defined
to be the m × p matrix with i, j entry the row by column product of the ith row
of A with the jth column of B. Thus, if C = AB, then C has the same number of
rows as A, the same number of columns as B, and

cij =
n∑

r=1

airbrj .

Examples. [
2 1
1 0

]
︸ ︷︷ ︸

2×2

[
1 0 1
−1 2 1

]
︸ ︷︷ ︸

2×3

=
[

2− 1 0 + 2 2 + 1
1− 0 0 + 0 1 + 0

]
︸ ︷︷ ︸

2×3

=
[

1 2 3
1 0 1

]

 1 −1

1 0
2 1




︸ ︷︷ ︸
3×2

[
x
y

]
︸︷︷︸
2×1

=


 x− y

x
2x + y




︸ ︷︷ ︸
3×1

The most immediate use for matrix multiplication is a simplification of the no-
tation used to describe a system of linear equations.
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Consider the system in the previous section

2x1 + 3x2 − 5x3 + 6x4 − x5 = 10
3x1 − 3x2 + 6x3 + x4 − x5 = 2
x1 + x2 − 4x3 + 2x4 + x5 = 5

4x1 − 3x2 + x3 + 6x4 + x5 = 4
2x1 + 3x2 − 5x3 + 6x4 − x5 = 3

If you look closely, you will notice that the expressions on the left are the entries
of a matrix product:




2 3 −5 6 −1
3 −3 6 1 −1
1 1 −4 2 1
4 −3 1 6 1
2 3 −5 6 −1







x1

x2

x3

x4

x5


 =




2x1 + 3x2 − 5x3 + 6x4 − x5

3x1 − 3x2 + 6x3 + x4 − x5

x1 + x2 − 4x3 + 2x4 + x5

4x1 − 3x2 + x3 + 6x4 + x5

2x1 + 3x2 − 5x3 + 6x4 − x5




Note that what appears on the right—although it looks rather complicated—is just
a 5 × 1 column vector. Thus, the system of equations can be written as a single
matrix equation 


2 3 −5 6 −1
3 −3 6 1 −1
1 1 −4 2 1
4 −3 1 6 1
2 3 −5 6 −1







x1

x2

x3

x4

x5


 =




10
2
5
4
3


 .

If we use the notation

A =




2 3 −5 6 −1
3 −3 6 1 −1
1 1 −4 2 1
4 −3 1 6 1
2 3 −5 6 −1


 , x =




x1

x2

x3

x4

x5


 b =




10
2
5
4
3


 ,

then the system can be written even more compactly

Ax = b.

Of course, this notational simplicity hides a lot of real complexity, but it does help
us to think about the essentials of the problem.

More generally, an arbitrary system of m equations in n unknowns has the form




a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . .
...

am1 am2 . . . amn







x1

x2
...

xn


 =




b1

b2
...

bm


 ,
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where

A =




a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . .
...

am1 am2 . . . amn




is the coefficient matrix and

x =




x1

x2
...

xn


 and b =




b1

b2
...

bm


 ,

are column vectors of unknowns and ‘givens’ respectively.
Later in this chapter, we shall investigate systematic methods for solving systems

of linear equations.

Special Operations for Row or Column Vectors. We have already re-
marked that a column vector

v =




v1

v2
...

vn




may be viewed as a generalization of a vector in two or three dimensions. We also
used a generalization of the dot product of two such vectors in defining the matrix
product. In a similar fashion, we may define the length of a row vector or column
vector to be the square root of the sum of the squares of its components. For
example. for

v =




1
2

−3
4


 , we have |v| =

√
12 + 22 + (−3)2 + 42 =

√
30.

Exercises for Section 2.

1. Let

x =


 1

2
−3


 , y =


−2

1
3


 , z =


 1

0
−1


 .

Calculate x + y and 3x− 5y + z.

2. Let

A =




2 7 4 −3
−3 0 1 −2

1 3 −2 3
0 0 5 −5


 , x =




1
−2

3
5


 , y =



−2

2
0
4


 .

Compute Ax, Ay, Ax + Ay, and A(x + y).
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3. Let

A =
[

1 −1 3
0 −2 2

]
, B =


 1 2

1 0
−3 2


 , C =

[−1 1 −3
0 2 −2

]
, D =


−1 −2 0

1 −2 1
2 1 −4


 .

Calculate each of the following quantities if it is defined : A + 3B, A + C, C +
2D, AB,BA,CD,DC.

4. Suppose A is a 2× 2 matrix such that

A

[
1
2

]
=

[
3
1

]
A

[
2
1

]
=

[
6
4

]
.

Find A.

5. Let ei denote the n × 1 column vector, with all entries zero except the ith
which is 1, e.g., for n = 3,

e1 =


 1

0
0


 , e2 =


 0

1
0


 , e3 =


 0

0
1


 .

Let A be an arbitrary m × n matrix. Show that Aei is the ith column of A. You
may verify this just in the case n = 3 and A is 3× 3. That is sufficiently general to
understand the general argument.

6. Write each of the following systems in matrix form.
(a)

2x1 − 3x2 = 2
−4x1 + 2x2 = 3

(b)

2x1 − 3x2 = 4
−4x1 + 2x2 = 1

(c)

x1 + x2 = 1
x2 + x3 = 1

2x1 + 3x2 − x3 = 0

7. (a) Determine the lengths of the following column vectors

u =




1
2
−2
1


 ,v =




1
0
0
−1


 ,w =




0
2
2
0


 .

(b) Are any of these vectors mutually perpendicular?
(c) Find unit vectors proportional to each of these vectors.
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8. One kind of magic square is a square array of numbers such that the sum of
every row and the sum of every column is the same number.

(a) Which of the following matrices present magic squares?

[
1 3
4 2

] 
 1 2 1

2 1 1
1 1 2




(b) Use matrix multiplication to describe the condition that an n× n matrix A
presents a magic square.

9. Population is often described by a first order differential equation of the form
dp

dt
= rp where p represents the population and r is a parameter called the growth

rate. However, real populations are more complicated. For example, human pop-
ulations come in different ages with different fertility. Matrices are used to create
more realistic population models. Here is an example of how that might be done

Assume a human population is divided into 10 age groups between 0 and 99.
Let xi, i = 1, 2, . . . , 10 be the number of women in the ith age group, and consider
the vector x with those components. (For the sake of this exercise, we ignore men.)
Suppose the following table gives the birth and death rates for each age group in
each ten year period.

i Age BR DR
1 0 . . . 9 0 .01
2 10 . . . 19 .01 .01
3 20 . . . 29 .04 .01
4 30 . . . 39 .03 .01
5 40 . . . 49 .01 .02
6 50 . . . 59 .001 .03
7 60 . . . 69 0 .04
8 70 . . . 79 0 .10
9 80 . . . 89 0 .30

10 90 . . . 99 0 1.00

For example, the fourth age group is women age 30 to 39. In a ten year period, we
expect this group to give birth to .03x4 girls, all of whom will be in the first age
group at the beginning of the next ten year period. We also expect .01x4 of them
to die, which tells us something about the value of x5 at the beginning of the next
ten year period.

Construct a 10 × 10 matrix A which incorporates this information about birth
and death rates so that Ax gives the population vector after one ten year period
has elapsed.

Note that Anx keeps track of the population structure after n ten year periods
have elapsed.
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3. Formal Rules

The usual rules of algebra apply to matrices with a few exceptions. Here are
some of these rules and warnings about when they apply.

The associative law
A(BC) = (AB)C

works as long as the shapes of the matrices match. That means that the length of
each row of A must be the same as the length of each column of B and the length
of each row of B must be the same as the length of each column of C. Otherwise,
none of the products in the formula will be defined.

Example 1. Let

A =
[

1 0
−1 1

]
, B =

[
1 1 2
1 −1 0

]
, C =


 3

2
1


 .

Then

AB =
[

1 1 2
0 −2 −2

]
, (AB)C =

[
7
−6

]
,

while

BC =
[

7
1

]
, A(BC) =

[
1 0
−1 1

] [
7
1

]
=

[
7
−6

]
.

Note that this is bit more complicated than the associative law for ordinary numbers
(scalars).

For those who are interested, the proof of the general associative law is outlined
in the exercises.

For each positive integer n, the n× n matrix

I =




1 0 . . . 0
0 1 . . . 0
...

... . . .
...

0 0 . . . 1




is called the identity matrix of degree n. As in the case of the zero matrices, we
get a different identity matrix for each n, and if we need to note the dependence on
n, we shall use the notation In. The identity matrix of degree n has the property
IA = A for any matrix A with n rows and the property BI = B for any matrix B
with n columns.

Example 2. Let

I =


 1 0 0

0 1 0
0 0 1




be the 3× 3 identity matrix. Then, for example,
 1 0 0

0 1 0
0 0 1





 1 3

4 2
−1 6


 =


 1 3

4 2
−1 6
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and [
1 2 3
3 2 1

] 
 1 0 0

0 1 0
0 0 1


 =

[
1 2 3
3 2 1

]
.

The entries of the identity matrix are usually denoted δij . δij = 1 if i = j (the
diagonal entries) and δij = 0 if i 6= j. The indexed expression δij is often called
the Kronecker δ.

The commutative law AB = BA is not generally true for matrix multiplication.
First of all, the products won’t be defined unless the shapes match. Even if the
shapes match on both sides, the resulting products may have different sizes. Thus,
if A is m × n and B is n ×m, then AB is m ×m and BA is n × n. Finally, even
if the shapes match and the products have the same sizes (if both A and B are
n× n), it may still be true that the products are different.

Example 3. Suppose

A =
[

1 0
0 0

]
B =

[
0 0
1 0

]
.

Then

AB =
[

0 0
0 0

]
= 0 BA =

[
0 0
1 0

]
6= 0

so AB 6= BA. Lest you think that this is a specially concocted example, let me
assure you that it is the exception rather than the rule for the commutative law to
hold for a randomly chosen pair of square matrices.

Another rule of algebra which holds for scalars but does not generally hold for
matrices is the cancellation law.

Example 4. Let

A =
[

1 0
0 0

]
B =

[
0 0
1 0

]
C =

[
0 0
0 1

]
.

Then
AB = 0 and AC = 0

so we cannot necessarily conclude from AB = AC that B = C.

The distributive laws

A(B + C) = AB + AC

(A + B)C = AC + BC

do hold as long as the operations are defined. Note however that since the com-
mutative law does not hold in general, the distributive law must be stated for both
possible orders of multiplication.

Another useful rule is

c(AB) = (cA)B = A(cB)
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where c is a scalar and A and B are matrices whose shapes match so the products
are defined.

The rules of calculus apply in general to matrix valued functions except that you
have to be careful about orders whenever products are involved. For example, we
have

d

dt
(A(t)B(t)) =

dA(t)
dt

B(t) + A(t)
dB(t)

dt

for matrix valued functions A(t) and B(t) with matching shapes.
We have just listed some of the rules of algebra and calculus, and we haven’t

discussed any of the proofs. Generally, you can be confident that matrices can
be manipulated like scalars if you are careful about matters like commutativity
discussed above. However, in any given case, if things don’t seem to be working
properly, you should look carefully to see if some operation you are using is valid
for matrices.

Exercises for Section 3.

1. (a) Let I be the 3× 3 identity matrix. What is I2? How about I3, I4, I5, etc.?

(b) Let J =
[

0 1
1 0

]
. What is J2?

2. Find two 2 × 2 matrices A and B such that neither has any zero entries but
such that AB = 0.

3. Let A be an m× n matrix, let x and y be n× 1 column vectors, and let a and
b be scalars. Using the rules of algebra discussed in Section 3, prove

A(ax + by) = a(Ax) + b(Ay).

4. (Optional) Prove the associative law (AB)C = A(BC). Hint: If D = AB,
then dik =

∑n
j=1 aijbjk, and if E = BC then ejr =

∑p
k=1 bjkckr, where A is m×n,

B is n× p, and C is p× q.

5. Verify the following relation

d

dt

[
cos t − sin t
sin t cos t

]
=

[
0 −1
1 0

] [
cos t − sin t
sin t cos t

]
.

4. Linear Systems of Algebraic Equations

We start with a problem you ought to be able to solve from what you learned in
high school

Example 1. Consider the algebraic system

(1)

x1 + 2x2 − x3 = 1
x1 − x2 + x3 = 0

x1 + x2 + 2x3 = 1
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which is a system of 3 equations in 3 unknowns x1, x2, x3. This system may also
be written more compactly as a matrix equation

 1 2 −1
1 −1 1
1 1 2





x1

x2

x3


 =


 1

0
1


 .

The method we shall use to solve (1) is the method of elimination of unknowns.
Subtract the first equation from each of the other equations to eliminate x1 from
those equations.

x1 + 2x2 − x3 = 1
−3x2 + 2x3 = −1
−x2 + 3x3 = 0

Now subtract 3 times the third equation from the second equation.

x1 + 2x2 − x3 = 1
−7x3 = −1

−x2 + 3x3 = 0

which may be reordered to obtain

x1 + 2x2 − x3 = 1
−x2 + 3x3 = 0

7x3 = 1.

We may now solve as follows. According to the last equation x3 = 1/7. Putting
this in the second equation yields

−x2 + 3/7 = 0 or x2 = 3/7.

Putting x3 = 1/7 and x2 = 3/7 in the first equation yields

x1 + 2(3/7)− 1/7 = 1 or x1 = 1− 5/7 = 2/7.

Hence, we get

x1 = 2/7

x2 = 3/7

x3 = 1/7

To check, we calculate
 1 2 −1

1 −1 1
1 1 2





 2/7

3/7
1/7


 =


 1

0
1


 .
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The above example illustrates the general procedure which may be applied to
any system of m equations in n unknowns

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...
am1x1 + am2x2 + · · ·+ amnxn = bm

or, using matrix notation,
Ax = b

with

A =




a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . .
...

am1 am2 . . . amn




x =




x1

x2
...

xn




b =




b1

b2
...

bm


 .

As in Example 1, a sequence of elimination steps yields a set of equations each
involving at least one fewer unknowns than the one above it. This process is called
Gaussian reduction after the famous 19th century German mathematician C. F.
Gauss. To complete the solution, we start with the last equation and substitute back
recursively in each of the previous equations. This process is called appropriately
back-substitution. The combined process will generally lead to a complete solution,
but, as we shall see later, there can be some difficulties.

Row Operations and Gauss-Jordan reduction. Generally a system of m
equations in n unknowns can be written in matrix form

Ax = b

where A is an m×n matrix of coefficients, x is a n× 1 column vector of unknowns
and b is a m× 1 column vector of givens. It turns out to be just about as easy to
study more general systems of the form

AX = B
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where A is an m× n matrix, X is an n× p matrix of unknowns, and B is a known
m × p matrix. Usually, p will be 1, so X and B will be column vectors, but the
procedure is basically the same for any p. For the moment we emphasize the case
in which the coefficient matrix A is square, i.e., m = n, but we shall return later to
the general case (m and n possibly different).

If you look carefully at Example 1, you will see that we employed three basic
types of operations:

(1) adding or subtracting a multiple of one equation from another,
(2) multiplying or dividing an equation by a non-zero scalar,
(3) interchanging two equations.

Translated into matrix notation, these operations correspond to applying the
following operations to the matrices on both sides of the equation AX = B:

(1) adding or subtracting one row of a matrix to another,
(2) multiplying or dividing one row of a matrix by a non-zero scalar,
(3) interchanging two rows of a matrix.

(The rows of the matrices correspond to the equations.)
These operations are called elementary row operations.
An important principle about row operations that we shall use over and over

again is the following: To apply a row operation to a product AX, it suffices to
apply the row operation to A and then to multiply the result by X. It is easy to
convince yourself that this rule is valid by looking at examples.

Example. Suppose

A =
[

1 3
2 4

]
, X =

[
1 2 3
3 2 1

]
.

Apply the operation of adding −2 times the first row of A to the second row of A.[
1 3
2 4

]
→

[
1 3
0 −2

]

and multiply by X to get[
1 3
0 −2

] [
1 2 3
3 2 1

]
=

[
10 8 6
−6 −4 −2

]
.

On the other hand, first compute

AX =
[

1 3
2 4

] [
1 2 3
3 2 1

]
=

[
10 8 6
14 12 10

]

and then add −2 times its first row to its second row to obtain[
10 8 6
14 10 12

]
→

[
10 8 6
−6 −4 −2

]
.

Note that the result is the same by either route.
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If you want to see a general explanation of why this works, see the appendix to
this section.

This suggests a procedure for solving a system of the form

AX = B.

Apply row operations to both sides until we obtain a system which is easy to
solve (or for which it is clear there is no solution.) Because of the principle just
enunciated, we may apply the row operations on the left just to the matrix A and
omit reference to X since that is not changed. For this reason, it is usual to collect
A on the left and B on the right in a so-called augmented matrix

[A |B]

where the ‘|’ (or other appropriate divider) separates the two matrices. We illustrate
this by redoing Example 1, but this time using matrix notation.

Example 1, redone. The system was

x1 + 2x2 − x3 = 1
x1 − x2 + x3 = 0

x1 + x2 + 2x3 = 1

so the augmented matrix is 
 1 2 −1 | 1

1 −1 1 | 0
1 1 2 | 1




We first do the Gaussian part of the reduction using row operations. The row
operations are indicated to the right with the rows that are changed in bold face.

 1 2 −1 | 1
1 −1 1 | 0
1 1 2 | 1


 →


 1 2 −1 | 1

0 −3 2 | −1
1 1 2 | 1


 − 1[row1] + row2

→

 1 2 −1 | 1

0 −3 2 | −1
0 −1 3 | 0


 − 1[row1] + row3

→

 1 2 −1 | 1

0 0 −7 | −1
0 −1 3 | 0


 − 3[row3] + row2

→

 1 2 −1 | 1

0 −1 3 | 0
0 0 −7 | −1


 row3 ↔ row2

Compare this with the previous reduction using equations. We can reconstruct the
corresponding system from the augmented matrix, and, as before, we get

x1 + 2x2 − x3 = 1
−x2 + 3x3 = 0

−7x3 = −1
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Earlier, we applied back-substitution to find the solution. However, it is better
for matrix computation to use an essentially equivalent process. Starting with the
last row, use the leading non-zero entry to eliminate the entries above it. (That
corresponds to substituting the value of the corresponding unknown in the previous
equations.) This process is called Jordan reduction. The combined process is called
Gauss–Jordan reduction. or, sometimes, reduction to row reduced echelon form.


 1 2 −1 | 1

0 −1 3 | 0
0 0 −7 | −1


 →


 1 2 −1 | 1

0 −1 3 | 0
0 0 1 | 1/7


 (1/7)[row3]

→

 1 2 −1 | 1

0 −1 0 | −3/7
0 0 1 | 1/7


 − 3[row3] + row2

→

 1 2 0 | 8/7

0 −1 0 | −3/7
0 0 1 | 1/7


 [row3] + row1

→

 1 0 0 | 2/7

0 −1 0 | −3/7
0 0 1 | 1/7


 2[row2] + row1

→

 1 0 0 | 2/7

0 1 0 | 3/7
0 0 1 | 1/7


 − 1[row2]

This corresponds to the system


 1 0 0

0 1 0
0 0 1


 X =


 2/7
−3/7

1/7


 or X = IX =


 2/7
−3/7

1/7




which is the desired solution: x1 = 2/7, x2 = −3/7, x3 = 1/7.

Here is another similar example.

Example 2.

x1 + x2 − x3 = 0
2x1 + x3 = 2
x1 − x2 + 3x3 = 1

or


 1 1 −1

2 0 1
1 −1 3





x1

x2

x2


 =


 0

2
1
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Reduce the augmented matrix as follows.
 1 1 −1 | 0

2 0 1 | 2
1 −1 3 | 1


 →


 1 1 −1 | 0

0 −2 3 | 2
1 −1 3 | 1


 − 2[r1] + [r2]

→

 1 1 −1 | 0

0 −2 3 | 2
0 −2 4 | 1


 − [r1] + [r3]

→

 1 1 −1 | 0

0 −2 3 | 2
0 0 1 | −1


 − [r2] + [r3]

This completes the Gaussian reduction. Now continue with the Jordan reduction.
 1 1 −1 | 0

0 −2 3 | 2
0 0 1 | −1


 →


 1 1 −1 | 0

0 −2 0 | 5
0 0 1 | −1


 − 3[r3] + [r2]

→

 1 1 0 | −1

0 −2 0 | 5
0 0 1 | −1


 [r3] + [r1]

→

 1 1 0 | −1

0 1 0 | −5/2
0 0 1 | −1


 − (1/2)[r2]

→

 1 0 0 | −3/2

0 1 0 | −5/2
0 0 1 | −1


 − [r2] + [r1]

This corresponds to the system
 1 0 0

0 1 0
0 0 1


 X =


−3/2
−5/2
−1


 or X = IX =


−3/2
−5/2
−1




which is the desired solution: x1 = −3/2, x2 = −5/2, x3 = −1. (Check it by
plugging back into the original matrix equation.)

The strategy is clear. Use the sequence of row operations as indicated above
to reduce the coefficient matrix A to the identity matrix I. If this is possible, the
same sequence of row operations will transform the matrix B to a new matrix B′,
and the corresponding matrix equation will be

IX = B′ or X = B′.

It is natural at this point to conclude that X = B′ is the solution of the original
system, but there is a subtle problem with that. As you may have learned in high
school, the process of solving an equation or a system of equations may introduce
extraneous solutions. These are not actually solutions of the original equations,
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but are introduced by some algebraic manipulation along the way. In particular, it
might be true that the original system AX = B has no solutions, and the conclusion
X = B′ is an artifact of the process. The best we conclude from the above logic
is the following: if there is a solution, and if it is possible to reduce A to I by a
sequence of row operations, then the solution is X = B′. That is, if a solution
exists, it is unique, i.e., there is only one solution. To see that the solution must
be unique, argue as follows. Suppose there were two solutions X and Y . Then we
would have

AX = B

AY = B.

Subtraction would then yield

A(X − Y ) = 0 or AZ = 0 where Z = X − Y.

However, we could apply our sequence of row operations to the equation AZ = 0
to obtain IZ = 0 since row operations have no effect on the zero matrix. Thus, we
would conclude that Z = X − Y = 0 or X = Y .

How about the question of whether or not there is a solution in the first place?
Of course, in any given case, we can simply check that X = B′ is a solution by
substituting B′ for X in AX = B and seeing that it works. However, this relies on
knowing A and B explicitly. So, it would be helpful if we had a general argument
which assured us that X = B′ is a solution when the reduction is possible. (Among
other things, we could skip the checking process if we were sure we did all the
arithmetic correctly.)

To understand why X = B′ definitely is a solution, we need another argument.
First note that every possible row operation is reversible. Thus, to reverse the effect
of adding a multiple of one row to another, just subtract the same multiple of the
first row from the (modified) second row. To reverse the effect of multiplying a
row by a non-zero scalar, just multiply the (modified) row by the reciprocal of that
scalar. Finally, to reverse the effect of interchanging two rows, just interchange them
back. Hence, the effect of any sequence of row operations on a system of equations
is to produce an equivalent system of equations. Anything which is a solution of
the initial system is necessarily a solution of the transformed system and vice-versa.
Thus, the system AX = B is equivalent to the system X = IX = B′, which is to
say X = B′ is a solution of AX = B.

Appendix. Elementary Matrices and the Effect of Row Operations
on Products. Each of the elementary row operations may be accomplished by
multiplying by an appropriate square matrix on the left. Such matrices of course
should have the proper size for the matrix being multiplied.

To add c times the jth row of a matrix to the ith row (with i 6= j), multiply
that matrix on the left by the matrix Eij(c) which has diagonal entries 1, the i, j-
entry c, and all other entries 0. This matrix may also be obtained by applying the
specified row operation to the identity matrix. You should try out a few examples
to convince yourself that it works.
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Example. For n = 3,

E13(−4) =


 1 0 −4

0 1 0
0 0 1


 .

To multiply the ith row of a matrix by c 6= 0, multiply that matrix on the left
by the matrix Ei(c) which has diagonal entries 1 except for the i, i-entry which is
c and which has all other entries zero. Ei(c) may also be obtained by multiplying
the ith row of the identity matrix by c.

Example. For n = 3,

E2(6) =


 1 0 0

0 6 0
0 0 1


 .

To interchange the ith and jth rows of a matrix, with i 6= j, multiply by the
matrix on the left by the matrix Eij which is obtained from the identity matrix by
interchanging its ith and jth rows. The diagonal entries of Eij are 1 except for its
i, i, and j, j-entries which are zero. Its i, j and j, i-entries are both 1, and all other
entries are zero.

Examples. For n = 3,

E12 =


 0 1 0

1 0 0
0 0 1


 E13 =


 0 0 1

0 1 0
1 0 0


 .

Matrices of the above type are called elementary matrices.
The fact that row operations may be accomplished by matrix multiplication by

elementary matrices has many important consequences. Thus, let E be an elemen-
tary matrix corresponding to a certain elementary row operation. The associative
law tells us

E(AX) = (EA)X

as long as the shapes match. However, E(AX) is the result of applying the row
operation to the product AX and (EA)X is the result of applying the row oper-
ation to A and then multiplying by X. This establishes the important principle
enunciated earlier in this section and upon which Gauss-Jordan reduction is based.
A row operation on a product AX may be accomplished by first applying that row
operation to A and then multiplying the result by X.

Exercises for Section 4.

1. Solve each of the following systems by Gauss-Jordan elimination if there is a
solution.

(a)

x1 + 2x2 + 3x3 = 4
3x1 + x2 + 2x3 = −1
x1 + x3 = 0
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(b)

x1 + 2x2 + 3x3 = 4
2x1 + 3x2 + 2x3 = −1

x1 + x2 − x3 = 10

(c) 


1 1 −2 3
2 1 0 1
1 −1 1 0
3 1 2 1







x1

x2

x3

x4


 =




9
−18
−9

9


 .

2. Use Gaussian elimination to solve

[
3 2
2 1

]
X =

[
0 1
1 0

]

where X is an unknown 2× 2 matrix.

3. Solve each of the following matrix equations

(a)
[

1 2
1 2

]
X =

[
0 1
1 0

]
(b)


 1 0 1

0 1 1
1 1 0


X =


 1 0

0 1
2 1




4. What is the effect of multiplying a 2× 2 matrix A on the right by the matrix

E =
[

1 a
0 1

]
?

What general rule is this a special case of? (E is a special case of an elementary
matrix, as discussed in the Appendix.)

5. (Optional) Review the material in the Appendix on elementary matrices. Then
calculate


 1 0 1

0 1 0
0 0 1





 1 0 0
−1 1 0

0 0 1





 0 1 0

1 0 0
0 0 1





 2 0 0

0 1 0
0 0 1





 1 2 3

4 5 6
7 8 9


 .

Hint: Use the row operations suggested by the first four matrices.
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5. Singularity, Pivots, and Invertible Matrices

Let A be a square coefficient matrix. Gauss-Jordan reduction will work as in-
dicated in the previous section if A can be reduced by a sequence of elementary
row operations to the identity matrix I. A square matrix with this property is
called non-singular or invertible. (The reason for the latter terminology will be
clear shortly.) If it cannot be so reduced, it is called singular. Clearly, there are
singular matrices. For example, the matrix equation[

1 1
1 1

] [
x1

x2

]
=

[
1
0

]

is equivalent to the system of 2 equations in 2 unknowns

x1 + x2 = 1
x1 + x2 = 0

which is inconsistent and has no solution. Thus Gauss-Jordan reduction certainly
can’t work on its coefficient matrix.

To understand how to tell if a square matrix A is non-singular or not, we look
more closely at the Gauss-Jordan reduction process. The basic strategy is the
following. Start with the first row, and use type (1) row operations to eliminate all
entries in the first column below the 1, 1-position. A leading non-zero entry of a
row, when used in this way, is called a pivot. There is one problem with this course
of action: the leading non-zero entry in the first row may not be in the 1, 1-position.
In that case, first interchange the first row with a succeeding row which does have
a non-zero entry in the first column. (If you think about it, you may still see a
problem. We shall come back to this and related issues later.)

After the first reduction, the coefficient matrix will have been transformed to a
matrix of the form 


p1 ∗ . . . ∗
0 ∗ . . . ∗
...

... . . .
...

0 ∗ . . . ∗




where p1 is the (first) pivot. We now do something mathematicians (and computer
scientists) love: repeat the same process for the submatrix consisting of the second
and subsequent rows. If we are fortunate, we will be able to transform A ultimately
by a sequence of elementary row operations into matrix of the form




p1 ∗ ∗ . . . ∗
0 p2 ∗ . . . ∗
0 0 p3 . . . ∗
...

...
... . . .

...
0 0 0 . . . pn




with pivots on the diagonal and nonzero-entries in those pivot positions. (Such a
matrix is also called an upper triangular matrix because it has zeroes below the
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diagonal.) If we get this far, we are bound to succeed. Start in the lower right hand
corner and apply the Jordan reduction process. In this way each entry above the
pivots on the diagonal may be eliminated. We obtain this way a diagonal matrix


p1 0 0 . . . 0
0 p2 0 . . . 0
0 0 p3 . . . 0
...

...
... . . .

...
0 0 0 . . . pn




with non-zero entries on the diagonal. We may now finish off the process by applying
type (2) operations to the rows as needed and finally obtain the identity matrix I
as required.

The above analysis makes clear that the placement of the pivots is what is
essential to non-singularity. What can go wrong? Let’s look at an example.

Example 1.
 1 2 −1

1 2 0
1 2 −2


 →


 1 2 −1

0 0 1
0 0 −1


 clear 1st column

→

 1 2 0

0 0 1
0 0 0


 no pivot in 2, 2 position

Note that the last row consists of zeroes.

The general case is similar. It may happen for a given row that the leading
non-zero entry is not in the diagonal position, and there is no way to remedy this
by interchanging with a subsequent row. In that case, we just do the best we can.
We use a pivot as far to the left as possible (after suitable row interchange with a
subsequent row where necessary). In the extreme case, it may turn out that the
submatrix we are working with consists only of zeroes, and there are no possible
pivots to choose, so we stop. For a singular square matrix, this extreme case must
occur, since we will run out of pivot positions before we run out of rows. Thus,
the Gaussian reduction will still transform A to an upper triangular matrix A′, but
some of the diagonal entries will be zero and some of the last rows (perhaps only
the last row) will consist of zeroes. That is the singular case.

We showed in the previous section that if the n × n matrix A is non-singular,
then every equation of the form AX = B (where both X and B are n×p matrices)
does have a solution and also that the solution X = B′ is unique. On the other
hand, if A is singular , an equation of the form AX = B may have a solution, but
there will certainly be matrices B for which AX = B has no solutions. This is best
illustrated by an example.

Example 2. Consider the system
 1 2 −1

1 2 0
1 2 −2


x = b
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where x and b are 3 × 1 column vectors. Without specifying b, the reduction of
the augmented matrix for this system would follow the scheme

 1 2 −1 | b1

1 2 0 | b2

1 2 −2 | b3


 →


 1 2 −1 | ∗

0 0 1 | ∗
0 0 −1 | ∗


 →


 1 2 0 | b′1

0 0 1 | b′2
0 0 0 | b′3


 .

Now simply choose b′3 = 1 (or any other non-zero value), so the reduced system is
inconsistent. (Its last equation would be 0 = b′3 6= 0.) Since, the two row operations
may be reversed, we can now work back to a system with the original coefficient
matrix which is also inconsistent. (Check in this case that if you choose b′1 = 0, b′2 =
1, b′3 = 1, then reversing the operations yields b1 = −1, b2 = 0, b3 = −1.)

The general case is completely analogous. Suppose

A → · · · → A′

is a sequence of elementary row operations which transforms A to a matrix A′ for
which the last row consists of zeroes. Choose any n × p matrix B′ for which the
last row does not consist of zeroes. Then the equation

A′X = B′

cannot be valid since the last row on the left will necessarily consist of zeroes. Now
reverse the row operations in the sequence which transformed A to A′. Let B be
the effect of this reverse sequence on B′.

A ← · · · ← A′

B ← · · · ← B′

Then the equation
AX = B

cannot be consistent because the equivalent system A′X = B′ is not consistent.
We shall see later that when A is a singular n × n matrix, if AX = B has a

solution X for a particular B, then it has infinitely many solutions.
There is one unpleasant possibility we never mentioned. It is conceivable that

the standard sequence of elementary row operations transforms A to the identity
matrix, so we decide it is non-singular, but some other bizarre sequence of elemen-
tary row operations transforms it to a matrix with some rows consisting of zeroes,
in which case we should decide it is singular. Fortunately this can never happen
because singular matrices and non-singular matrices have diametrically opposed
properties. For example, if A is non-singular then AX = B has a solution for every
B, while if A is singular, there are many B for which AX = B has no solution.
This fact does not depend on the method we use to find solutions.

Inverses of Non-singular Matrices. Let A be a non-singular n× n matrix.
According to the above analysis, the equation

AX = I

(where we take B to be the n × n identity matrix I) has a unique n × n solution
matrix X = B′. This B′ is called the inverse of A, and it is usually denoted A−1.
That explains why non-singular matrices are also called invertible.
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Example 3. Consider

A =


 1 0 −1

1 1 0
1 2 0




To solve AX = I, we reduce the augmented matrix [A | I].
 1 0 −1 | 1 0 0

1 1 0 | 0 1 0
1 2 0 | 0 0 1


 →


 1 0 −1 | 1 0 0

0 1 1 | −1 1 0
0 2 1 | −1 0 1




→

 1 0 −1 | 1 0 0

0 1 1 | −1 1 0
0 0 −1 | 1 −2 1




→

 1 0 −1 | 1 0 0

0 1 1 | −1 1 0
0 0 1 | −1 2 −1




→

 1 0 0 | 0 2 −1

0 1 0 | 0 −1 1
0 0 1 | −1 2 −1


 .

(You should make sure you see which row operations were used in each step.) Thus,
the solution is

X = A−1 =


 0 2 −1

0 −1 1
−1 2 −1


 .

Check the answer by calculating

A−1A =


 0 2 −1

0 −1 1
−1 2 −1





 1 0 −1

1 1 0
1 2 0


 =


 1 0 0

0 1 0
0 0 1


 .

There is a subtle point about the above calculations. The matrix inverse X =
A−1 was derived as the unique solution of the equation AX = I, but we checked it
by calculating A−1A = I. The definition of A−1 told us only that AA−1 = I. Since
matrix multiplication is not generally commutative, how could we be sure that the
product in the other order would also be the identity I? The answer is provided
by the following tricky argument. Let Y = A−1A. Then

AY = A(A−1A) = (AA−1)A = IA = A

so that Y is the unique solution of the equation AY = A. However, Y = I is also
a solution of that equation, so we may conclude that A−1A = Y = I. The upshot
is that for a non-singular square matrix A, we have both AA−1 = I and A−1A = I.

The existence of matrix inverses for non-singular square matrices suggests the
following scheme for solving matrix equations of the form

AX = B.
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First, find the matrix inverse A−1, and then take X = A−1B. This is indeed the
solution since

AX = A(A−1B) = (AA−1)B = IB = B.

However, as easy as this looks, one should not be misled by the formal algebra. The
only method we have for finding the matrix inverse is to apply Gauss-Jordan reduc-
tion to the augmented matrix [A | I]. If B has fewer than n columns, then applying
Gauss-Jordan reduction directly to [A |B] would ordinarily involve less computa-
tion that finding A−1. Hence, it is usually the case that applying Gauss-Jordan
reduction to the original system of equations is the best strategy. An exception
to this rule is where we have one common coefficient matrix A and many different
matrices B, or perhaps a B with a very large number of columns. In that case, it
seems as though it would make sense to find A−1 first. However, there is a varia-
tion of Gauss-Jordan reduction called the LU decomposition, that is more efficient
and avoids the necessity for calculating the inverse and multiplying by it. See the
appendix to this section for a brief discussion of the LU decomposition.

A Note on Strategy. The methods outlined in this and the previous section
call for us first to reduce the coefficient matrix to one with zeroes below the diagonal
and pivots on the diagonal. Then, starting in the lower right hand corner , we use
each pivot to eliminate the non-zero entries in the column above the pivot. Why
is it important to start at the lower right and work backwards? For that matter,
why not just clear each column above and below the pivot as we go? There is a
very good reason for that. We want to do as little arithmetic as possible. If we
clear the column above the rightmost pivot first, then nothing we do subsequently
will affect the entries in that column. Doing it in some other order would require
lots of unnecessary arithmetic in that column. For a system with two or three
unknowns, this makes little difference. However, for large systems, the number of
operations saved can be considerable. Issues like this are specially important in
designing computer algorithms for solving systems of equations.

Numerical Considerations in Computation. The examples we have chosen
to illustrate the principles employ small matrices for which one may do exact arith-
metic. The worst that will happen is that some of the fractions may get a bit messy.
In real applications, the matrices are often quite large, and it is not practical to
do exact arithmetic. The introduction of rounding and similar numerical approx-
imations complicates the situation, and computer programs for solving systems of
equations have to deal with problems which arise from this. If one is not careful
in designing such a program, one can easily generate answers which are very far
off, and even deciding when an answer is sufficiently accurate sometimes involves
rather subtle considerations. Typically, one encounters problems for matrices in
which the entries differ radically in size. Also, because of rounding, few matrices
are ever exactly singular since one can never be sure that a very small numerical
value at a potential pivot would have been zero if the calculations had been done
exactly. On the other hand, it is not surprising that matrices which are close to
being singular can give computer programs indigestion.

In practical problems on a computer, the organization and storage of data can
also be quite important. For example, it is usually not necessary to keep the old
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entries as the reduction proceeds. It is important, however, to keep track of the
row operations. The memory locations which become zero in the reduction process
are ideally suited for storing the relevant information to keep track of the row oper-
ations. (The LU factorization method is well suited to this type of programming.)

If you are interested in such questions, there are many introductory texts which
discuss numerical linear algebra. Two such are Introduction to Linear Algebra by
Johnson, Riess, and Arnold and Applied Linear Algebra by Noble and Daniel.

Appendix. The LU Decomposition. If one needs to solve many equations
of the form Ax = b with the same A but different bs, we noted that one could first
calculate A−1 by Gauss-Jordan reduction and then calculate A−1b. However, it is
more efficient to store the row operations which were performed in order to do the
Gaussian reduction and then apply these to the given b by another method which
does not require a time consuming matrix multiplication. This is made precise by
a formal decomposition of A as a product in a special form.

First assume that A is non-singular and that the Gaussian reduction of A can
be done in the usual systematic manner starting in the upper left hand corner, but
without using any row interchanges. We will illustrate the method by an example,
and save an explanation for why it works for later. Let

A =


 1 0 1

1 2 1
−2 3 4


 .

Proceed with the Gaussian reduction while at the same time storing the inverses
of the row operations which were performed. In practice in a computer program,
the operation (or actually its inverse) is stored in the memory location containing
the entry which is no longer needed, but we shall indicate it more schematically.
We start with A on the right and the identity matrix on the left.

 1 0 0
0 1 0
0 0 1





 1 0 1

1 2 1
−2 3 4


 .

Now apply the first row operation to A on the right. Add −1 times the first row
to the second row. At the same time put +1 in the 2, 1 entry in the matrix on the
left. (Note that this is not a row operation, we are just storing the important part
of the inverse of the operation just performed, i.e., the multiplier.)

 1 0 0
1 1 0
0 0 1





 1 0 1

0 2 0
−2 3 4


 .

Next add 2 times the first row to the third row of the matrix on the right and store
a −2 in the 3, 1 position of the matrix on the left.

 1 0 0
1 1 0

−2 0 1





 1 0 1

0 2 0
0 3 6


 .
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Now multiply the second row of the matrix on the right by
1
2
, and store a 2 in the

2, 2 position in the matrix on the left.
 1 0 0

1 2 0
−2 0 1





 1 0 1

0 1 0
0 3 6


 .

Next add −3 times the second row to the third row of the matrix on the right and
store a 3 in the 3, 2 position of the matrix on the left.

 1 0 0
1 2 0

−2 3 1





 1 0 1

0 1 0
0 0 6


 .

Finally, multiply the third row of the matrix on the right by
1
6

and store 6 in the
3, 3 position of the matrix on the left.

 1 0 0
1 2 0

−2 3 6





 1 0 1

0 1 0
0 0 1


 .

The net result is that we have stored the row operations (or rather their inverses)
in the matrix

L =


 1 0 0

1 2 0
−2 3 6




on the left and we have by Gaussian reduction reduced A to the matrix

U =


 1 0 1

0 1 0
0 0 1


 .

on the right. Note that L is a lower triangular matrix and U is an upper triangular
matrix with ones on the diagonal . Also,

LU =


 1 0 0

1 2 0
−2 3 6





 1 0 1

0 1 0
0 0 1


 =


 1 0 1

1 2 1
−2 3 4


 = A.

A = LU is called the LU decomposition of A. We shall see below why this worked,
but let’s see how we can use it to solve a system of the form Ax = b. Using the
decomposition, we may rewrite this LUx = b. Put y = Lx, and consider the
system Ly = b. To be explicit take

b =


 1

1
2
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so the system we need to solve is
 1 0 0

1 2 0
−2 3 6





 y1

y2

y2


 =


 1

1
2


 .

But this system is very easy to solve. We may simply use Gaussian reduction
(Jordan reduction being unnecessary) or equivalently we can use what is called
forward substitution. as below:

y1 = 1

y2 =
1
2
(1− y1) = 0

y3 =
1
6
(2 + 2y1 − 3y2) =

2
3
.

So the intermediate solution is

y =


 1

0
2/3


 .

Now we need only solve Ux = y or
 1 0 1

0 1 0
0 0 1





x1

x2

x3


 = y =


 1

0
2/3


 .

To do this, either we may use Jordan reduction or equivalently, what is usually
done, back substitution.

x3 =
2
3

x2 = 0− 0x3 = 0

x1 = 1− 0x2 − 1x3 =
1
3
.

So the solution we obtain finally is

x =


 1/3

0
2/3


 .

You should check that this is actually a solution of the original system.
Note that all this would have been silly had we been interested just in solving the

single system Ax = b. In that case, Gauss-Jordan reduction would have sufficed,
and it would not have been necessary to store the row operations in the matrix L.
However, if we had many such equations to solve with the same coefficient matrix
A, we would save considerable time by having saved the important parts of the row
operations in L. And unlike the inverse method, forward and back substitution
eliminate the need to multiply any matrices.
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Why the LU decomposition method works. Assume as above, that A
is non-singular and can be reduced in the standard order without any row inter-
changes. Recall that each row operation may be accomplished by pre-multiplying
by an appropriate elementary matrix. Let Eij(c) be the elementary matrix which
adds c times the ith row to the jth row, and let Ei(c) be the elementary matrix
which multiplies the ith row by c. Then in the above example, the Gaussian part
of the reduction could be described schematically by

A → E12(−1)A → E13(2)E12(−1)A → E2(1/3)E13(2)E12(−1)A

→ E23(−3)E2(1/3)E13(2)E12(−1)A

→ E3(1/6)E23(−3)E2(1/3)E13(2)E(12(−1)A = U

where

U =


 1 0 1

0 1 0
0 0 1




is the end result of the Gaussian reduction and is upper triangular with ones on
the diagonal. To get the LU decomposition of A, simply multiply the left hand
side of the last equation by the inverses of the elementary matrices, and remember
that the inverse of an elementary matrix is a similar elementary matrix with the
scalar replaced by its negative for type one operations or its reciprocal for type two
operations. So

A = E12(1)E13(−2)E2(3)E23(3)E3(6)U = LU

where L is just the product of the elementary matrices to the left of A. Because we
have been careful of the order in which the operations were performed, all that is
necessary to compute this matrix, is to place the indicated scalar in the indicated
position. Nothing that is done later can effect the placement of the scalars done
earlier, So L ends up being the matrix we derived above.

The case in which switching rows is required. In many cases, Gaussian
reduction cannot be done without some row interchanges, To see how this affects
the procedure, imagine that the row interchanges are not actually done as needed,
but the pivots are left in the rows they happen to appear in. This will result in a
matrix which is a permuted version of a matrix in Gauss reduced form. We may
then straighten it out by applying the row interchanges at the end.

Here is how to do this in actual practice. We illustrate it with an example. Let

A =


 0 0 1

1 1 1
2 0 4


 .

We apply Gaussian reduction, writing over each step the appropriate elementary
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matrix which accomplishes the desired row operation.
 0 0 1

1 1 1
2 0 4


 E12−→


 1 1 1

0 0 1
2 0 4


 E13(−2)−→


 1 1 1

0 0 1
0 −2 2




E23−→

 1 1 1

0 −2 2
0 0 1




E2(−1/2)−→

 1 1 1

0 1 −1
0 0 1




.

Note that two of the steps involved row interchanges: Pre-multiplication by E12

switches rows one and two and E23 switches rows two and three. Do these row
interchanges to the original matrix

E23E12A =


 1 1 1

2 0 4
0 0 1


 .

Let Q = E23E12, and now apply the LU decomposition procedure to QA as de-
scribed above. No row interchanges will be necessary, and we get

QA =


 1 1 1

2 0 4
0 0 1


 =


 1 0 0

2 −2 0
0 0 1





 1 1 1

0 1 −1
0 0 1


 = LU

where

L =


 1 0 0

2 −2 0
0 0 1


 and U =


 1 1 1

0 1 −1
0 0 1




are respectively lower triangular and upper triangular with ones on the diagonal.
Now multiply by

P = Q−1 = (E12)−1(E23)−1 = E12E23 =


 0 0 1

1 0 0
0 1 0


 .

We obtain
A = PLU

Here is a brief description of the process. First do the Gaussian reduction noting
the row interchanges required. Then apply those to the original matrix and find its
LU decomposition. Finally apply the same row interchanges in the opposite order
to the identity matrix to obtain P . Then A = PLU . The matrix P has the property
that each row and each column has precisely one nonzero entry which is one. It is
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obtained by an appropriate permutation of the rows of the identity matrix. Such
matrices are called permutation matrices.

Once one has the decomposition A = PLU , one may solve systems of the form
Ax = b by methods similar to that described above, except that there is also a
permutation of the unknowns required.

Note. If you are careful, you can recover the constituents of L and U from the
original Gaussian elimination, if you apply permutations of indices at the interme-
diate stages.

Exercises for Section 5.

1. In each of the following cases, find the matrix inverse if one exists. Check your
answer by multiplication.

(a)


 1 −1 −2

2 1 1
2 2 2




(b)


 1 4 1

1 1 2
1 3 1




(c)


 1 2 −1

2 3 3
4 7 1




(d)




2 2 1 1
−1 1 −1 0

1 0 1 2
2 2 1 2




2. Let A =
[

a b
c d

]
, and suppose detA = ad− bc 6= 0. Show that

A−1 =
1

ad− bc

[
d −b

−c a

]
.

Hint: It is not necessary to ‘find’ the solution by applying Gauss–Jordan reduction.
You were told what it is. All you have to do is show that it works, i.e., that it
satisfies the defining condition for an inverse.

Just compute AA−1 and see that you get I.
Note that this formula is probably the fastest way to find the inverse of a 2× 2

matrix. In words, you do the following: interchange the diagonal entries, change
the signs of the off diagonal entries, and divide by the determinant ad − bc. Un-
fortunately, there no rule for n × n matrices, even for n = 3, which is quite so
simple.

3. Let A and B be invertible n×n matrices. Show that (AB)−1 = B−1A−1. Note
the reversal of order! Hint: As above, if you are given a candidate for an inverse,
you needn’t ‘find’ it; you need only check that it works.
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4. In the general discussion of Gauss-Jordan reduction, we assumed for simplicity
that there was at least one non-zero entry in the first column of the coefficient
matrix A. That was done so that we could be sure there would be a non-zero entry
in the 1, 1-position (after a suitable row interchange) to use as a pivot. What if the
first column consists entirely of zeroes? Does the basic argument (for the singular
case) still work?

5. (a) Solve each of the following systems by any method you find convenient.

x1 + x2 = 2.0000
1.0001x1 + x2 = 2.0001

x1 + x2 = 2.0000
1.0001x1 + x2 = 2.0002

(b) You should notice that although these systems are very close together, the
solutions are quite different. Can you see some characteristic of the coefficient
matrix which might suggest a reason for expecting trouble?

6. Below, do all your arithmetic as though you were a calculator which can only
handle four significant digits. Thus, for example, a number like 1.0001 would have
to be rounded to 1.000. (a) Solve

.0001x1 + x2 = 1
x1 − x2 = 0.

by the standard Gauss-Jordan approach using the given 1, 1 position as pivot.
Check your answer by substituting back in the original equations. You should be
surprised by the result.

(b) Solve the same system but first interchange the two rows, i.e., choose the
original 2, 1 position as pivot. Check your answer by substituting back in the
original equations.

7. Find the LU decomposition of the matrix A =


 1 2 1

1 4 1
2 3 1


. Use forward and

back substitution to solve the system
 1 2 1

1 4 1
2 3 1


x =


 1

0
1


 .

Also solve the system directly by Gauss Jordan reduction and compare the results
in terms of time and effort.

6. Gauss-Jordan Reduction in the General Case

Gauss-Jordan reduction works just as well if the coefficient matrix A is singular
or even if it is not a square matrix. Consider the system

Ax = b
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where the coefficient matrix A is an m×n matrix. The method is to apply elemen-
tary row operations to the augmented matrix

[A |b] → · · · → [A′ |b′]

making the best of it with the coefficient matrix A. We may not be able to transform
A to the identity matrix, but we can always pick out a set of pivots, one in each
non-zero row, and otherwise mimic what we did in the case of a square non-singular
A. If we are fortunate, the resulting system A′x = b′ will have solutions.

Example 1. Consider
 1 1 2
−1 −1 1

1 1 3





x1

x2

x3


 =


 1

5
3


 .

Reduce the augmented matrix as follows
 1 1 2 | 1
−1 −1 1 | 5

1 1 3 | 3


 →


 1 1 2 | 1

0 0 3 | 6
0 0 1 | 2


 →


 1 1 2 | 1

0 0 3 | 6
0 0 0 | 0




This completes the ‘Gaussian’ part of the reduction with pivots in the 1, 1 and 2, 3
positions, and the last row of the transformed coefficient matrix consists of zeroes.
Let’s now proceed with the ‘Jordan’ part of the reduction. Use the last pivot to
clear the column above it.

 1 1 2 | 1
0 0 3 | 6
0 0 0 | 0


 →


 1 1 2 | 1

0 0 1 | 2
0 0 0 | 0


 →


 1 1 0 | −3

0 0 1 | 2
0 0 0 | 0




and the resulting augmented matrix corresponds to the system

x1 + x2 = −3
x3 = 2
0 = 0

Note that the last equation could just as well have read 0 = 6 (or some other
non-zero quantity) in which case the system would be inconsistent and not have a
solution. Fortunately, that is not the case in this example. The second equation
tells us x3 = 2, but the first equation only gives a relation x1 = −3 − x2 between
x1 and x2. That means that the solution has the form

x =


x1

x2

x3


 =


−3− x2

x2

2


 =


−3

0
2


 + x2


−1

1
0




where x2 can have any value whatsoever. We say that x2 is a free variable, and the
fact that it is arbitrary means that there are infinitely many solutions. x1 and x3

are called bound variables. Note that the bound variables are in the pivot positions.
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It is instructive to reinterpret this geometrically in terms of vectors in space.
The original system of equations may be written

x1 + x2 + 2x3 = 1
−x1 − x2 + x3 = 5
x1 + x2 + 3x3 = 3

which are equations for 3 planes in space. Here we are using x1, x2, x3 to denote
the coordinates instead of the more familiar x, y, z. Solutions

x =


 x1

x2

x3




correspond to points lying in the common intersection of those planes. Normally,
we would expect three planes to intersect in a single point. That would have been
the case had the coefficient matrix been non-singular. However, in this case the
planes intersect in a line, and the solution obtained above may be interpreted as
the vector equation of that line. If we put x2 = s and rewrite the equation using
the vector notation you are familiar with from your course in vector calculus, we
obtain

x = 〈−3, 0, 2〉+ s〈−1, 1, 0〉.

You should recognize this as the line passing through the endpoint of the vector
〈−3, 0, 3〉 and parallel to the vector 〈−1, 1, 0〉.

Example (1) illustrates many features of the general procedure. Gauss–Jordan
reduction of the coefficient matrix is always possible, but the pivots don’t always
end up on the diagonal . In any case, the Jordan part of the reduction will yield a
1 in each pivot position with zeroes elsewhere in the column containing the pivot.
The position of a pivot in a row will be on the diagonal or to its right, and all
entries in that row to the left of the pivot will be zero. Some of the entries to the
right of the pivot may be non-zero.

If the number of pivots is smaller than the number of rows (which will always
be the case for a singular square matrix), then some rows of the reduced coefficient
matrix will consist entirely of zeroes. If there are non-zero entries in those rows to
the right of the divider in the augmented matrix , the system is inconsistent and has
no solutions.

Otherwise, the system does have solutions. Such solutions are obtained by writ-
ing out the corresponding system, and transposing all terms not associated with the
pivot position to the right side of the equation. Each unknown in a pivot position is
then expressed in terms of the non-pivot unknowns (if any). The pivot unknowns
are said to be bound. The non-pivot unknowns may be assigned any value and are
said to be free.
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The vector space Rn. As we saw in Example 1, it is helpful to visualize
solutions geometrically. Thus although there were infinitely many solutions, we
saw we could capture all the solutions by means of a single parameter s. Thus, it
makes sense to describe the set of all solutions as being ‘one dimensional’, in the
same sense that we think of a line as being one dimensional. We would like to be
able to use such geometric visualization for general systems. To this end, we have
to generalize our notion of ‘space’ and ‘geometry’.

Let Rn denote the set of all n× 1 column vectors


x1

x2
...

xn


 .

Here the R indicates that the entries are supposed to be real numbers. (As men-
tioned earlier, we could just as well have considered the set of all 1×n row vectors.)
Thus, for n = 1, R1 consists of all 1 × 1 matrices or scalars and as such can be
identified with the number line. Similarly, R2 may be identified with the usual
coordinate plane, and R3 with space. In making this definition, we hope to encour-
age you to think of R4,R5, etc. as higher dimensional analogues of these familiar
geometric objects. Of course, we can’t really visualize such things geometrically,
but we can use the same algebra that works for n = 1, 2, or 3, and we can proceed
by analogy.

For example, as we noted in Section 2, we can define the length |v| of a column
vector as the square root of the sum of the squares of its components, and we
may define the dot product u · v of two such vectors as the sum of products of
corresponding components. The vectors are said to be perpendicular if they are
not zero and their dot product is zero. These are straight forward generalizations
of the corresponding notions in R2 and R3.

As another example, we can generalize the notion of plane as follows. In R3, the
graph of a single linear equation

a1x1 + a2x2 + a3x3 = b

is a plane. Hence, by analogy, we call the ‘graph’ in R4 of

a1x1 + a2x2 + a3x3 + a4x4 = b

a hyperplane.

Example 2. Consider the system

x1 + 2x2 − x3 = 0
x1 + 2x2 + x3 + 3x4 = 0

2x1 + 4x2 + 3x4 = 0

which can be rewritten in matrix form

(1)


 1 2 −1 0

1 2 1 3
2 4 0 3







x1

x2

x3

x4


 =


 0

0
0


 .
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Reducing the augmented matrix yields
 1 2 −1 0 | 0

1 2 1 3 | 0
2 4 0 3 | 0


 →


 1 2 −1 0 | 0

0 0 2 3 | 0
0 0 2 3 | 0


 →


 1 2 −1 0 | 0

0 0 2 3 | 0
0 0 0 0 | 0




→

 1 2 −1 0 | 0

0 0 1 3/2 | 0
0 0 0 0 | 0


 →


 1 2 0 3/2 | 0

0 0 1 3/2 | 0
0 0 0 0 | 0


 .

(Note that since there are zeroes to the right of the divider, we don’t have to worry
about possible inconsistency in this case.) The system corresponding to the reduced
augmented matrix is

x1 + 2x2 + (3/2)x4 = 0

x3 + (3/2)x4 = 0
0 = 0

Thus,

x1 = −2x2 − (3/2)x4

x3 = − 3(/2)x4

with x1 and x3 bound and x2 and x4 free. A general solution has the form

x =




x1

x2

x3

x4


 =



−2x2 − (3/2)x4

x2

− (3/2)x4

x4


 =



−2x2

x2

0
0


 +



−(3/2)x4

0
−(3/2)x4

x4




x = x2



−2

1
0
0


 + x4



−3/2

0
−3/2

1




where the free variables x2 and x4 can assume any value. The bound variables x1

and x3 are then determined.
This solution may also be interpreted geometrically in R4. The original set of

equations may be thought of as determining a ‘graph’ which is the intersection
of three hyperplanes (each defined by one of the equations.) Note also that each
of these hyperplanes passes through the origin since the zero vector is certainly a
solution. Introduce two vectors (using vector calculus notation)

v1 = 〈−2, 1, 0, 0〉
v2 = 〈−3/2, 0,−3/2, 1〉

in R4. Note that neither of these vectors is a multiple of the other. Hence, we may
think of them as spanning a (2-dimensional) plane in R4. Putting s1 = x2 and
s2 = x4, we may express the general solution vector as

x = s1v1 + s2v2,
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so the solution set of the system (1) may be identified with the plane spanned by
{v1,v2}. Of course, we can’t hope to actually draw a picture of this.

Make sure you understand the procedure used in the above examples to express
the general solution vector x entirely in terms of the free variables. We shall use it
quite generally.

Any system of equations with real coefficients may be interpreted as defining a
locus in Rn, and studying the structure—in particular, the dimensionality—of such
a locus is something which will be of paramount concern.

Example 3. Consider 


1 2
1 0

−1 1
2 0


[

x1

x2

]
=




1
5

−7
10


 .

Reducing the augmented matrix yields


1 2 | 1
1 0 | 5

−1 1 | −7
2 0 | 10


 →




1 2 | 1
0 −2 | 4
0 3 | −6
0 −4 | 8


 →




1 2 | 1
0 −2 | 4
0 0 | 0
0 0 | 0




→




1 2 | 1
0 1 | −2
0 0 | 0
0 0 | 0


 →




1 0 | 5
0 1 | −2
0 0 | 0
0 0 | 0




which is equivalent to

x1 = 5
x2 = −2.

Thus the unique solution vector is

x =
[

5
−2

]
.

Geometrically, what we have here is four lines in the plane which happen to intersect
in the common point with coordinates (5,−2).

Rank and Nullity. These examples and the preceding discussion lead us to
certain conclusions about a system of the form

Ax = b

where A is an m× n matrix, x is an n× 1 column vector of unknowns, and b is an
m× 1 column vector that is given.

The number r of pivots of A is called the rank of A, and clearly it plays an
crucial role. It is the same as the number of non-zero rows at the end of the Gauss-
Jordan reduction since there is exactly one pivot in each non-zero row. The rank is
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certainly not greater than either the number of rows m or the number of columns
n of A.

If m = n, i.e., A is a square matrix, then A is non-singular when its rank is n
and it is singular when its rank is smaller than n.

More generally, suppose A is not square, i.e., m 6= n. In this case, if the rank r
is smaller than the number of rows m, then there are column vectors b in Rm for
which the system Ax = b does not have any solutions. The argument is basically
the same as for the case of a singular square matrix. Transform A by a sequence
of elementary row operations to a matrix A′ with its last row consisting of zeroes,
choose b′ so that A′x = b′ is inconsistent, and reverse the operations to find an
inconsistent Ax = b.

If for a given b in Rm, the system Ax = b does have solutions, then the unknowns
x1, x2, . . . , xn may be partitioned into two sets: r bound unknowns and n− r free
unknowns. The bound unknowns are expressed in terms of the free unknowns. The
number n− r of free unknowns is sometimes called the nullity of the matrix A. If
the nullity n − r > 0, i.e., n > r, then (if there are any solutions at all) there are
infinitely many solutions.

Systems of the form
Ax = 0

are called homogeneous. Example 2 is a homogeneous system. Gauss-Jordan reduc-
tion of a homogeneous system always succeeds since the matrix b′ obtained from
b = 0 is also zero. If m = n, i.e., the matrix is square, and A is non-singular, the
only solution is 0, but if A is singular, i.e., r < n, then there are definitely non-zero
solutions since there are some free unknowns which can be assigned non-zero values.
This rank argument works for any m and n: if r < n, then there are definitely non-
zero solutions for the homogeneous system Ax = 0. One special case of interest is
m < n. Since r ≤ m, we must have r < n in that case. That leads to the following
important principle: a homogeneous system of linear algebraic equations for which
there are more unknowns than equations always has some non-trivial solutions.

Note that the nullity n − r of A measures the ‘number’ of solutions of the ho-
mogeneous system Ax = 0 in the sense that it tells us the number of free variables
in a general solution. (Of course, it plays a similar role for a general system, but
only if it is consistent, i.e., it has solutions.) This explains the etymology of the
term ‘nullity’. It measures the ease with which multiplication by A can transform
a vector x in Rn to the zero vector in Rm.

Pseudo-inverses. (This section is not essential for what follows. ) It some
applications, one needs to try to find ‘inverses’ of non-square matrices. Thus, if A
is a m× n matrix, one might need to find an n×m matrix A′ such that

AA′ = I the m×m identity.

Such an A′ would be called a right pseudo-inverse. Similarly, an n×m matrix A′′

such that
A′′A = I the n× n identity

is called a left pseudo-inverse.
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Example. Let A =
[

1 1 0
0 1 1

]
. To find a right pseudo-inverse, we try to solve

[
1 1 0
0 1 1

]
X =

[
1 0
0 1

]

for the unknown 3×2 matrix X. Apply Gauss–Jordan reduction to the augmented
matrix [

1 1 0 | 1 0
0 1 1 | 0 1

]
→

[
1 0 −1 | 1 −1
0 1 1 | 0 1

]
.

The corresponding system is

[
1 0 −1
0 1 1

]
 x11 x12

x21 x22

x31 x32


 =

[
1 −1
0 1

]
.

This may be written out explicitly as

x11 − x31 = 1 x12 − x32 = −1
x21 + x31 = 0 x22 + x32 = 1

Here x31 and x32 play the roles of free variables, and the other variables are bound.
If we put both of these equal to zero, we obtain x11 = 1, x12 = −1, x21 = 0, x22 = 1.
Thus, a right pseudo-inverse for A is

A′ = X =


 1 −1

0 1
0 0


 .

You should check that AA′ = I. Of course, there are infinitely many other solutions
obtained by letting x31 and x32 assume other values.

Note that

A′A =


 1 −1

0 1
0 0


 [

1 1 0
0 1 1

]
=


 1 0 −1

0 1 1
0 0 0




which is definitely not the 3× 3 identity matrix. So A′ is not a left pseudo-inverse
for A.

If m < n, i.e., A has fewer rows than columns, then no left pseudo-inverse is
possible. Similarly, if m > n, i.e., A has more rows than columns, then no right
pseudo-inverse is possible.

We shall prove the second statement. Suppose we could find an n ×m matrix
A′ such that AA′ = I (the m × m identity matrix). Then for any m × 1 column
vector b, x = A′b is a solution of Ax = b since

Ax = A(A′b) = (AA′)b = Ib = b.

On the other hand, we know that since m > n ≥ r, we can always find a b such
that Ax = b does not have a solution.
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On the other hand, if m < n and the rank of A is m (which is as large as it can
get in any case), then it is always possible to find a right pseudo-inverse. To see
this, let

X =




x11 x12 . . . x1m

x21 x22 . . . x2m
...

... . . .
...

xn1 xn2 . . . xnm




and consider the matrix equation

AX = I.

It may be viewed as m separate equations of the form

Ax =




1
0
...
0


 , Ax =




0
1
...
0


 , . . . , Ax =




0
0
...
1


 ,

one for each column of I. Since r = m, each of these equations has a solution. (In
fact it will generally have infinitely many solutions.)

Exercises for Section 6.

1. In each of the following cases, apply the Gauss-Jordan reduction process to
find the complete solution, if one exists. As in the text, the answer should express
the solution x as a ‘particular solution’ (possibly zero) plus a linear combination of
‘basic vectors’ with the free unknowns (if any) as coefficients.

(a)


 1 −6 −4

3 −8 −7
−2 2 3





 x1

x2

x3


 =


−3
−5

2


.

(b)




1 2
3 1
4 3
2 −1


 [

x1

x2

]
=




1
2
3
1


.

(c)




1 −2 2 1
1 −2 1 2
3 −6 4 5
1 −2 3 0







x1

x2

x3

x4


 =




6
4

14
8


.

2. What is wrong with the following reduction and the ensuing logic?[
1 1 1 | 1
1 2 2 | 1

]
→

[
1 1 1 | 1
0 1 1 | 0

]
.

The equivalent system is

x1 + x2 + x3 = 1
x2 + x3 = 0

which yields the general solution x1 = 1− x2 − x3, x2 = −x3.
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3. Find a general solution vector of the system Ax = 0 where

(a) A =


 1 0 1 2

2 −1 1 0
−1 4 −1 −2


 (b) A =


 1 3 4 0 2

2 7 6 1 1
4 13 14 1 3




4. Consider the vectors

u =



−1

0
1
0


 , v =




1
1
0
1




in R4. If these were vectors in R3, we could use the formula

cos θ =
u · v
|u||v|

to determine the angle θ between the two vectors. In R4, we can’t of course talk
directly about angles in the geometric sense we are familiar with, but we can still
use the above formula to define the angle between the two vectors. In this example,
find that angle.

5. What is the rank of the coefficient matrix for each of the matrices in the
previous problem.

6. What is the rank of each of the following matrices?
 1 1 1

1 2 3
4 5 6


 ,


 1 2 3 4

0 0 0 0
0 0 0 0


 ,




1
2
3
4




7. Let A be an m × n matrix with m < n, and let r be its rank. Which of the
following is always true, sometimes true, never true?

(a) r ≤ m < n. (b) m < r < n. (c) r = m. (d) r = n. (e) r < m. (f) r = 0.

8. (a) A system Ax = b with A an m × n matrix of rank r will always have
solutions if m = r. Explain.

(b) It will not have solutions for some choices of b if r < m. Explain.

9. How do you think the rank of a product AB compares to the rank of A? Is
the former rank always ≤, ≥, or = the latter rank? Try some examples, make a
conjecture, and see if you can prove it. Hint: Look at the number of rows of zeroes
after you reduce A completely to A′. Could further reduction transform A′B to a
matrix with more rows of zeroes?

10. (Optional) Find a right pseudo-inverse A′ for

A =
[

1 1 2
2 1 1

]
.

Note that there are infinitely many answers to this problem. You need only find
one, but if you are ambitious, you can find all of them. Is there a left pseudo-inverse
for A. If there is find one, if not explain why not.
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11. (Optional) If A is an m × n matrix with m > n (more rows that columns),
we showed in the text that there can be no right pseudo-inverse A′ for A. How can
we use this fact to conclude that if m < n (fewer rows than columns), there is no
left pseudo-inverse for A?

7. Homogeneous Systems and Vector Subspaces

As mentioned in the previous section, a system of equations of the form

Ax = 0

is called homogeneous. (The ‘b’ for such a system consists of zeroes.) A system of
the form

Ax = b

where b 6= 0 is called inhomogeneous. Every inhomogeneous system has an associ-
ated homogeneous system, and the solutions of the two systems are closely related.
To see this, review the example from the previous section

 1 1 2
−1 −1 1

1 1 3





x1

x2

x3


 =


 1

5
3


 .

We showed that its general solution has the form

(1) x =


−3

0
2


 + x2


−1

1
0


 ,

where x2 is free and may assume any value. On the other hand, it is easy to check
that the homogeneous system

 1 1 2
−1 −1 1

1 1 3





x1

x2

x3


 =


 0

0
0




has the general solution

(2) x = x2


−1

1
0


 ,

where x2 is also free. (You should go back and verify that for yourself, which should
be easy since the Gauss-Jordan reduction is exactly the same; the only difference
is that you have zeroes to the right of the vertical bar.) A close reading of (1) and
(2) is informative. First note that if we set x2 = 0 in (1), we obtain the specific
solution 

−3
0
2
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and then the remaining part of the solution is a general solution (2) of the homo-
geneous equation.

The phenomenon illustrated above is part of a general principle. You can always
find a general solution of an inhomogeneous linear system by adding one particular
solution to a general solution of the corresponding homogeneous system. The reason
for this is fairly clear algebraically. Let x0 denote the particular solution of the
inhomogeneous equation and let x denote any other solution. Then we have

Ax = b

Ax0 = b

which simply asserts that both are solutions. Now subtract

Ax−Ax0 = b− b = 0.

However, since Ax−Ax0 = A(x− x0), this yields

A(x− x0) = 0

from which we conclude that z = x− x0 is a solution of the homogeneous system.
Transposition yields

x = x0︸︷︷︸
par. sol.

+ z︸︷︷︸
hom. sol.

.

Vector Subspaces. Because of the above remarks, homogeneous systems play
a specially important role, so we want to concentrate on the solution sets of such
systems. Let A be an m×n matrix. The set of all solutions x of the homogeneous
system Ax = 0 is called the null space of A. Notice that the null space of an m×n
matrix is a subset of Rn.

Null spaces have an important property which we now discuss.
A non-empty subset V of Rn is called a vector subspace if it has the property

that any linear combination of vectors in V is also in V . In symbols, if u and v are
vectors in V , and a and b are scalars, then au + bv is also a vector in V .

In two and three dimensions, the subsets which are subspaces are pretty much
what you would expect. In R2 any line through the origin is a subspace, but lines
not through the origin are not. The diagram below indicates why.

O

Line not through origin Line through origin

O
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Also, curves are not vector subspaces. (See the exercises at the end of the section).
In R3 any line through the origin is also a subspace and lines not through the origin
are not. Similarly, planes through the origin are vector subspaces, but other planes
are not, and of course curves or curved surfaces are not.

There is one slightly confusing point about the way we use this terminology.
The entire set Rn is considered a subset of itself, and it certainly has the desired
property, so it is considered a vector subspace of itself.

It is not hard to see that the zero vector must be in every vector subspace W .
Indeed, just pick any two vectors u and v in W—v could even be a multiple of u.
Then 0 = (0)u + (0)v, the linear combination with both scalars a = b = 0, must
also be in W . The upshot is that any set which does not contain the zero vector
cannot be a vector subspace.

The set consisting only of the zero vector 0 has the desired property—any linear
combination of zero with itself is also zero. Hence, that set is also a vector subspace,
called the zero subspace.

The term ‘subspace’ is sometimes used more generally to refer to any subset of
Rn. Hence the adjective ‘vector’ is crucial. Sometimes people use the term ‘linear
subspace’ instead.

There are two ways vector subspaces come about. First of all, as noted above,
they arise as null spaces, i.e., as solution sets of homogeneous systems Ax = 0.
That is the main reason we are interested in them. To see why a null space satisfies
the definition, suppose u and v are both solutions of Ax = 0. That is, Au = 0 and
Av = 0. Then

A(au + bv) = A(au) + A(bv) = aAu + bAv = a0 + b0 = 0.

So any linear combination of solutions is again a solution and is again in the null
space of A.

There is another related way in which vector subspaces arise, and this will play
an important role in analyzing solutions of linear systems. Recall the homogeneous
system

(2)


 1 2 −1 0

1 2 1 3
2 4 0 3







x1

x2

x3

x4


 =


 0

0
0


 .

discussed in the previous section. We saw that its null space consists of all vectors
of the form

x2



−2

1
0
0


 + x4



−3/2

0
−3/2

0




as the free scalars x2 and x4 range over all possible values. Let

v1 =



−2

1
0
0


 v2 =



−3/2

0
−3/2

0


 .



7. HOMOGENEOUS SYSTEMS AND VECTOR SUBSPACES 49

Then, what we have discovered is that the solution set or null space consists of
all linear combinations of the set {v1,v2} of vectors. This is a much more useful
way of presenting the answer, since we specify it in terms of a small number of
objects—in this case just two. Since the null space itself is infinite, this simplifies
things considerably.

In general, suppose W is a vector subspace of Rn and {v1,v2, . . . ,vk} is a finite
subset of W . We say that {v1,v2, . . . ,vn} is a spanning set for W (or more simply
that it spans W ) if each vector v in W can be expressed as a linear combination

v = s1v1 + s2v2 + · · ·+ skvk,

for appropriate scalars s1, s2, . . . , sk. The simplest case of this is when k = 1, i.e.,
the spanning set consists of a single vector v. Then the subspace spanned by this
vector is just the set of all sv with s an arbitrary scalar. If v 6= 0, this set is just
the line through the origin containing v.

Example. Consider the set of solutions x in R4 of the single homogeneous
equation

x1 − x2 + x3 − 2x4 = 0.

This is the null space of the 1× 4 matrix

A = [ 1 −1 1 −2 ] .

The matrix is already reduced with pivot 1 in the 1, 1-position. The general solution
is

x1 = x2 − x3 + 2x4 x2, x3, x4 free,

and the general solution vector is

x =




x2 − x3 + 2x4

x2

x3

x4


 = x2




1
1
0
0


 + x3



−1

0
1
0


 + x4




2
0
0
1


 .

It follows that the null space is spanned by


v1 =




1
1
0
0


 , v2 =



−1

0
1
0


 , v3 =




2
0
0
1





 .

This is a special case of a more general principle: Gauss-Jordan reduction for a
homogeneous system always results in a description of the null space as the vector
subspace spanned by a finite set of basic solution vectors . We shall elaborate a bit
more on this principle in the next section.
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Exercises for Section 7.

1. What is the general solution of the equation x1 − 2x2 + x3 = 4? Express
it as the sum of a particular solution plus the general solution of the equation
x1 − 2x2 + x3 = 0.

2. Determine if each of the following subsets of R3 is a vector subspace of R3. If
it is not a subspace, explain what fails.

(a) The set of all x =


 x1

x2

x3


 such that 2x1 − x2 + 4x3 = 0.

(b) The set of all x =


x1

x2

x3


 such that 2x1 − x2 + 4x3 = 3.

(c) The set of all x =


x1

x2

x3


 such that x1

2 + x2
2 − x3

2 = 1.

(d) The set of all x of the form x =


 1 + 2t
−3t
2t


 where t is allowed to assume any

real value.

(e) The set of all x of the form x =


 s + 2t

2s− 3t
s + 2t


 where s and t are allowed to

assume any real values.

3. Let L1 and L2 be two distinct lines through the origin in R2. Is the set S
consisting of all vectors pointing along one or the other of these two lines a vector
subspace of R2?

4. Let

u1 =


 1

1
0


 and u2 =


 0

1
3


 .

What is the subspace of R3 spanned by these two vectors? Describe it another way.

5. (a) What is the subspace of R3 spanned by the set


v1 =


 1

1
2


 , v2 =


 1

0
1


 , v3 =


 2

1
3





?

(b) What is the subspace of R3 spanned by


v1 =


 0

1
1


 , v2 =


 1

1
2


 , v3 =


 1

2
3





?
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6. (a) Find a spanning set for the plane in R3 through the origin defined by the
equation x1 − 2x2 + 5x3 = 0. Check that each element of your spanning set is
perpendicular to the normal vector with components 〈1,−2, 5〉.

(b) Find a spanning set for the line in R2 through the origin defined by the
equation x1 + x2 = 0.

8. Linear Independence, Bases, and Dimension

Let V be a vector subspace of Rn. If V is not the zero subspace, it will have
infinitely many elements, but it turns out that it is always possible to specify V as
the subspace spanned by some finite subset {v1,v2, . . . ,vk} of elements of V . (If
you are curious why, see the appendix to this section where it is proved.)

When doing this, we want to make sure that we don’t have any superfluous
vectors in the set {v1,v2, . . . ,vk}.

Example 1. Let

v1 =


 1

2
4


 , v2 =


 1

2
3


 .

The subspace of R3 spanned by these two vectors is a plane through the origin.

Neither of these vectors is superfluous since if you omit either, what you get is the
line through the origin containing the other. You don’t get the entire plane.

Consider instead the vectors

v1 =


 1

2
4


 , v2 =


 2

4
8


 .
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In this case, the second vector is twice the first vector. Hence, for any linear
combination, we have

s1v1 + s2v2 = s1v1 + s2(2v1) = (s1 + 2s2)v1.

If we put s = s1 + 2s2, then s also ranges over all possible scalars as s1 and s2 do,
so the subspace in fact consists of all

sv1,

that is, it is a line through the origin. Thus, the vector v2 may be dropped.
Similarly, we could have kept v2 and eliminated v1 since v1 = (1/2)v2. In any
case, one of the two vectors is superfluous.

In order to deal with the issue of superfluous vectors in a spanning set, we
introduce an important new concept. Let {v1,v2, . . . ,vk} be a non-empty set of
vectors in Rn, not all of which are zero. Such a set is called linearly independent if
no element of the set can be expressed as a linear combination of the other elements
in the set. For a set {v1,v2} with two vectors, this is the same as saying that neither
vector is a scalar multiple of the other. For a set {v1,v2,v3} with three elements
it means that no relation of any of the following forms is possible:

v1 = a2v2 + a3v3

v2 = b1v1 + b3v3

v3 = c1v1 + c2v2.

The opposite of ‘linearly independent’ is ‘linearly dependent’. Thus, in a linearly
dependent set, there is at least one vector which is expressible as a linear combi-
nation of the others. It is important to note that linear independence and linear
dependence are properties of the entire set, not the individual vectors in the set.

Example 2. Consider the set consisting of the following four vectors in R4.

v1 =




1
0
0
0


 , v2 =




1
−1
0
0


 , v3 =




0
1
0
0


 , v4 =




0
1
1
−1


 .

This set is not linearly independent since

(1) v2 = v1 − v3.

Thus, any element in the subspace spanned by {v1,v2,v3,v4} can be rewritten

c1v1 + c2v2 + c3v3 + c4v4 = c1v1 + c2(v1 − v3) + c3v3 + c4v4

= (c1 + c2)v1 + (c3 − c2)v3 + c4v4

= c′1v1 + c′3v3 + c4v4.
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On the other hand, if we delete the element v2, the set consisting of the vectors

v1 =




1
0
0
0


 , v3 =




0
1
0
0


 , v4 =




0
1
1
−1


 .

is linearly independent. To see this, just look carefully at the pattern of zeroes.
For example, v1 has first component 1, and the other two have first component 0,
so v1 could not be a linear combination of v2 and v3. Similar arguments eliminate
the other two possible relations.

In the above example, we could just as well have written

v1 = v2 + v3

and eliminated v1 from the spanning set without loss. In general, there are many
possible ways to delete superfluous vectors from a spanning set.

There are a couple of slightly confusing points about the definition of linear
independence. First, the set {v} consisting of a single nonzero vector v is linearly
independent . (For, there aren’t any other vectors in the set which could be linear
combinations of it.) The set {0} consisting only of the zero vector is not covered by
the definition, but, for technical reasons, we specify that it is linearly dependent .
Also, for technical reasons, we specify that the empty set, that is, the set with no
vectors, is linearly independent.

Bases. Let V be a vector subspace of Rn. A subset {v1,v2, . . . ,vk} of V which
spans it and is also linearly independent is called a basis for V .

A simple example of a basis is the set
e1 =


 1

0
0


 , e2 =


 0

1
0


 , e3 =


 0

0
1







which is a basis for R3. (These vectors are usually called i, j, and k in three
dimensional vector algebra. They are the unit vectors pointing along the coordinate
axes.) To see that this set is linearly independent, notice that the pattern of ones
and zeroes precludes one of them being expressible as a linear combination of the
others. Each is one where the others are zero. To see that the set spans R3, note
that we can write any vector x in R3 as

x =


 x1

x2

x3


 =


x1

0
0


 +


 0

x2

0


 +


 0

0
x3




= x1


 1

0
0


 + x2


 0

1
0


 + x3


 0

0
1


 = x1e1 + x2e2 + x3e3.

In general, let ei be the vector in Rn with all entries zero except the ith entry
which is one. (One may also describe this vector as the ith column of the n × n
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identity matrix.) Then, arguing as above, it is not hard to see that {e1, e2, . . . , en}
is a basis for Rn. It is called the standard basis for Rn.

There are many other bases for Rn. Indeed, it turns out that any linearly
independent set in Rn with n elements is necessarily a basis for Rn. (See the
Appendix below for an explanation.)

It is more interesting, perhaps, to consider bases for proper subspaces of Rn.
Many algorithms for solving linear problems in mathematics and its applications
yield bases.

Let A be an m×n matrix, and let W be null space of A, i.e., the solution space
in Rn of the homogeneous system Ax = 0. The Gauss-Jordan reduction method
always generates a basis the for null space W . We illustrate this with an example.
(You should also go back and look at Example 2 in Section 6.)

Example 3. Consider


 1 1 0 3 −1

1 1 1 2 1
2 2 1 5 0







x1

x2

x3

x4

x5


 = 0.

To solve it, apply Gauss-Jordan reduction
 1 1 0 3 −1 | 0

1 1 1 2 1 | 0
2 2 1 5 0 | 0


 →


 1 1 0 3 −1 | 0

0 0 1 −1 2 | 0
0 0 1 −1 2 | 0




→

 1 1 0 3 0 | 0

0 0 1 −1 2 | 0
0 0 0 0 0 | 0


 .

The last matrix is fully reduced with pivots in the 1, 1 and 2, 3 positions. The
corresponding system is

x1 + x2 + 3x4 = 0
x3 − x4 + 2x5 = 0

with x1, x3 bound and x2, x4, and x5 free. Expressing the bound variables in terms
of the free variables yields

x1 = −x2 − 3x4

x3 = + x4 − 2x5.

The general solution vector, when expressed in terms of the free variables, is

x =




x1

x2

x3

x4

x5


 =



−x2 − 3x4

x2

x4 − 2x5

x4

x5


 =



−x2

x2

0
0
0


 +



−3x4

0
x4

x4

0


 +




0
0

−2x5

0
x5




= x2



−1

1
0
0
0


 + x4



−3

0
1
1
0


 + x5




0
0

−2
0
1


 .
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If we put

v1 =



−1

1
0
0
0


 , v2 =



−3

0
1
1
0


 , v3 =




0
0

−2
0
1


 ,

and c1 = x2, c2 = x4, and c3 = x5, then the general solution takes the form

x = c1v1 + c2v2 + c3v3

where the scalars c1, c2, c3 (being new names for the free variables) can assume
any values. Also, the set {v1,v2,v3} is linearly independent. This is clear for the
following reason. Each vector is associated with one of the free variables and has a
1 in that position where the other vectors necessarily have zeroes. Hence, none of
the vectors can be linear combinations of the others. It follows that {v1,v2,v3} is
a basis for the null space.

The above example illustrates all the important aspects of the solution process
for a homogeneous system

Ax = 0.

We state the important facts about the solution without going through the general
proofs since they are just the same as what we did in the example but with a lot
more confusing notation. The general solution has the form

x = s1v1 + s2v2 + · · ·+ skvk

where v1,v2, . . . ,vk are basic solutions obtained by successively setting each free
variable equal to 1 and the other free variables equal to zero. s1, s2 . . . , sk are just
new names for the free variables. The set {v1,v2, . . . ,vk} is linearly independent
because of the pattern of ones and zeroes at the positions of the free variables, and
since it spans the null space, it is a basis for the null space of A.

The dimension of the null space of A is the nullity of A, i.e., it is the number of
free variables in the solution of the homogeneous system Ax = 0.

There are some special cases which are a bit confusing. First, if k = 1, the basis
consists of a single vector v1, and the set of solutions consists of all multiples of that
vector. A much more confusing case is that in which the spanning set is the empty
set , i.e., the set with no elements. That would arise if the zero solution were the
unique solution of the homogeneous system, so there would be no free variables and
no basic solutions. This is dealt with as follows. First, as noted earlier, the empty
set is linearly independent by convention. Second, again by convention, every linear
combination of no vectors is set to zero. It follows that the empty set spans the
zero subspace {0}, and is a basis for it.

Let V be a vector subspace of Rn. If V has a basis {v1,v2, . . . ,vk} with k
elements, then we say that V is k-dimensional. That is, the dimension of a vector
subspace is the number of elements in a basis.

Not too surprisingly, for the extreme case V = Rn, the dimension is n. For, the
standard basis {e1, e2, . . . , en} has n elements.
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In this chapter we have defined the concept dimension only for vector subspaces
or Rn, but the notion is considerably more general. For example, a plane in R3

should be considered two dimensional even if it doesn’t pass through the origin.
Also, a surface in R3, e.g., a sphere or hyperboloid, should also be considered two
dimensional. (People are often confused about curved objects because they seem
to extend in extra dimensions. The point is that if you look at a small part of
a surface, it normally looks like a piece of a plane, so it has the same dimension.
Also, a surface can usually be represented parametrically with only two parameters.)
Mathematicians have developed a very general theory of dimension which applies to
almost any type of set. In cosmology, one envisions the entire universe as a certain
type of four dimensional object. Certain bizarre sets can even have a fractional
dimension, and that concept is useful in what is called ‘chaos’ theory.

Coordinates. Let V be a subspace of Rn and suppose {v1,v2, . . . ,vk} is a
basis for V . Suppose v is any vector of V . Then

v = s1v1 + s2v2 + · · ·+ skvk

for appropriate coefficients s1, s2, . . . , sk. The coefficients s1, s2, . . . , sk in such a
linear combination are unique, and are called the coordinates of the vector v with
respect to the basis. We illustrate this with an example which shows how to find
coordinates and why they are unique.

Example 4. Consider the plane V in R3 spanned by the linearly independent
pair of vectors

v1 =


 1

2
4


 , v2 =


 1

1
3




and consider the vector

v =


 1

3
5


 .

If v is in V , then it can be written

v = s1v1 + s2v2 = s1


 1

2
4


 + s2


 1

1
3


 =


 1

2
4


 s1 +


 1

1
3


 s2.

Here, we have rewritten the linear combination with the scalars on the right. The
advantage of so doing is that we may re-express it as a matrix product. Namely,

 1
2
4


 s1 +


 1

1
3


 s2 =


 s1 + s2

2s1 + s2

4s1 + 3s2


 =


 1 1

2 1
4 3


[

s1

s2

]
.

Hence, asking if v = v1s1 + v2s2 amounts to asking if
 1

3
5


 =


 1 1

2 1
4 3


 [

s1

s2

]
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has a solution s1, s2. This is a system of 3 equations in two unknowns (with the
‘given’ vector on the left instead of as usual on the right). It may be solved by
Gauss-Jordan reduction as follows.

 1 1 | 1
2 1 | 3
4 3 | 5


 →


 1 1 | 1

0 −1 | 1
0 −1 | 1


 →


 1 0 | 2

0 1 | −1
0 0 | 0


 .

Thus, it has the unique solution s1 = 2, s2 = −1. Thus,[
2

−1

]

is the coordinate vector giving the coordinates of v with respect to this basis, i.e.,
v can be written uniquely

v = 2v1 − v2 = v1(2) + v2(−1) = [v1 v2 ]
[

2
−1

]
.

.

There are a couple of points about the above example which merit some discus-
sion. First, had the system not had a solution, that would just have meant that
the vector v was not in fact in the subspace spanned by {v1,v2}. Second, the
solution was unique because the rank was as large as possible, in this case two,
and there were no free variables. If the rank had been smaller than two, then the
corresponding homogeneous system

v1s1 + v2s2 = [v1 v2 ]
[

s1

s2

]
= 0

would necessarily have had non-zero solutions. However, any such solution with
say s2 6= 0, would have allowed us to express

v2 = −v1
s1

s2

which would contradict the linear independence of the basis.
The general case is similar. If {v1,v2, . . . ,vk} is a basis for the subspace V of

Rn, then v is in this subspace if and only if the system

v = [v1 v2 . . . vk ]




s1

s2
...

sk




has a solution. (Note that the ‘given’ vector v is on the left rather than on the
right as usual.) The coefficient matrix [v1 v2 . . . vk ] is an n× k matrix with
columns the elements of the basis. It is necessarily of largest possible rank k, and the
solution of the system is unique. Otherwise, the corresponding homogeneous system
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would have non-trivial solutions and that would contradict the linear independence
of the basis.

Given a basis for a vector subspace V , one may think of the elements of the basis
as unit vectors pointing along coordinate axes for V . The coordinates with respect
to the basis then are the coordinates relative to these axes. The case V = Rn is
specially enlightening. Implicitly at least one starts in Rn with the standard basis
consisting of the vectors

e1 =


 1

...
0


 , . . . , en =


 0

...
1


 .

However, there are many other possible bases for Rn which might be useful in
some applications. The axes associated with such a basis need not be mutually
perpendicular, and also the units of length along these axes may differ.

Appendix. Some subtleties. We discuss here some of the subtleties of the
theory. This should be of interest to mathematics majors and some others who
enjoy theory, but it is not essential for understanding the subject matter.

First, we explain why any linearly independent subset {v1,v2, . . . ,vn} with ex-
actly n elements is necessarily a basis for Rn. Namely, we saw that the linear
independence of the set assures us that the n× n matrix

[v1 v2 . . .vn ]

has rank n. Hence, it follows from our general theory that

v = [v1 v2 . . .vn ]




s1

s2
...

sn




will have a solution 


s1

s2
...

sn




for every v in Rn. That is, every vector in Rn is expressible as a linear combination
of {v1,v2, . . . ,vn}.

Next, we investigate some subtle points involved in the definition of dimension.
Invariance of dimension.
The dimension of V is the number of elements in a basis for V , but it is at least

conceivable that two different bases have different numbers of elements. If that
were the case, V would have two different dimensions, and that does not square
with our idea of how such words should be used.

In fact it can never happen that two different bases have different numbers of
elements. To see this, we shall prove something slightly different. Suppose V has a
basis with k elements. We shall show that
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any linearly independent subset of V has at most k elements.
This would suffice for what we want because if we had two bases one with k and

the other with m elements, either could play the role of the basis and the other
the role of the linearly independent set. (Any basis is also linearly independent!)
Hence, on the one hand we would have k ≤ m and on the other hand m ≤ k,
whence it follows that m = k.

Here is the proof of the above assertion about linearly independent subsets.
Let {u1,u2, . . . ,um} be a linearly independent subset. Each ui can be expressed

uniquely in terms of the basis

u1 =
k∑

j=1

vjpj1 = [v1 v2 . . . vk ]




p11

p21
...

pk1




u2 =
k∑

j=1

vjpj2 = [v1 v2 . . . vk ]




p21

p22
...

pk2




...

um =
k∑

j=1

vjpjm = [v1 v2 . . . vk ]




p1m

p2k
...

pkm


 .

Each of these equations represents one column of the complete matrix equation

[u1 u2 . . . um ] = [v1 v2 . . . vk ]




p11 p12 . . . p1m

p21 p22 . . . p2m
...

... . . .
...

pk1 pk2 . . . pkm


 .

Note that the matrix on the right is an k ×m matrix. Consider the homogeneous
system 


p11 p12 . . . p1m

p21 p22 . . . p2m
...

... . . .
...

pk1 pk2 . . . pkm







x1

x2
...

xm


 = 0.

Assume, contrary to what we hope, that m > k. Then, we know by the theory of
homogeneous linear systems, that there is a non-trivial solution to this system, i.e.,
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one with at least one xi not zero. Then

[u1 u2 . . . um ]




x1

x2
...

xm


 =

[v1 v2 . . . vk ]




p11 p12 . . . p1m

p21 p22 . . . p2m
...

... . . .
...

pk1 pk2 . . . pkm







x1

x2
...

xm


 = 0.

Thus, 0 has a non-trivial representation

0 = u1x1 + u2x2 + · · ·+ umxm

which we know can never happen for a linearly independent set. Thus, the only
way out of this contradiction is to believe that m ≤ k as claimed.

One consequence of this argument is the following fact. If V and W are subspaces
of Rn with V ⊆ W , then the dimension of V is less than or equal to the dimension
of W , i.e., larger subspaces have larger dimension. The reasoning is that a basis
for V is necessarily a linearly independent set and so it cannot have more elements
than the dimension of W .

It is important to note that two different bases of the same vector space might
have no elements whatsoever in common. All we can be sure of is that they have
the same size.

Existence of Bases.
We assumed implicitly in our discussion of subspaces that every subspace V does

in fact have a basis. The following arguments show that this is true.
Start by choosing a sequence of vectors v1,v2,v3, . . . in V , but make sure that

at each stage the next vector vp that you choose is not a linear combination of
the previous vectors v1,v2, . . . ,vp−1. It is possible to show that the finite set
{v1,v2, . . . ,vp} is always linearly independent. (The vector vp is not a linear
combination of the others by construction, but you have to fiddle a bit to show the
none of the previous ones are linear combinations involving vp.) The only question
then is whether or not this sequence can go on forever. It can’t do that since
eventually we would get a linearly independent subset of Rn with n + 1 elements,
and since Rn has dimension n, that is impossible. Hence, the sequence stops, since,
at some stage, we can’t choose any vector in V which is not a linear combination
of the set of vectors so far chosen. Thus, that set spans V , and since, as just noted,
it is linearly independent, it is a basis.

Exercises for Section 8.

1. In each of the following cases, determine if the indicated set is linearly inde-
pendent or not.
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(a)





 1

2
3


 ,


 0

1
1


 ,


 1

1
2





.

(b)







1
0
0
1


 ,




0
1
0
1


 ,




0
0
1
1





.

2. Find a basis for the subspace of R4 consisting of solutions of the homogeneous
system 

 1 −1 1 −1
1 2 −1 1
0 3 −2 2


x = 0.

3. Find the dimension of the nullspace of A in each of the following cases. (See
the Exercises for Section 6.)

(a) A =


 1 0 1 2

2 −1 1 0
−1 4 −1 −2


 (b) A =


 1 3 4 0 2

2 7 6 1 1
4 13 14 1 3




4. Can the zero vector be an element of a linearly independent set?

5. (Optional) Let {v1,v2,v3} be a subset of Rn Show that the set is linearly
independent if and only if the equation

0 = c1v2 + c2v2 + c3v3

has only the trivial solution, i.e., all the coefficients c1 = c2 = c3 = 0.
The generalization of this to n vectors is very convenient to use when proving a

set is linearly independent. It is often taken as the definition of linear independence
in books on linear algebra.

6. Let

v1 =


 1

1
0


 , v2 =


 0

1
1


 , v3 =


 1

0
1


 .

(a) Show that {v1,v2,v3} is a linearly independent set. Hint. If one of the three
vectors were a linear combination of the other two, what relation would it have to
the cross product of those two?

(b) Why can you conclude that it is a basis for R3?

(c) Find the coordinates of v =


 1

1
2


 with respect to this basis.

7. Show that

u1 =
[

1
−1

]
and u2 =

[
1
1

]
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form a linearly independent pair in R2. It follows that they form a basis for R2.
Why? Find the coordinates of e1 and e2 with respect to this new basis. Hint. You
need to solve

[u1 u2 ]
[

x1

x2

]
= e1 and [u1 u2 ]

[
x1

x2

]
= e2.

You can solve these simultaneously by solving

[u1 u2 ]X = I

for an appropriate 2× 2 matrix X. What does this have to do with inverses?

8. Let

v1 =


 1

1
0


 , v2 =


 0

1
1


 .

(a) Show that {v1,v2} is a basis for the subspace W of R3 that it spans.

(b) Is v =


 1
−1
−2


 in this subspace? If so, find its coordinates with respect to

the basis.

9. (Optional) It is possible to consider infinite sequences of the form

x = (x1, x2, . . . , xn, . . . )

to be ‘infinite dimensional’ vectors. The set R∞ of all of these is a generalization
of a vector space, and many of the concepts we developed for Rn apply to it. Such
sequences are added by adding corresponding entries and a sequence is multiplied
by a scalar by multiplying each entry by that scalar. Let ei be the vector in R∞

with xi = 1 and all other entries zero.
(a) Show that the set {e1, e2, . . . , en} of the first n of these is a linearly inde-

pendent set for each n. Thus there is no upper bound on the size of a linearly
independent subset of R∞.

(b) Does the set of all possible ei span R∞? Explain.

9. Calculations in Rn

Let {v1,v2, . . . ,vk} be a collection of vectors in Rn. It is a consequence of our
discussion of coordinates in the previous section that the set is linearly independent
if and only if the n × k matrix [v1 v2 . . .vk ] has rank k. In that case, the set
is a basis for the subspace W that is spans.
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Example 1. Is 



 1

1
0


 ,


 0

1
1


 ,


 1

0
1







a linearly independent set? To test this, find the rank of the matrix with these
vectors as columns:

 1 0 1
1 1 0
0 1 1


 →


 1 0 1

0 1 −1
0 1 1


 →


 1 0 1

0 1 −1
0 0 2


 .

It is clear without proceeding further that the rank is three, so the set is linearly
independent.

More generally, suppose {v1,v2, . . . ,vk} is a set of vectors in Rn which may
or may not be linearly independent. It is often useful to have a way to pick out
a linearly independent subset of the set which spans the same subspace W as the
original set. Then that subset will be a basis for W . The basic idea (no pun
intended) is to throw away superfluous vectors until that is no longer possible, but
there is a systematic way to do this all at once. Since the vectors vi are elements
of Rn, each may be specified as a n× 1 column vector. Put these vectors together
to form an n× k matrix

A = [v1 v2 . . . vk ] .

To find a basis, apply Gaussian reduction to the matrix A, and pick out the columns
of A which in the transformed reduced matrix end up with pivots.

Example 2. Let

v1 =




1
0
1
1


 , v2 =




2
2
4
0


 , v3 =



−1

1
0

−2


 , v4 =




0
1
1
0


 .

Form the matrix A with these columns and apply Gaussian reduction




1 2 −1 0
0 2 1 1
1 4 0 1
1 0 −2 0


 →




1 2 −1 1
0 2 1 1
0 2 1 1
0 −2 −1 0




→




1 2 −1 1
0 2 1 1
0 0 0 0
0 0 0 1




→




1 2 −1 1
0 2 1 1
0 0 0 1
0 0 0 0


 .
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This completes the Gaussian reduction, and the pivots are in the first, second, and
fourth columns. Hence, the vectors

v1 =




1
0
1
1


 , v2 =




2
2
4
0


 , v4 =




0
1
1
0




form a basis for the subspace spanned by {v1,v2,v3,v4}.
Let’s look more closely at this example to see why the subset is linearly inde-

pendent and also spans the same subspace as the original set. The proof that the
algorithm works in the general case is more complicated to write down but just
elaborates the ideas exhibited in the example. Consider the homogeneous system
Ax = 0. This may also be written

Ax = [v1 v2 v3 v4 ]




x1

x2

x3

x4


 = v1x1 + v2x2 + v3x3 + v4x4 = 0.

In the general solution, x1, x2, and x4 will be bound variables (from the pivot
positions) and x3 will be free. That means we can set x3 equal to anything, say
x3 = −1 and the other variables will be determined. For this choice, the relation
becomes

v1x1 + v2x2 − v3 + v4x4 = 0

which may be rewritten

v3 = x1v1 + x2v2 + x4v4.

Thus, v3 is superfluous and may be eliminated from the set without changing the
subspace spanned by the set. On the other hand, the set {v1,v2,v4} is linearly
independent, since if we were to apply Gaussian reduction to the matrix

A′ = [v1 v2 v4 ]

the reduced matrix would have a pivot in every column, i.e., it would have rank 3.
Thus, the system

[v1 v2 v4 ]


x1

x2

x4


 = v1x1 + v2x2 + v4x4 = 0

has only the trivial solution. That means that no one of the three vectors can be
expressed as a linear combination of the other two. For example, if v2 = c1v1+c4v4,
we have

v1c1 + v2(−1) + v4c4 = 0.

It follows that the set is linearly independent.
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Column Space and Row Space. Let A be an m × n matrix. The columns
v1,v2, . . . ,vn of A are vectors in Rm, and {v1,v2, . . . ,vn} spans a subspace of Rm

called the column space of A. The column space plays a role in the the theory of
inhomogeneous systems Ax = b in the following way. A vector b is in the column
space if and only if it is expressible as a linear combination

b = v1x1 + v2x2 + · · ·+ vnxn = [v1 v2 . . . vn ]




x1

x2
...

xn


 = Ax.

Thus, the column space of A consists of all vectors b in Rm for which the system
Ax = b has a solution.

Example 3, continued. We wish to determine if

b =




1
0
1
0




is in the column space of

A =




1 2 −1 0
0 2 1 1
1 4 0 1
1 0 −2 0


 .

This will be true if and only if

A =




1 2 −1 0
0 2 1 1
1 4 0 1
1 0 −2 0


x =




1
0
1
0




has a solution. Reduce the augmented matrix




1 2 −1 0 | 1
0 2 1 1 | 0
1 4 0 1 | 1
1 0 −2 0 | 0


 →




1 2 −1 1 | 1
0 2 1 1 | 0
0 2 1 1 | 0
0 −2 −1 0 | −1




→




1 2 −1 1 | 1
0 2 1 1 | 0
0 0 0 0 | 0
0 0 0 1 | −1




→




1 2 −1 1 | 1
0 2 1 1 | 0
0 0 0 1 | −1
0 0 0 0 | 0


 .
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It is clear at this point that the system will have a solution, so we need not go any
farther. We can conclude that b is in the column space of A.

Note that the method outlined in the beginning of this section gives a basis
for the column space, and the number of elements in this basis is the rank of A.
(The rank is the number of pivots!) Hence, the rank of an m × n matrix A is the
dimension of its column space.

The column space of a matrix A is often called the range of A. That is because
it describes all possible vectors in Rm of the form Ax.

There is a similar concept for rows; the row space of an m × n matrix A is the
subspace of Rn spanned by the rows of A. It is not hard to see that the dimension
of the row space of A is also the rank of A. For, since each row operation is
reversible, applying a row operation does not change the subspace spanned by the
rows. Hence, the row space of the matrix A′ obtained by Gauss-Jordan reduction
from A is the same as the row space of A. However, the set of non-zero rows of the
reduced matrix is a basis for this subspace. To see this, note first that it certainly
spans (since leaving out zero rows doesn’t cost us anything). Moreover, it is also
a linearly independent set because each non-zero row has a 1 in a pivot position
where all the other rows are zero.

The fact that both the column space and the row space have the same dimension
is sometimes expressed by saying “the column rank equals the row rank”. Of course,
there is no particular reason why the row space and the column space should be
identical. For example, unless the matrix is square, the vectors in them won’t even
have the same number of components.

A Note on the Definition of Rank. The rank of A is defined as the number
of pivots in the reduced matrix obtained from A by an appropriate sequence of ele-
mentary row operations. Since we can specify a standard procedure for performing
such row operations, that means the rank is a well defined number. On the other
hand, it is natural to wonder what might happen if A were reduced by an alter-
native, perhaps less systematic, sequence of row operations. The above analysis
shows that we would still get the same answer for the rank. Namely, the rank is
the dimension of the column space of A, and that number depends only on the
column space itself, not on any particular basis for it. (Or you could use the same
argument using the row space.)

The rank is also the number of non-zero rows in the reduced matrix, so it follows
that this number does not depend on the particular sequence of row operations used
to reduce A to Gauss-Jordan reduced form. In fact, the entire matrix obtained at
the end (as long as it is in Gauss-Jordan reduced form) depends only on the original
matrix A and not on the particular sequence or row operations used to obtain it.
The proof of this fact is not so easy, and we omit it here.

Exercises for Section 9.

1. Find a subset of the following set of vectors which is a basis for the subspace



10. REVIEW PROBLEMS 67

it spans. 





1
2
3
0


 ,




3
0

−3
2


 ,




3
3
3
1


 ,




1
−1
−3

1







2. Let A =


 1 0 2 1 1
−1 1 3 0 1

1 1 7 2 3


.

(a) Find a basis for the column space of A.
(b) Find a basis for the row space of A.

3. Let

v1 =


 1
−2
−1


 , v2 =


 1

2
1


 .

Find a basis for R3 by finding a third vector v3 such that {v1,v2,v3} is linearly
independent. Hint. You may find an easier way to do it, but the following method
should work. Use the method suggested in Section 9 to pick out a linearly inde-
pendent subset from {v1,v2, e1, e2, e3}.

4. (Optional) Let {v1,v2, . . . ,vk} be a linearly independent subset of Rn. Apply
the method in section 9 to the set {v1,v2, . . . ,vk, e1, e2, . . . , en}. It will necessarily
yield a basis for Rn. Why? Show that this basis will include {v1,v2, . . . ,vk} as a
subset. That is show that none of the vi will be eliminated by the process.

5. (a) Find a basis for the column space of

A =


 1 2 2 3

1 2 3 4
3 6 7 10


 .

(b) Is b =


 0

1
1


 in the column space of A?

6. (a) Suppose A is a 7 × 12 matrix and W is its range or column space. If
dimW = 7, what can you say about the general solvability of systems of the form
Ax = b?

(b) Suppose instead that A is 12 × 7. What if anything can you say about the
general solvability of systems of the form Ax = b?

10. Review Problems
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Exercises for Section 10.

1. Find A−1 for A =


 1 0 0
−1 2 0

3 1 −1


. Check your answer by computing AA−1.

2. Let A =


 2 −1 6 1 2

1 3 4 0 0
4 5 14 1 2


.

(a) Find the dimension of the nullspace of A.
(b) Find the dimension of the column space of A.
(c) How are these two numbers related?

3. What is wrong with the following statement? If A and B are invertible n× n
matrices, then AB is invertible and (AB)−1 = A−1B−1.

4. Suppose A is a 15×23 matrix. In which circumstances will each of the following
statements be true?

(a) A system Ax = b of 15 equations in 23 unknowns has a solution for every b
in R15.

(b) The homogeneous system Ax = 0 has infinitely many solutions.

5. Let A =


 1 3 4 0 2

2 7 6 1 1
4 13 14 1 3


.

(a) Find a basis for the nullspace of the A.
(b) Find the dimensions of the nullspace and the column space of A.

(c) Does


 1

1
−1


 belong to the column space of A? Explain.

6. Find the inverse of A =


 1 3 3

2 6 8
0 2 2


.

7. Let A =


 1 2 2 3

1 2 3 4
3 6 7 10


 .

(a) Find a basis for the nullspace of A.
(b) Find a basis for the column space of A.
(c) Do the columns of A form a linearly independent set? Explain.

(d) Does


 2

3
4


 belong to the column space of A? Explain your answer.

8. In each case tell if the indicated subset is a vector subspace of R3 and give a
reason for your answer.

(a) The plane defined by the equation x1 − 2x2 + 3x3 = 0.
(b) The sphere defined by the equation x1

2 + x2
2 + x3

2 = 16.
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9. All the parts of this question refer to the matrix A =


 1 2 1 3 1

2 1 3 3 2
1 −1 2 0 1


.

(a) What is the rank of A?
(b) What is the dimension of the nullspace of A?

10. Consider the subset





1
0
0
1


 ,




3
1
1
0


 ,




1
1
0
0


 ,




1
0
0
0







of R4.
(a) Is this set linearly independent? Explain?
(b) Is it a basis for R4? Explain.
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