
CHAPTER II

DETERMINANTS AND EIGENVALUES

1. Introduction

Gauss-Jordan reduction is an extremely effective method for solving systems
of linear equations, but there are some important cases in which it doesn’t work
very well. This is particularly true if some of the matrix entries involve symbolic
parameters rather than specific numbers.

Example 1. Solve the general 2× 2 system

ax + by = e

cx + dy = f

We can’t easily use Gaussian reduction since it would proceed differently if a were
zero than it would if a were not zero. In this particular case, however, the usual
high school method works quite well. Multiply the first equation by d and the
second by b to obtain

adx + bdy = ed

bcx + bdy = bf

and subtract to obtain

adx− bcx = ed− bf

or (ad− bc)x = ed− bf

or x =
ed− bf

ad− bc
.

Similarly, multiplying the first equation by c, the second by a and subtracting yields

y =
af − ce

ad− bc
.

For this to work, we must assume only that ad− bc 6= 0.
(See the exercises for a slightly different but equivalent approach which uses

A−1.)

You should recognize the quantity in the denominator as the 2× 2 determinant

det
[

a b
c d

]
= ad− bc.
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2× 2 determinants arise in a variety of important situations. For example, if

u =
[

u1

u2

]
and v =

[
v1

v2

]
are two vectors in the plane, then

det
[

u1 v1

u2 v2

]
= u1v2 − v1u2

is the signed area of the parallelogram spanned by the vectors.

u

v

The sign is determined by the orientation of the two vectors. It is positive if the
smaller of the two angles from u to v is in the counterclockwise direction and
negative if it is in the clockwise direction.

You are probably also familiar with 3 × 3 determinants. For example, if u,v,
and w are vectors in R3, the triple product

(u× v) ·w = u · (v ×w)

gives the signed volume of the parallelepiped spanned by the three vectors.

u

v

w

vu 

The sign is positive if the vectors form a ‘right handed’ triple and it is negative
if they form a ‘left handed triple’. If you express this triple product in terms of
components, you obtain the expression

u1v2w3 + v1w2u3 + w1u2v3 − u1w2v3 − v1w2u3 − w1v2u3
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and this quantity is called the determinant of the 3× 3 matrix
u1 v1 w1

u2 v2 w2

u3 v3 w3


 .

As you might expect, if you try to solve the general 3× 3 system
 a11 a12 a13

a21 a22 a23

a31 a32 a33





 x1

x2

x3


 =


 b1

b2

b3




without having specific numerical values for the entries of the coefficient matrix,
then you end up with a bunch of formulas in which the 3 × 3 determinant of the
coefficient matrix A plays a significant role.

Our program in this chapter will be to generalize these concepts to arbitrary
n× n matrices. This is necessarily a bit complicated because of the complexity of
the formulas. For n > 3, it is not feasible to try to write out explicit formulas for
the quantities which arise, so we need another approach.

Exercises for Section 1.

1. Let u =


 u1

u2

0


 ,v =


 v1

v2

0


. Verify that ±|u × v| = det

[
u1 v1

u2 v2

]
. This in

effect shows that, except for sign, a 2×2 determinant is the area of the parallelogram
spanned by its columns in R2.

2. Let

u =
[

1
2

]
, v =

[
0
1

]
.

(a) Calculate the determinants of the following 2× 2 matrices

(i) [u v ] , (ii) [v u ] , (iii) [u− 2v v ] .

(b) Draw plane diagrams for each of the parallelograms spanned by the columns
of these matrices. Explain geometrically what happened to the area.

3. Let u,v, and w be the columns of the matrix

A =


 1 −1 1

1 1 1
0 0 1


 .

(a) Find detA by computing (u× v) ·w and check by computing u · (v ×w).
(b) Without doing the computation, find det [v u w ], det [u w v ], and

det [w v u ].
(c) Explain why the determinant of the above matrix does not change if you

replace the first column by the the sum of the first two columns.
(d) What happens if you multiply one of the columns by −3?
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4. Solve the system [
a b
c d

] [
x
y

]
=

[
e
f

]
by multiplying the right hand side by the inverse of the coefficient matrix. Compare
what you get with the solution obtained in the section.

2. Definition of the Determinant

Let A be an n× n matrix. By definition

for n = 1 det [ a ] = a

for n = 2 det
[

a11 a12

a21 a22

]
= a11a22 − a12a21.

As mentioned in the previous section, we can give an explicit formula to define
det A for n = 3 , but an explicit formula for larger n is very difficult to describe.
Here is a provisional definition. Form a sum of many terms as follows. Choose any
entry from the first row of A; there are n possible ways to do that. Next, choose
any entry from the second row which is not in the same column as the first entry
chosen; there are n − 1 possible ways to do that. Continue in this way until you
have chosen one entry from each row in such a way that no column is repeated;
there are n! ways to do that. Now multiply all these entries together to form a
typical term. If that were all, it would be complicated enough, but there is one
further twist. The products are divided into two classes of equal size according to
a rather complicated rule and then the sum is formed with the terms in one class
multiplied by +1 and those in the other class multiplied by −1.

Here is the definition again for n = 3 arranged to exhibit the signs.

det


 a11 a12 a13

a21 a22 a23

a31 a32 a33


 =

a11a22a33 + a12a23a31 + a13a21a32

− a11a23a32 − a12a21a33 − a13a22a31.

The definition for n = 4 involves 4! = 24 terms, and I won’t bother to write it out.

A better way to develop the theory is recursively. That is, we assume that
determinants have been defined for all (n − 1) × (n − 1) matrices, and then use
this to define determinants for n× n matrices. Since we have a definition for 1× 1
matrices, this allows us in principle to find the determinant of any n × n matrix
by recursively invoking the definition. This is less explicit, but it is easier to work
with.

Here is the recursive definition. Let A be an n×n matrix, and let Dj(A) be the
determinant of the (n− 1)× (n− 1) matrix obtained by deleting the jth row and
the first column of A. Then, define

det A = a11D1(A)− a21D2(A) + · · ·+ (−1)j+1aj1Dj(A) + · · ·+ (−1)n+1an1Dn(A).
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In words: take each entry in the first column of A, multiply it by the determinant
of the (n− 1)× (n− 1) matrix obtained by deleting the first column and that row,
and then add up these entries alternating signs as you do.

Examples.

det


 2 −1 3

1 2 0
0 3 6


 = 2det

[
2 0
3 6

]
− 1 det

[−1 3
3 6

]
+ 0det

[−1 3
2 0

]
= 2(12− 0)− 1(−6− 9) + 0(. . . ) = 24 + 15 = 39.

Note that we didn’t bother evaluating the 2×2 determinant with coefficient 0. You
should check that the earlier definition gives the same result.

det




1 2 −1 3
0 1 2 0
2 0 3 6
1 1 2 1




= 1det


 1 2 0

0 3 6
1 2 1


− 0 det


 2 −1 3

0 3 6
1 2 1




+ 2det


 2 −1 3

1 2 0
1 2 1


− 1 det


 2 −1 3

1 2 0
0 3 6


 .

Each of these 3× 3 determinants may be evaluated recursively. (In fact we just did
the last one in the previous example.) You should work them out for yourself. The
answers yield

det




1 2 −1 3
0 1 2 0
2 0 3 6
1 1 2 1


 = 1(3)− 0(. . . ) + 2(5)− 1(39) = −26.

Although this definition allows us to compute the determinant of any n × n
matrix in principle, the number of operations grows very quickly with n. In such
calculations one usually keeps track only of the multiplications since they are usually
the most time consuming operations. Here are some values of N(n), the number
of multiplications needed for a recursive calculation of the determinant of an n×n
determinant. We also tabulate n! for comparison.

n N(n) n!
2 2 2
3 6 6
4 28 24
5 145 120
6 876 720
...

...
...
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The recursive method is somewhat more efficient than the formula referred to at
the beginning of the section. For, that formula has n! terms, each of which requires
multiplying n entries together. Each such product requires n− 1 separate multipli-
cations. Hence, there are (n−1)n! multiplications required altogether. In addition,
the rule for determining the sign of the term requires some extensive calculation.
However, as the above table indicates, even the number N(n) of multiplications
required for the recursive definition grows faster than n!, so it gets very large very
quickly. Thus, we clearly need a more efficient method to calculate determinants.
As is often the case in linear algebra, elementary row operations come to our rescue.

Using row operations for calculating determinants is based on the following rules
relating such operations to determinants.

Rule (i): If A′ is obtained from A by adding a multiple of one row of A to another,
then det A′ = det A.

Example 1.

det


 1 2 3

2 1 3
1 2 1


 = 1(1− 6)− 2(2− 6) + 1(6− 3) = 6

det


 1 2 3

0 −3 −3
1 2 1


 = 1(−3 + 6)− 0(2− 6) + 1(−6 + 9) = 6.

Rule (ii): if A′ is obtained from A by multiplying one row by a scalar c, then
det A′ = cdet A.

Example 2.

det


 1 2 0

2 4 2
0 1 1


 = 1(4− 2)− 2(2− 0) + 0(. . . ) = −2

2 det


 1 2 0

1 2 1
0 1 1


 = 2(1(2− 1)− 1(2− 0) + 0(. . . )) = 2(−1) = −2.

One may also state this rule as follows: any common factor of a row of A may
be ‘pulled out’ from its determinant.

Rule (iii): If A′ is obtained from A by interchanging two rows, then det A′ =
−det A.

Example 3.

det
[

1 2
2 1

]
= −3 det

[
2 1
1 2

]
= 3.

The verification of these rules is a bit involved, so we relegate it to an appendix,
which most of you will want to skip.

The rules allow us to compute the determinant of any n×n matrix with specific
numerical entries.
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Example 4. We shall calculate the determinant of a 4× 4 matrix. You should
make sure you keep track of which elementary row operations have been performed
at each stage.

det




1 2 −1 1
0 2 1 2
3 0 1 1

−1 6 0 2


 = det




1 2 −1 1
0 2 1 2
0 −6 4 −2
0 8 −1 3


 = det




1 2 −1 1
0 2 1 2
0 0 7 4
0 0 −5 −5




= −5 det




1 2 −1 1
0 2 1 2
0 0 7 4
0 0 1 1


 = +5det




1 2 −1 1
0 2 1 2
0 0 1 1
0 0 7 4




= +5det




1 2 −1 1
0 2 1 2
0 0 1 1
0 0 0 −3


 .

We may now use the recursive definition to calculate the last determinant. In each
case there is only one non-zero entry in the first column.

det




1 2 −1 1
0 2 1 2
0 0 1 1
0 0 0 −3


 . = 1det


 2 1 2

0 1 1
0 0 −3




= 1 · 2 det
[

1 1
0 −3

]
= 1 · 2 · 1 det [−3 ]

= 1 · 2 · 1 · (−3) = −6.

Hence, the determinant of the original matrix is 5(−6) = −30.

The last calculation is a special case of a general fact which is established in
much the same way by repeating the recursive definition.

det




a11 a12 a13 . . . a1n

0 a22 a23 . . . a2n

0 0 a33 . . . a3n
...

...
... . . .

...
0 0 0 . . . ann


 = a11a22a33 . . . ann.

In words, the determinant of an upper triangular matrix is the product of its diagonal
entries.

It is important to be able to tell when the determinant of an n × n matrix A
is zero. Certainly, this will be the case if the first column consists of zeroes, and
indeed it turns out that the determinant vanishes if any row or any column consists
only of zeroes. More generally, if either the set of rows or the set of columns is a
linearly dependent set, then the determinant is zero. (That will be the case if the
rank r < n since the rank is the dimension of both the row space and the column
space.) This follows from the following important theorem.
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Theorem 2.1. Let A be an n × n matrix. Then A is singular if and only if
det A = 0. Equivalently, A is invertible, i.e., has rank n, if and only if det A 6= 0.

Proof. If A is invertible, then Gaussian reduction leads to an upper triangular
matrix with non-zero entries on its diagonal, and the determinant of such a matrix
is the product of its diagonal entries, which is also non-zero. No elementary row
operation can make the determinant zero. For, type (i) operations don’t change
the determinant, type (ii) operations multiply by non-zero scalars, and type (iii)
operations change its sign. Hence, detA 6= 0.

If A is singular, then Gaussian reduction also leads to an upper triangular matrix,
but one in which at least the last row consists of zeroes. Hence, at least one diagonal
entry is zero, and so is the determinant. ¤

Example 5.

det


 1 1 2

2 1 3
1 0 1


 = 1(1− 0)− 2(1− 0) + 1(3− 2) = 0

so the matrix must be singular. To confirm this, we reduce
 1 1 2

2 1 3
1 0 1


 →


 1 1 2

0 −1 −1
0 −1 −1


 →


 1 1 2

0 −1 −1
0 0 0




which shows that the matrix is singular.

In the previous section, we encountered 2×2 matrices with symbolic non-numeric
entries. For such a matrix, Gaussian reduction doesn’t work very well because we
don’t know whether the non-numeric expressions are zero or not.

Example 6. Suppose we want to know whether or not the matrix

−λ 1 1 1

1 −λ 0 0
1 0 −λ 0
1 0 0 −λ




is singular. We could try to calculate its rank, but since we don’t know what λ is,
it is not clear how to proceed. Clearly, the row reduction works differently if λ = 0
than if λ 6= 0. However, we can calculate the determinant by the recursive method.

det



−λ 1 1 1

1 −λ 0 0
1 0 −λ 0
1 0 0 −λ




= (−λ) det


−λ 0 0

0 −λ 0
0 0 −λ


− 1 det


 1 1 1

0 −λ 0
0 0 −λ




+ 1det


 1 1 1
−λ 0 0

0 0 −λ


− 1 det


 1 1 1
−λ 0 0

0 −λ 0




= (−λ)(−λ3)− (λ2) + (−λ2)− (λ2)

= λ4 − 3λ2 = λ2(λ−
√

3)(λ +
√

3).
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Hence, this matrix is singular just in the cases λ = 0, λ =
√

3, and λ = −√3.

Appendix. Some Proofs. We now establish the basic rules relating determi-
nants to elementary row operations. If you are of a skeptical turn of mind, you
should study this section, since the relation between the recursive definition and
rules (i), (ii), and (iii) is not at all obvious. However, if you have a trusting nature,
you might want to skip this section since the proofs are quite technical and not
terribly enlightening.

The idea behind the proofs is to assume that the rules—actually, modified forms
of the rules—have been established for (n− 1)× (n− 1) determinants, and then to
prove them for n × n determinants. To start it all off, the rules must be checked
explicitly for 2× 2 determinants. I leave that step for you in the Exercises.

We start with the hardest case, rule (iii). First we consider the special case that
A′ is obtained from A by switching two adjacent rows, the ith row and the (i+1)st
row. Consider the recursive definition

det A′ = a′11D1(A′)− · · ·+ (−1)i+1a′i1Di(A′)

+ (−1)i+2a′i+1,1Di+1(A′) + · · ·+ (−1)n+1a′n1Dn(A′).

Look at the subdeterminants occurring in this sum. For j 6= i, i + 1, we have

Dj(A′) = −Dj(A)

since deleting the first column and jth row of A and then switching two rows—
neither of which was deleted—changes the sign by rule (iii) for (n − 1) × (n − 1)
determinants. The situation for j = i or j = i + 1 is different; in fact, we have

Di(A′) = Di+1(A) and Di+1(A′) = Di(A).

The first equation follows because switching rows i and i+1 and then deleting row
i is the same as deleting row i + 1 without touching row i. A similar argument
establishes the second equation. Using this together with a′i1 = ai+1,1, a

′
i+1,1 = ai1

yields

(−1)i+1a′i1Di(A′) = (−1)i+1ai+1,1Di+1(A) = −(−1)i+2ai+1,1Di+1(A)

(−1)i+2a′i+1,1Di+1(A′) = (−1)i+2ai1Di(A) = −(−1)i+1ai1Di(A).

In other words, all terms in the recursive definition of detA′ are negatives of the
corresponding terms of detA except those in positions i and i+1 which get reversed
with signs changed. Hence, the effect of switching adjacent rows is to change the
sign of the sum.

Suppose instead that non-adjacent rows in positions i and j are switched, and
suppose for the sake of argument that i < j. One way to do this is as follows. First
move row i past each of the rows between row i and row j. This involves some
number of switches of adjacent rows—call that number k. (k = j − i − 1, but it
that doesn’t matter in the proof.) Next, move row j past row i and then past the
k rows just mentioned, all in their new positions. That requires k + 1 switches of
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adjacent rows. All told, to switch rows i and j in this way requires 2k + 1 switches
of adjacent rows. The net effect is to multiply the determinant by (−1)2k+1 = −1
as required.

There is one important consequence of rule (iii) which we shall use later in the
proof of rule (i).

Rule (iiie): If an n× n matrix has two equal rows, then det A = 0.

This is not too hard to see. Interchanging two rows changes the sign of detA,
but if the rows are equal, it doesn’t change anything. However, the only number
with the property that it isn’t changed by changing its sign is the number 0. Hence,
det A = 0.

We next verify rule (ii). Suppose A′ is obtained from A by multiplying the ith
row by c. Consider the recursive definition

(1) detA′ = a′11D1(A′) + · · ·+ (−1)i+1a′i1Di(A′) + · · ·+ (−1)n+1an1Dn(A).

For any j 6= i, Dj(A′) = cDj(A) since one of the rows appearing in that determinant
is multiplied by c. Also, a′j1 = aj1 for j 6= i. On the other hand, Di(A′) = Di(A)
since the ith row is deleted in calculating these quantities, and, except for the ith
row, A′ and A agree. In addition, a′i1 = cai1 so we pick up the extra factor of
c in any case. It follows that every term on the right of (1) has a factor c, so
det A′ = cdet A.

Finally, we attack the proof of rule (i). It turns out to be necessary to verify the
following stronger rule.

Rule (ia): Suppose A,A′, and A′′ are three n × n matrices which agree except in
the ith row. Suppose moreover that the ith row of A is the sum of the ith row of A′

and the ith row of A′′. Then det A = det A′ + det A′′.

Let’s first see why rule (ia) implies rule (i). We can add c times the jth row of
A to its i row as follows. Let B′ = A, let B′′ be the matrix obtained from A by
replacing its ith row by c times its jth row, and let B be the matrix obtained form
A by adding c times its jth row to its ith row. Then according to rule (ia), we have

det B = det B′ + det B′′ = det A + det B′′.

On the other hand, by rule (ii), detB′′ = cdet A′′ where A′′ has both ith and jth
rows equal to the jth row of A. Hence, by rule (iiie), detA′′ = 0, and detB = det A.

Finally, we establish rule (1a). Assume it is known to be true for (n−1)×(n−1)
determinants. We have

(2) detA = a11D1(A)− · · ·+ (−1)i+1ai1Di(A) + · · ·+ (−1)n+1an1Dn(A).

For j 6= i, the the sum rule (ia) may be applied to the determinants Di(A) because
the appropriate submatrix has one row which breaks up as a sum as needed. Hence,

Dj(A) = Dj(A′) + Dj(A′′).



2. DEFINITION OF THE DETERMINANT 81

Also, for j 6= i, we have aj1 = a′j1 = a′′j1 since all the matrices agree in any row
except the ith row. Hence, for j 6= i,

ai1Di(A) = ai1Di(A′) + ai1Di(A′′) = a′i1Di(A′) + a′′i1Di(A′′).

On the other hand, Di(A) = Di(A′) = Di(A′′) because in each case the ith row
was deleted. But ai1 = a′i1 + a′′i1, so

ai1Di(A) = a′i1Di(A) + a′′i1Di(A) = a′i1Di(A′) + a′′i1Di(A′′).

It follows that every term in (2) breaks up into a sum as required, and detA =
det A′ + det A′′.

Exercises for Section 2.

1. Find the determinants of each of the following matrices. Use whatever method
seems most convenient, but seriously consider the use of elementary row operations.

(a)


 1 1 2

1 3 5
6 4 1


.

(b)




1 2 3 4
2 1 4 3
1 4 2 3
4 3 2 1


.

(c)




0 0 0 0 3
1 0 0 0 2
0 1 0 0 1
0 0 1 0 4
0 0 0 1 2


.

(d)


 0 x y
−x 0 z
−y −z 0


.

2. Verify the following rules for 2× 2 determinants.
(i) If A′ is obtained from A by adding a multiple of the first row to the second,

then detA′ = det A.
(ii) If A′ is obtained from A by multiplying its first row by c, then detA′ =

cdet A.
(iii) If A′ is obtained from A by interchanging its two rows, then detA′ = −det A.
Rules (i) and (ii) for the first row, together with rule (iii) allow us to derive rules

(i) and (ii) for the second row. Explain.

3. Derive the following generalization of rule (i) for 2× 2 determinants.

det
[

a′ + a′′ b′ + b′′

c d

]
= det

[
a′ b′

c d

]
+ det

[
a′′ b′′

c d

]
.

What is the corresponding rule for the second row? Why do you get it for free if
you use the results of the previous problem?
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4. Find all values of z such that the matrix
[

1 z
z 1

]
is singular.

5. Find all values of λ such that the matrix

A =


−λ 1 0

1 −λ 1
0 1 −λ




is singular.

6. The determinant of the following matrix is zero. Explain why just using the
recursive definition of the determinant.


2 −2 3 0 4
4 2 −3 0 1
6 −5 −2 0 3
1 −3 3 0 6
5 2 12 0 10




7. If A is n× n, what can you say about det(cA)?

8. Suppose A is a non-singular 6× 6 matrix. Then det(−A) 6= −det A. Explain.

9. Find 2× 2 matrices A and B such that det(A + B) 6= det A + det B.

10. (a) Show that the number of multiplications N(7) necessary to compute re-
cursively the determinant of a 7× 7 matrix is 6139.

(b) (Optional) Find a rule relating N(n) to N(n − 1). Use this to write a
computer program to calculate N(n) for any n.

3. Some Important Properties of Determinants

Theorem 2.2 (The Product Rule). Let A and B be n× n matrices. Then

det(AB) = detA det B.

We relegate the proof of this theorem to an appendix, but let’s check it in an
example

Example 1. Let

A =
[

2 1
1 2

]
, B =

[
1 −1
1 1

]
.

Then detA = 3,det B = 2, and

AB =
[

3 −1
3 1

]
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so det(AB) = 6 as expected.
This example has a simple geometric interpretation. Let

u =
[

1
1

]
, v =

[−1
1

]
.

Then detB is just the area of the parallelogram spanned by the two vectors. On
the other hand the columns of the product

AB = [ Au Av ] i.e., Au =
[

3
3

]
, Av =

[−1
1

]
also span a parallelogram which is related to the first parallelogram in a simple
way. One edge is multiplied by a factor 3 and the other edge is fixed. Hence, the
area is multiplied by 3.

uv

Au

Av

Thus, in this case, in the formula

det(AB) = (detA)(detB)

the factor detA tells us how the area of a parallelogram changes if its edges are
transformed by the matrix A. This is a special case of a much more general asser-
tion. The product rule tells us how areas, volumes, and their higher dimensional
analogues behave when a figure is transformed by a matrix.

Transposes. Let A be an m×n matrix. The transpose of A is the n×m matrix
for which the columns are the rows of A. (Also, its rows are the columns of A.) It
is usually denoted At, but other notations are possible.

Examples.

A =
[

2 0 1
2 1 2

]
At =


 2 2

0 1
1 2




A =


 1 2 3

0 2 3
0 0 3


 At =


 1 0 0

2 2 0
3 3 3




a =


 a1

a2

a3


 at = [ a1 a2 a3 ] .
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Note that the transpose of a column vector is a row vector and vice-versa.
The following rule follows almost immediately from the definition.

Theorem 2.3. Assume A is an m× n matrix and B is an n× p matrix. Then

(AB)t = BtAt.

Note that the order on the right is reversed.

Example 2. Let

A =


 1 2 3

1 0 2
1 0 0


 , B =


 4 0

1 1
2 3


 .

Then

AB =


 12 11

8 6
4 0


 , so (AB)t =

[
12 8 4
11 6 0

]
while

Bt =
[

4 1 2
0 1 3

]
, At =


 1 1 1

2 0 0
3 2 0


 , so BtAt =

[
12 8 4
11 6 0

]

as expected.

Unless the matrices are square, the shapes won’t even match if the order is not
reversed. In the above example AtBt would be a product of a 3× 3 matrix with a
2×3 matrix, and that doesn’t make sense. The example also helps us to understand
why the formula is true. The i, j-entry of the product is the row by column product
of the ith row of A with the jth column of B. However, taking transposes reverses
the roles of rows and columns. The entry is the same, but now it is the product of
the jth row of Bt with the ith column of At.

Theorem 2.4. Let A be an n× n matrix. Then

detAt = det A.

See the appendix for a proof, but here is an example.

Example 3.

det


 1 0 1

2 1 2
0 0 1


 = 1(1− 0)− 2(0− 0) + 0(. . . ) = 1

det


 1 2 0

0 1 0
1 2 1


 = 1(1− 0)− 0(. . . ) + 1(0− 0) = 1.

The importance of this theorem is that it allows us to go freely from statements
about determinants involving rows of the matrix to corresponding statements in-
volving columns and vice-versa.

Because of this rule, we may use column operations as well as row operations
to calculate determinants. For, performing a column operation is the same as
transposing the matrix, performing the corresponding row operation, and then
transposing back. The two transpositions don’t affect the determinant.
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Example.

det




1 2 3 0
2 1 3 1
3 3 6 2
4 2 6 4


 = det




1 2 2 0
2 1 1 1
3 3 3 2
4 2 2 4


 operation (−1)c1 + c3

= 0.

The last step follows because the 2nd and 3rd columns are equal, which implies that
the rank (dimension of the column space) is less than 4. (You could also subtract
the third column from the second and get a column of zeroes, etc.)

Expansion in Minors or Cofactors. There is a generalization of the formula
used for the recursive definition. Namely, for any n × n matrix A, let Dij(A) be
the determinant of the (n − 1) × (n − 1) matrix obtained by deleting the ith row
and jth column of A. Then,

det A =
n∑

i=1

(−1)i+jaijDij(A)

(1)

= (−1)1+ja1jD1j(A) + · · ·+ (−1)i+jaijDij(A) + · · ·+ (−1)n+janjDnj(A).

The special case j = 1 is the recursive definition given in the previous section. The
more general rule is easy to derive from the special case j = 1 by means of column
interchanges. Namely, form a new matrix A′ by moving the jth column to the first
position by successively interchanging it with columns j − 1, j − 2, . . . , 2, 1. There
are j − 1 interchanges, so the determinant is changed by the factor (−1)j−1. Now
apply the rule for the first column. The first column of A′ is the jth column of
A, and deleting it has the same effect as deleting the jth column of A. Hence,
a′i1 = aij and Di(A′) = Dij(A). Thus,

det A = (−1)j−1 det A′ = (−1)j−1
n∑

i=1

(−1)1+ia′i1Di(A′)

=
n∑

i=1

(−1)i+jaijDij(A).

Similarly, there is a corresponding rule for any row of a matrix

det A =
n∑

j=1

(−1)i+jaijDij(A)

(2)

= (−1)i+1ai1Di1 + · · ·+ (−1)i+jaijDij(A) + · · ·+ (−1)i+nainDin(A).

This formula is obtained from (1) by transposing, applying the corresponding col-
umn rule, and then transposing back.
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Example. Expand the following determinant using its second row.

det


 1 2 3

0 6 0
3 2 1


 = (−1)2+30(. . . ) + (−1)2+26 det

[
1 3
3 1

]
+ (−1)2+30(. . . )

= 6(1− 9) = −48.

There is some terminology which you may see used in connection with these
formulas. The determinant Dij(A) of the (n − 1) × (n − 1) matrix obtained by
deleting the ith row and jth column is called the i, j-minor of A. The quantity
(−1)i+jDij(A) is called the i, j-cofactor. Formula (1) is called expansion in minors
(or cofactors) of the jth column and formula (2) is called expansion in minors (or
cofactors) of the ith row. It is not necessary to remember the terminology as long
as you remember the formulas and understand how they are used.

Cramer’s Rule. One may use determinants to derive a formula for the solutions
of a non-singular system of n equations in n unknowns




a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . .
...

an1 an2 . . . ann







x1

x2
...

xn


 =




b1

b2
...

bn


 .

The formula is called Cramer’s rule, and here it is. For the jth unknown xj, take
the determinant of the matrix formed by replacing the jth column of the coefficient
matrix A by b, and divide it by det A. In symbols,

xj =

det




a11 . . . b1 . . . a1n

a21 . . . b2 . . . a2n
... . . .

... . . .
...

an1 . . . bn . . . ann




det




a11 . . . a1j . . . a1n

a21 . . . a2j . . . a2n

... . . .
... . . .

...
an1 . . . anj . . . ann




Example. Consider 
 1 0 2

1 1 2
2 0 6





x1

x2

x3


 =


 1

5
3


 .

We have

det


 1 0 2

1 1 2
2 0 6


 = 2.
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(Do you see a quick way to compute that?) Hence,

x1 =

det


 1 0 2

5 1 2
3 0 6




2
=

0
2

= 0

x2 =

det


 1 1 2

1 5 2
2 3 6




2
=

8
2

= 4

x3 =

det


 1 0 1

1 1 5
2 0 3




2
=

1
2
.

You should try to do this by Gauss-Jordan reduction.

Cramer’s rule is not too useful for solving specific numerical systems of equations.
The only practical method for calculating the needed determinants for n large is to
use row (and possibly column) operations. It is usually easier to use row operations
to solve the system without resorting to determinants. However, if the system has
non-numeric symbolic coefficients, Cramer’s rule is sometimes useful. Also, it is
often valuable as a theoretical tool.

Cramer’s rule is related to expansion in minors. You can find further discussion
of it and proofs in Section 5.4 and 5.5 of Introduction to Linear Algebra by Johnson,
Riess, and Arnold. (See also Section 4.5 of Applied Linear Algebra by Noble and
Daniel.)

Appendix. Some Proofs. Here are the proofs of two important theorems
stated in this section.

The Product Rule. det(AB) = (det A)(detB).

Proof. First assume that A is non-singular. Then there is a sequence of row
operations which reduces A to the identity

A → A1 → A2 → . . . → Ak = I.

Associated with each of these operations will be a multiplier ci which will depend
on the particular operation, and

det A = c1 det A1 = c1c2 det A2 = · · · = c1c2 . . . ck detAk = c1c2 . . . ck

since Ak = I and det I = 1. Now apply exactly these row operations to the product
AB

AB → A1B → A2B → . . . → AkB = IB = B.

The same multipliers contribute factors at each stage, and

det AB = c1 det A1B = c1c2 det A2B = · · · = c1c2 . . . ck︸ ︷︷ ︸
det A

det B = det A det B.
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Assume instead that A is singular. Then, AB is also singular. (This follows
from the fact that the rank of AB is at most the rank of A, as mentioned in the
Exercises for Chapter 1, Section 6. However, here is a direct proof for the record.
Choose a sequence of elementary row operations for A, the end result of which is
a matrix A′ with at least one row of zeroes. Applying the same operations to AB
yields A′B which also has to have at least one row of zeroes.) It follows that both
det AB and detA det B are zero, so they are equal. ¤

The Transpose Rule. detAt = det A.

Proof. If A is singular, then At is also singular and vice-versa. For, the rank
may be characterized as either the dimension of the row space or the dimension of
the column space, and an n× n matrix is singular if its rank is less than n. Hence,
in the singular case, detA = 0 = detAt.

Suppose then that A is non-singular. Then there is a sequence of elementary
row operations

A → A1 → A2 → · · · → Ak = I.

Recall from Chapter 1, Section 4 that each elementary row operation may be ac-
complished by multiplying by an appropriate elementary matrix. Let Ci denote the
elementary matrix needed to perform the ith row operation. Then,

A → A1 = C1A → A2 = C2C1A → · · · → Ak = CkCk−1 . . . C2C1A = I.

In other words,

A = (Ck . . . C2C1)−1 = C1
−1C2

−1 . . . Ck
−1.

To simplify the notation, let Di = Ci
−1. The inverse D of an elementary matrix

C is also an elementary matrix; its effect is the row operation which reverses the
effect of C. Hence, we have shown that any non-singular square matrix A may be
expressed as a product of elementary matrices

A = D1D2 . . . Dk.

Hence, by the product rule

det A = (det D1)(detD2) . . . (detDk).

On the other hand, we have by rule for the transpose of a product

At = Dk
t . . . D2

tD1
t,

so by the product rule

det At = det(Dk
t) . . . det(D2

t) det(D1
t).

Suppose we know the rule detDt = det D for any elementary matrix D. Then,

det At = det(Dk
t) . . . det(D2

t) det(D1
t)

= det(Dk) . . . det(D2) det(D1)

= (det D1)(detD2) . . . (detDk) = detA.
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(We used the fact that the products on the right are products of scalars and so can
be rearranged any way we like.)

It remains to establish the rule for elementary matrices. If D = Eij(c) is obtained
from the identity matrix by adding c times its jth row to its ith row, then Dt =
Eji(c) is a matrix of exactly the same type. In each case, detD = detDt = 1.
If D = Ei(c) is obtained by multiplying the ith row of the identity matrix by c,
then Dt is exactly the same matrix Ei(c). Finally, if D = Eij is obtained from the
identity matrix by interchanging its ith and jth rows, then Dt is Eji which in fact
is just Eij again. Hence, in each case detDt = det D does hold. ¤

Exercises for Section 3.

1. Check the validity of the product rule for the product
 1 −2 6

2 0 3
−3 1 1





 2 3 1

1 2 2
1 1 0


 .

2. If A and B are n × n matrices, both of rank n, what can you say about the
rank of AB?

3. Find

det




3 0 0 0
2 2 0 0
1 6 4 0
1 5 4 3


 .

Of course, the answer is the product of the diagonal entries. Using the proper-
ties discussed in the section, see how many different ways you can come to this
conclusion.

What can you conclude in general about the determinant of a lower triangular
square matrix?

4. (a) Show that if A is an invertible n×n matrix, then det(A−1) =
1

det A
. Hint:

Let B = A−1 and apply the product rule to AB.
(b) Using part(a), show that if A is any n×n matrix and P is an invertible n×n

matrix, then det(PAP−1) = detA.

5. Why does Cramer’s rule fail if the coefficient matrix A is singular?

6. Use Cramer’s rule to solve the system


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0







x1

x2

x3

x4


 =




1
2
3
4


 .

Also, solve it by Gauss-Jordan reduction and compare the amount of work you had
to do in each case.
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4. Eigenvalues and Eigenvectors for n × n Matrices

One way in which to understand a matrix A is to examine its effects on the
geometry of vectors in Rn. For example, we saw that detA measures the relative
change in area or volume for figures generated by vectors in two or three dimen-
sions. Also, as we have seen in an exercise in Chapter I, Section 2, the multiples
Ae1, Ae2, . . . , Aen of the standard basis vectors are just the columns of the matrix
A. More generally, it is often useful to look at multiples Av for other vectors v.

Example 1. Let

A =
[

2 1
1 2

]
.

Here are some examples of products Av.

v
[

1
0

] [
1

0.5

] [
1
1

] [
0.5

1

] [
0
1

]

Av
[

2
1

] [
2.5

2

] [
3
3

] [
2

2.5

] [
1
2

]

These illustrate a trend for vectors in the first quadrant.

Transformed  vectors   AvVectors   v

Vectors pointing near one or the other of the two axes are directed closer to the
diagonal line. A diagonal vector is transformed into another diagonal vector.

Let A be any n × n matrix. In general, if v is a vector in Rn, the transformed
vector Av will differ from v in both magnitude and direction. However, some
vectors v will have the property that Av ends up being parallel to v; i.e., it points
in the same direction or the opposite direction. These vectors will specify ‘natural’
axes for any problem involving the matrix A.
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v

v

Av

AV

Positive eigenvalue Negative eigenvalue

Vectors are parallel when one is a scalar multiple of the other, so we make the
following formal definition. A non-zero vector v is called an eigenvector for the
square matrix A if

(1) Av = λv

for an appropriate scalar λ. λ is called the eigenvalue associated with the eigen-
vector v.

In words, this says that v 6= 0 is an eigenvector for A if multiplying it by A has
the same effect as multiplying it by an appropriate scalar. Thus, we may think
of eigenvectors as being vectors for which matrix multiplication by A takes on a
particularly simple form.

It is important to note that while the eigenvector v must be non-zero, the cor-
responding eigenvalue λ is allowed to be zero.

Example 2. Let

A =
[

2 1
1 2

]
.

We want to see if the system [
2 1
1 2

] [
v1

v2

]
= λ

[
v1

v2

]

has non-trivial solutions v1, v2. This of course depends on λ. If we write this system
out, it becomes

2v1 + v2 = λv1

v1 + 2v2 = λv2

or, collecting terms,

(2− λ)v1 + v2 = 0

v1 + (2− λ)v2 = 0.

In matrix form, this becomes

(2)
[

2− λ 1
1 2− λ

]
v = 0.
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For any specific λ, this is a homogeneous system of two equations in two unknowns.
By the theory developed in the previous sections, we know that it will have non-
zero solutions precisely in the case that the rank is smaller than two. A simple
criterion for that to be the case is that the determinant of the coefficient matrix
should vanish, i.e.,

det
[

2− λ 1
1 2− λ

]
= (2− λ)2 − 1 = 0

or 4− 4λ + λ2 − 1 = λ2 − 4λ + 3 = (λ− 3)(λ− 1) = 0.

The roots of this equation are λ = 3 and λ = 1. Thus, these and only these scalars
λ can be eigenvalues for appropriate eigenvectors.

First consider λ = 3. Putting this in (2) yields

(3)
[

2− 3 1
1 2− 3

]
v =

[−1 1
1 −1

]
v = 0.

Gauss-Jordan reduction yields[−1 1
1 −1

]
→

[
1 −1
0 0

]
.

(As is usual for homogeneous systems, we don’t need to explicitly write down
the augmented matrix, because there are zeroes to the right of the ‘bar’.) The
corresponding system is v1 − v2 = 0, and the general solution is v1 = v2 with v2

free. A general solution vector has the form

v =
[

v1

v2

]
=

[
v2

v2

]
= v2

[
1
1

]
.

Put v2 = 1 to obtain

v1 =
[

1
1

]
which will form a basis for the solution space of (3). Any other eigenvector for
λ = 3 will be a non-zero multiple of the basis vector v1.

Consider next the eigenvalue λ = 1. Put this in (2) to obtain

(4)
[

2− 1 1
1 2− 1

]
v =

[
1 1
1 1

]
v = 0.

In this case, Gauss-Jordan reduction—which we omit—yields the general solution
v1 = −v2 with v2 free. The general solution vector is

v =
[

v1

v2

]
= v2

[−1
1

]
.

Putting v2 = 1 yields the basic eigenvector

v2 =
[−1

1

]
.
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The general case
We redo the above algebra for an arbitrary n × n matrix. First, rewrite the

eigenvector condition as follows

Av = λv

Av − λv = 0
Av − λIv = 0

(A− λI)v = 0.

The last equation is the homogeneous n× n system with n× n coefficient matrix

A− λI =




a11 − λ a12 . . . a1n

a21 a22 − λ . . . a2n
...

... . . .
...

an1 an2 . . . ann − λ


 .

It has a non-zero solution vector v if and only if the coefficient matrix has rank
less than n, i.e., if and only if it is singular . By Theorem 2.1, this will be true if
and only if λ satisfies the characteristic equation

(5) det(A− λI) = det




a11 − λ a12 . . . a1n

a21 a22 − λ . . . a2n
...

... . . .
...

an1 an2 . . . ann − λ


 = 0.

As in the example, the strategy for finding eigenvalues and eigenvectors is as fol-
lows. First find the roots of the characteristic equation. These are the eigenvalues.
Then for each root λ, find a general solution for the system

(6) (A− λI)v = 0.

This gives us all the eigenvectors for that eigenvalue. The solution space of the
system (6), i.e., the null space of the matrix A− λI, is called the eigenspace corre-
sponding to the eigenvalue λ.

Example 3. Consider the matrix

A =


 1 4 3

4 1 0
3 0 1


 .

The characteristic equation is

det(A− λI) = det


 1− λ 4 3

4 1− λ 0
3 0 1− λ




= (1− λ)((1− λ)2 − 0)− 4(4(1− λ)− 0) + 3(0− 3(1− λ)

= (1− λ)3 − 25(1− λ) = (1− λ)((1− λ)2 − 25)

= (1− λ)(λ2 − 2λ− 24) = (1− λ)(λ− 6)(λ + 4) = 0.
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Hence, the eigenvalues are λ = 1, λ = 6, and λ = −4. We proceed to find the
eigenspaces for each of these eigenvalues, starting with the largest.

First, take λ = 6, and put it in (6) to obtain the system
 1− 6 4 3

4 1− 6 0
3 0 1− 6





 v1

v2

v3


 = 0 or


−5 4 3

4 −5 0
3 0 −5





 v1

v2

v3


 = 0.

To solve, use Gauss-Jordan reduction
−5 4 3

4 −5 0
3 0 −5


 →


−1 −1 3

4 −5 0
3 0 −5


 →


−1 −1 3

0 −9 12
0 −3 4




→

−1 −1 3

0 0 0
0 −3 4


 →


−1 −1 3

0 3 −4
0 0 0




→

 1 1 −3

0 1 −4/3
0 0 0


 →


 1 0 −5/3

0 1 −4/3
0 0 0


 .

Note that the matrix is singular, and the rank is smaller than 3. This must be the
case because the condition det(A− λI) = 0 guarantees it. If the coefficient matrix
were non-singular, you would know that there was a mistake: either the roots of
the characteristic equation are wrong or the row reduction was not done correctly.

The general solution is

v1 = (5/3)v3

v2 = (4/3)v3

with v3 free. The general solution vector is

v =


 (5/3)v3

(4/3)v3

v3


 = v3


 5/3

4/3
1


 .

Hence, the eigenspace is 1-dimensional. A basis may be obtained by setting v3 = 1
as usual, but it is a bit neater to put v3 = 3 so as to avoid fractions. Thus,

v1 =


 5

4
3




constitutes a basis for the eigenspace corresponding to the eigenvalue λ = 6 . Note
that we have now found all eigenvectors for this eigenvalue. They are all the non-
zero vectors in this 1-dimensional eigenspace, i.e., all non-zero multiples of v1.

Next take λ = 1 and put it in (6) to obtain the system
 0 4 3

4 0 0
3 0 0





 v1

v2

v3


 = 0.
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Use Gauss-Jordan reduction
 0 4 3

4 0 0
3 0 0


 → · · · →


 1 0 0

0 1 3/4
0 0 0


 .

The general solution is

v1 = 0

v2 = −(3/4)v3

with v2 free. Thus the general solution vector is

v =


 0
−(3/4)v3

v3


 = v3


 0
−3/4

1


 .

Put v3 = 4 to obtain a single basis vector

v2 =


 0
−3

4




for the eigenspace corresponding to the eigenvalue λ = 1. The set of eigenvectors
for this eigenvalue is the set of non-zero multiples of v2.

Finally, take λ = −4, and put this in (6) to obtain the system
 5 4 3

4 5 0
3 0 5





 v1

v2

v3


 = 0.

Solve this by Gauss-Jordan reduction.
 5 4 3

4 5 0
3 0 5


 →


 1 −1 3

4 5 0
3 0 5


 →


 1 −1 3

0 9 −12
0 3 −4




→

 1 −1 3

0 3 −4
0 0 0


 →


 1 0 5/3

0 1 −4/3
0 0 0


 .

The general solution is

v1 = −(5/3)v3

v2 = (4/3)v3

with v3 free. The general solution vector is

v =


−(5/3)v3

(4/3)v3

v3


 = v3


−5/3

4/3
1


 .
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Setting v3 = 3 yields the basis vector

v3 =


−5

4
3




for the eigenspace corresponding to λ = −4. The set of eigenvectors for this eigen-
value consists of all non-zero multiples of v3.

The set {v1,v2,v3} obtained in the previous example is linearly independent.
To see this apply Gaussian reduction to the matrix with these vectors as columns:

 5 0 −5
4 −3 4
3 4 3


 →


 1 0 −1

0 −3 8
0 4 6


 →


 1 0 −1

0 1 −8/3
0 0 50/3


 .

The reduced matrix has rank 3, so the columns of the original matrix form an
independent set.

It is no accident that a set so obtained is linearly independent. The following
theorem tells us that this will always be the case.

Theorem 2.5. Let A be an n× n matrix. Let λ1, λ2, . . . , λk be different eigen-
values of A, and let v1,v2, . . . ,vk be corresponding eigenvectors. Then

{v1,v2, . . . ,vk}

is a linearly independent set.

See the appendix if you are interested in a proof.

Historical Aside. The concepts discussed here were invented by the 19th cen-
tury English mathematicians Cayley and Sylvester, but they used the terms ‘char-
acteristic vector’ and ‘characteristic value’. These were translated into German as
‘Eigenvektor’ and ‘Eigenwerte’, and then partially translated back into English—
largely by physicists—as ‘eigenvector’ and ‘eigenvalue’. Some English and Ameri-
can mathematicians tried to retain the original English terms, but they were over-
whelmed by extensive use of the physicists’ language in applications. Nowadays
everyone uses the German terms. The one exception is that we still call

det(A− λI) = 0

the characteristic equation and not some strange German-English name.

Solving Polynomial Equations. To find the eigenvalues of an n× n matrix,
you have to solve a polynomial equation. You all know how to solve quadratic
equations, but you may be stumped by cubic or higher equations, particularly if
there are no obvious ways to factor. You should review what you learned in high
school about this subject, but here are a few guidelines to help you.

First, it is not generally possible to find a simple solution in closed form for
an algebraic equation. For most equations you might encounter in practice, you
would have to use some method to approximate a solution. (Many such methods
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exist. One you may have learned in your calculus course is Newton’s Method .)
Unfortunately, an approximate solution of the characteristic equation isn’t much
good for finding the corresponding eigenvectors. After all, the system

(A− λI)v = 0

must have rank smaller than n for there to be non-zero solutions v. If you replace
the exact value of λ by an approximation, the chances are that the new system will
have rank n. Hence, the textbook method we have described for finding eigenvectors
won’t work. There are in fact many alternative methods for finding eigenvalues and
eigenvectors approximately when exact solutions are not available. Whole books
are devoted to such methods. (See Johnson, Riess, and Arnold or Noble and Daniel
for some discussion of these matters.)

Fortunately, textbook exercises and examination questions almost always involve
characteristic equations for which exact solutions exist, but it is not always obvious
what they are. Here is one fact (a consequence of an important result called Gauss’s
Lemma) which helps us find such exact solutions when they exist. Consider an
equation of the form

λn + a1λ
n−1 + · · ·+ an−1λ + an = 0

where all the coefficients are integers. (The characteristic equation of a matrix
always has leading coefficient 1 or −1. In the latter case, just imagine you have
multiplied through by −1 to apply the method.) Gauss’s Lemma tells us that if this
equation has any roots which are rational numbers, i.e., quotients of integers, then
any such root is actually an integer, and, moreover, it must divide the constant
term an. Hence, the first step in solving such an equation should be checking all
possible factors (positive and negative) of the constant term. Once, you know a
root r1, you can divide through by λ − r1 to reduce to a lower degree equation.
If you know the method of synthetic division, you will find checking the possible
roots and the polynomial long division much simpler.

Example 4. Solve
λ3 − 3λ + 2 = 0.

If there are any rational roots, they must be factors of the constant term 2. Hence,
we must try 1,−1, 2,−2. Substituting λ = 1 in the equation yields 0, so it is a root.
Dividing λ3 − 3λ + 2 by λ− 1 yields

λ3 − 3λ + 2 = (λ− 1)(λ2 + λ− 2)

and this may be factored further to obtain

λ3 − 3λ2 + 2 = (λ− 1)(λ− 1)(λ + 2) = (λ− 1)2(λ + 2).

Hence, the roots are λ = 1 which is a double root and λ = −2.

Complex Roots. A polynomial equation may end up having complex roots.
This can certainly occur for a characteristic equation.
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Example 5. Let

A =
[

0 −1
1 0

]
.

Its characteristic equation is

det(A− λI) = det
[−λ −1

1 −λ

]
= λ2 + 1 = 0.

As you learned in high school algebra, the roots of this equation are ±i where i is
the imaginary square root of −1.

In such a case, we won’t have much luck in finding eigenvectors in Rn for such
‘eigenvalues’, since solving the appropriate linear equations will yield solutions with
non-real, complex entries. It is possible to develop a complete theory based on
complex scalars and complex entries, and such a theory is very useful in certain
areas like electrical engineering. For the moment, however, we shall restrict our
attention to the theory in which everything is assumed to be real. In that context,
we just ignore non-real, complex roots of the characteristic equation

Appendix. Proof of the linear independence of sets of eigenvectors
for distinct eigenvalues. Assume {v1,v2, . . . ,vk} is not a linearly independent
set, and try to derive a contradiction. In this case, one of the vectors in the set
can be expressed as a linear combination of the others. If we number the elements
appropriately, we may assume that

(7) v1 = c2v2 + · · ·+ ckvr,

where r ≤ k. (Before renumbering, leave out any vector vi on the right if it appears
with coefficient ci = 0.) Note that we may also assume that no vector which appears
on the right is a linear combination of the others because otherwise we could express
it so and after combining terms delete it from the sum. Thus we may assume the
vectors which appear on the right form a linearly independent set. Multiply (7) on
the left by A. We get

Av1 = c2Av2 + · · ·+ ckAvk

λ1v1 = c2λ2v2 + . . . ckλkvk(8)

where in (8) we used the fact that each vi is an eigenvector with eigenvalue λi.
Now multiply (7) by λ1 and subtract from (8). We get

(9) 0 = c2(λ2 − λ1)v2 + · · ·+ ck(λk − λ1)vk.

Not all the coefficients on the right in this equation are zero. For at least one of
the ci 6= 0 (since v1 6= 0), and none of the quantities λ2 − λ1, . . . λk − λ1 is zero.
It follows that (9) may be used to express one of the vectors v2, . . . ,vk as a linear
combination of the others. However, this contradicts the assertion that the set of
vectors appearing on the right is linearly independent. Hence, our initial assumption
that the set {v1,v2, . . . ,vk} is dependent must be false, and the theorem is proved.

You should try this argument out on a set {v1,v2,v3} of three eigenvectors to
see if you understand it.
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Exercises for Section 4.

1. Find the eigenvalues and eigenvectors for each of the following matrices. Use
the method given in the text for solving the characteristic equation if it has degree
greater than two.

(a)
[

5 −3
2 0

]
.

(b)


 3 −2 −2

0 0 1
1 0 −1


.

(c)


 2 −1 −1

0 0 −2
0 1 3


.

(d)


 4 −1 −1

0 2 −1
1 0 3


.

2. You are a mechanical engineer checking for metal fatigue in a vibrating system.
Mathematical analysis reduces the problem to finding eigenvectors for the matrix

A =


−2 1 0

1 −2 1
0 1 −2


. A member of your design team tells you that v =


 1

1
1


 is

an eigenvector for A. What is the quickest way for you to check if this is correct?

3. As in the previous problem, some other member of your design team tells you

that v =


 0

0
0


 is a basis for the eigenspace of the same matrix corresponding to

one of its eigenvalues. What do you say in return?

4. Under what circumstances can zero be an eigenvalue of the square matrix
A? Could A be non-singular in this case? Hint: The characteristic equation is
det(A− λI) = 0.

5. Let A be a square matrix, and suppose λ is an eigenvalue for A with eigenvector
v. Show that λ2 is an eigenvalue for A2 with eigenvector v. What about λn and
An for n a positive integer?

6. Suppose A is non-singular. Show that λ is an eigenvalue of A if and only if
λ−1 is an eigenvalue of A−1. Hint. Use the same eigenvector.

7. (a) Show that det(A−λI) is a quadratic polynomial in λ if A is a 2×2 matrix.
(b) Show that det(A− λI) is a cubic polynomial in λ if A is a 3× 3 matrix.
(c) What would you guess is the coefficient of λn in det(A− λI) for A an n× n

matrix?

8. (Optional) Let A be an n × n matrix with entries not involving λ. Prove in
general that det(A−λI) is a polynomial in λ of degree n. Hint: Assume B(λ) is an
n×n matrix such that each column has at most one term involving λ and that term
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is of the form a + bλ. Show by using the recursive definition of the determinant
that detB(λ) is a polynomial in λ of degree at most n. Now use this fact and the
recursive definition of the determinant to show that det(A−λI) is a polynomial of
degree exactly n.
9. (Project) The purpose of this project is to illustrate one method for approxi-
mating an eigenvector and the corresponding eigenvalue in cases where exact cal-
culation is not feasible. We use an example in which one can find exact answers by
the usual method, at least if one uses radicals, so we can compare answers to gauge
how effective the method is.

Let A =
[

1 1
1 2

]
. Define an infinite sequence of vectors vn in R2 as follows.

Let v0 =
[

1
0

]
. Having defined vn, define vn+1 = Avn. Thus, v1 = Av0,v2 =

Av1 = A2v0,v3 = Av2 = A3v0, etc. Then it turns out in this case that as
n → ∞, the directions of the vectors vn approach the direction of an eigenvector
for A. Unfortunately, there is one difficulty: the magnitudes |vn| approach infinity.

To get get around this problem, proceed as follows. Let vn =
[

an

bn

]
and put

un =
1
bn

vn =
[

an/bn

1

]
. Then the second component is always one, and the first

component rn = an/bn approaches a limit r and u =
[

r
1

]
is an eigenvector for A.

(a) For the above matrix A, calculate the sequence of vectors vn and and numbers
rn n = 1, 2, 3, . . . . Do the calculations for enough n to see a pattern emerging and
so that you can estimate r accurately to 3 decimal places.

(b) Once you know an eigenvector u, you can find the corresponding eigenvalue
λ by calculating Au. Use your estimate in part (a) to estimate the corresponding
λ.

(c) Compare this to the roots of the characteristic equation (1−λ)(2−λ)−1 = 0.
Note that the method employed here only gives you one of the two eigenvalues. In
fact, this method, when it works, usually gives the largest eigenvalue.

5. Diagonalization

In many cases, the process outlined in the previous section results in a basis for
Rn which consists of eigenvectors for the matrix A. Indeed, the set of eigenvectors
so obtained is always linearly independent, so if it is large enough (i.e., has n
elements), it will be a basis. When that is the case, the use of that basis to
establish a coordinate system for Rn can simplify calculations involving A.

Example 1. Let

A =
[

2 1
1 2

]
.

We found in the previous section that

v1 =
[

1
1

]
, v2 =

[−1
1

]
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are eigenvectors respectively with eigenvalues λ1 = 3 and λ2 = 1. The set {v1,v2}
is linearly independent, and since it has two elements, it must be a basis for R2.
Suppose v is any vector in R2. We may express it respect to this new basis

v = v1y1 + v2y2 = [v1 v2 ]
[

y1

y2

]
where (y1, y2) are the coordinates of v with respect to this new basis. It follows
that

Av = A(v1y1 + v2y2) = (Av1)y1 + (Av2)y2.

However, since they are eigenvectors, each is just multiplied by the corresponding
eigenvalue, or in symbols

Av1 = v1(3) and Av2 = v2(1).

So

(1) A(v1y1 + v2y2) = v1(3y1) + v2y2 = [v1 v2 ]
[

3y1

y2

]
.

In other words, with respect to the new coordinates, the effect of multiplication by
A on a vector is to multiply the first new coordinate by the first eigenvalue λ1 = 3
and the second new coordinate by the second eigenvalue λ2 = 1.

Whenever there is a basis for Rn consisting of eigenvectors for A, we say that A
is diagonalizable and that the new basis diagonalizes A.

The reason for this terminology may be explained as follows. In the above
example, rewrite the left most side of equation (1)

A(v1y1 + v2y2) = A [v1 v2 ]
[

y1

y2

]
and the right most side as

[v1 v2 ]
[

3y1

y2

]
= [v1 v2 ]

[
3 0
0 1

] [
y1

y2

]
.

Since these two are equal, if we drop the common factor
[

y1

y2

]
on the right, we get

A [v1 v2 ] = [v1 v2 ]
[

3 0
0 1

]
.

Let

P = [v1 v2 ] =
[

1 −1
1 1

]
,

i.e., P is the 2× 2 matrix with the basic eigenvectors v1,v2 as columns. Then, the
above equation can be written

AP = P

[
3 0
0 1

]
or P−1AP =

[
3 0
0 1

]
.
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(The reader should check explicitly in this case that

[
1 −1
1 1

]−1 [
2 1
1 2

] [
1 −1
1 1

]
=

[
3 0
0 1

]
.

)

By means of these steps, the matrix A has been expressed in terms of a diagonal
matrix with its eigenvalues on the diagonal. This process is called diagonalization
We shall return in Chapter III to a more extensive discussion of diagonalization.

Example 2. Not every n×n matrix A is diagonalizable. That is, it is not always
possible to find a basis for Rn consisting of eigenvectors for A. For example, let

A =
[

3 1
0 3

]
.

The characteristic equation is

det
[

3− λ 1
0 3− λ

]
= (3− λ)2 = 0.

There is only one root λ = 3 which is a double root of the equation. To find the
corresponding eigenvectors, we solve the homogeneous system (A− 3I)v = 0. The
coefficient matrix [

3− 3 1
0 3− 3

]
=

[
0 1
0 0

]
is already reduced, and the corresponding system has the general solution

v2 = 0, v1 free.

The general solution vector is

v =
[

v1

0

]
= v1

[
1
0

]
= v1e1.

Hence, the eigenspace for λ = 3 is one dimensional with basis {e1}. There are no
other eigenvectors except for multiples of e1. Thus, we can’t possibly find a basis
for R2 consisting of eigenvectors for A.

Note how Example 2 differs from the examples which preceded it; its character-
istic equation has a repeated root. In fact, we have the following general principle.

If the roots of the characteristic equation of a matrix are all distinct, then there
is necessarily a basis for Rn consisting of eigenvectors, and the matrix is diagonal-
izable.

In general, if the characteristic equation has repeated roots, then the matrix
need not be diagonalizable. However, we might be lucky, and such a matrix may
still be diagonalizable.
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Example 3. Consider the matrix

A =


 1 1 −1
−1 3 −1
−1 1 1


 .

First solve the characteristic equation

det


 1− λ 1 −1
−1 3− λ −1
−1 1 1− λ


 =

(1− λ)((3− λ)(1− λ) + 1) + (1− λ + 1)− (−1 + 3− λ)

= (1− λ)(3− 4λ + λ2 + 1) + 2− λ− 2 + λ

= (1− λ)(λ2 − 4λ + 4)

= (1− λ)(λ− 2)2 = 0.

Note that 2 is a repeated root. We find the eigenvectors for each of these eigenvalues.
For λ = 2 we need to solve (A− 2I)v = 0.

−1 1 −1
−1 1 −1
−1 1 −1


 →


 1 −1 1

0 0 0
0 0 0


 .

The general solution of the system is v1 = v2 − v3 with v2, v3 free. The general
solution vector for that system is

v =


 v2 − v3

v2

v3


 = v2


 1

1
0


 + v3


−1

0
1


 .

The eigenspace is two dimensional. Thus, for the eigenvalue λ = 2 we obtain two
basic eigenvectors

v1 =


 1

1
0


 , v2 =


−1

0
1


 ,

and any eigenvector for λ = 2 is a non-trivial linear combination of these.
For λ = 1, we need to solve (A− I)v = 0.

 0 1 −1
−1 2 −1
−1 1 0


 →


 1 −1 0

0 1 −1
0 0 0


 →


 1 0 −1

0 1 −1
0 0 0


 .

The general solution of the system is v1 = v3, v2 = v3 with v3 free. The general
solution vector is

v =


 v3

v3

v3


 = v3


 1

1
1


 .
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The eigenspace is one dimensional, and a basic eigenvector for λ = 1 is

v3 =


 1

1
1


 .

It is not hard to check that the set of these basic eigenvectors
v1 =


 1

1
0


 , v2 =


−1

0
1


 , v3 =


 1

1
1







is linearly independent, so it is a basis for R3.
The matrix is diagonalizable.

In the above example, the reason we ended up with a basis for R3 consisting
of eigenvectors for A was that there were two basic eigenvectors for the double
root λ = 2. In other words, the dimension of the eigenspace was the same as the
multiplicity.

Theorem 2.6. Let A be an n × n matrix. The dimension of the eigenspace
corresponding to a given eigenvalue is always less than or equal to the multiplicity
of that eigenvalue. In particular, if all the roots of the characteristic polynomial
are real, then the matrix will be diagonalizable provided, for every eigenvalue, the
dimension of the eigenspace is the same as the multiplicity of the eigenvalue. If this
fails for at least one eigenvalue, then the matrix won’t be diagonalizable.

Note. If the characteristic polynomial has non-real, complex roots, the matrix
also won’t be diagonalizable in our sense, since we require all scalars to be real.
However, it might still be diagonalizable in the more general theory allowing com-
plex scalars as entries of vectors and matrices.

Exercises for Section 5.

1. (a) Find a basis for R2 consisting of eigenvectors for

A =
[

1 2
2 1

]
.

(b) Let P be the matrix with columns the basis vectors you found in part (a).
Check that P−1AP is diagonal with the eigenvalues on the diagonal.

2. (a) Find a basis for R3 consisting of eigenvectors for

A =


 1 2 −4

2 −2 −2
−4 −2 1


 .

(b) Let P be the matrix with columns the basis vectors in part (a). Calculate
P−1AP and check that it is diagonal with the diagonal entries the eigenvalues you
found.
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3. (a) Find the eigenvalues and eigenvectors for

A =


 2 1 1

0 2 1
0 0 1


 .

(b) Is A diagonalizable?

4. (a) Find a basis for R3 consisting of eigenvectors for

A =


 2 1 1

1 2 1
1 1 2


 .

(b) Find a matrix P such that P−1AP is diagonal. Hint: See Problem 1.

5. Suppose A is a 5 × 5 matrix with exactly three (real) eigenvalues λ1, λ2, λ3.
Suppose these have multiplicities m1,m2, and m3 as roots of the characteristic
equation. Let d1, d2, and d3 respectively be the dimensions of the eigenspaces for
λ1, λ2, and λ3. In each of the following cases, are the given numbers possible, and
if so, is A diagonalizable?

(a) m1 = 1, d1 = 1,m2 = 2, d2 = 2,m3 = 2, d3 = 2.
(b) m1 = 2, d1 = 1,m2 = 1, d2 = 1,m3 = 2, d3 = 2.
(c) m1 = 1, d1 = 2,m2 = 2, d2 = 2,m3 = 2, d3 = 2.
(d) m1 = 1, d1 = 1,m2 = 1, d2 = 1,m3 = 1, d3 = 1.

6. Tell if each of the following matrices is diagonalizable or not.

(a)
[

5 −2
−2 8

]
, (b)

[
1 1
0 1

]
(c)

[
0 −1
1 0

]

6. The Exponential of a Matrix

Recall the series expansion for the exponential function

ex = 1 + x +
x2

2!
+

x3

3!
+ · · · =

∞∑
n=0

xn

n!
.

This series is specially well behaved. It converges for all possible x.
There are situations in which one would like to make sense of expressions of the

form f(A) where f(x) is a well defined function of a scalar variable and A is a
square matrix. One way to do this is to try to make a series expansion. We show
how to do this for the exponential function.

Define

eA = I + A +
1
2
A2 +

1
3!

A3 + · · · =
∞∑

n=0

An

n!
.

A little explanation is necessary. Each term on the right is an n × n matrix. If
there were only a finite number of such terms, there would be no problem, and the
sum would also be an n× n matrix. In general, however, there are infinitely many
terms, and we have to worry about whether it makes sense to add them up.
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Example 1. Let

A = t

[
0 1

−1 0

]
.

Then

A2 = t2
[−1 0

0 −1

]

A3 = t3
[

0 −1
1 0

]

A4 = t4
[

1 0
0 1

]

A5 = t5
[

0 1
−1 0

]
...

Hence,

eA =
[

1 0
0 1

]
+ t

[
0 1

−1 0

]
+

1
2
t2

[−1 0
0 −1

]
+

1
3!

t3
[

0 −1
1 0

]
+ . . .

=
[

1− t2

2 + t4

4! − . . . t− t3

3! + t5

5! − . . .

−t + t3

3! − t5

5! + . . . 1− t2

2 + t4

4! − . . .

]

=
[

cos t sin t
− sin t cos t

]
.

As in the example, a series of n × n matrices yields a separate series for each
of the n2 possible entries. We shall say that such a series of matrices converges if
the series it yields for each entry converges. With this rule, it is possible to show
that the series defining eA converges for any n × n matrix A, but the proof is a
bit involved. Fortunately, it is often the case that we can avoid worrying about
convergence by appropriate trickery. In what follows we shall generally ignore such
matters and act as if the series were finite sums.

The exponential function for matrices obeys the usual rules you expect an expo-
nential function to have, but sometimes you have to be careful.

(1) If 0 denotes the n× n zero matrix, then e0 = I.
(2) The law of exponents holds if the matrices commute, i.e., if B and C are

n× n matrices such that BC = CB, then eB+C = eBeC .

(3) If A is an n× n constant matrix, then
d

dt
eAt = AeAt = eAtA. (It is worth

writing this in both orders because products of matrices don’t automati-
cally commute.)

Here are the proofs of these facts.

(1) e0 = I + 0 +
1
2
02 + · · · = I.
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(2) See the Exercises.

(3) Here we act as if the sum were finite (although the argument would work in
general if we knew enough about convergence of series of matrices.)

d

dt
eAt =

d

dt

(
I + tA +

1
2
t2A2 +

1
3!

t3A3 + · · ·+ 1
j!

tjAj + . . .

)
= 0 + A +

1
2
(2t)A2 +

1
3!

(3t2)A3 + · · ·+ 1
j!

(jtj−1)Aj + . . .

= A + tA2 +
1
2
t2A3 + · · ·+ 1

(j − 1)!
tj−1Aj + . . .

= A(I + tA +
1
2
t2A2 + · · ·+ 1

(j − 1)!
tj−1Aj−1 + . . . )

= AeAt.

Note that in the next to last step A could just as well have been factored out on
the right, so it doesn’t matter which side you put it on.

Exercises for Section 6.

1. (a) Let A =
[

λ 0
0 µ

]
. Show that

eAt =
[

eλt 0
0 eµt

]
.

(b) Let A =




λ1 0 . . . 0
0 λ2 . . . 0
...

... . . .
...

0 0 . . . λn


. Such a matrix is called a diagonal matrix.

What can you say about eAt?

2. (a) Let N =
[

0 0
1 0

]
. Calculate eNt.

(b) Let N =


 0 0 0

1 0 0
0 1 0


. Calculate eNt.

(c) Let N be an n × n matrix of the form




0 0 . . . 0 0
1 0 . . . 0 0
0 1 . . . 0 0
...

... . . .
...

...
0 0 . . . 1 0


. What is the

smallest integer k satisfying Nk = 0? What can you say about eNt?

3. (a) Let A =
[

λ 0
1 λ

]
. Calculate eAt. Hint: use A = λI + (A− λI). Note that

A and N = A− λI commute.
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(b) Let A =


λ 0 0

1 λ 0
0 1 λ


. Calculate eAt.

(c) Let A be an n × n matrix of the form




λ 0 . . . 0 0
1 λ . . . 0 0
0 1 . . . 0 0
...

... . . .
...

...
0 0 . . . 1 λ


. What can you

say about eAt = eλte(A−λI)t?

4. Let A be an n × n matrix, and let P be a non-singular n × n matrix. Show
that

PeAtP−1 = ePAP−1t.

5. Let B and C be two n× n matrices such that BC = CB. Prove that

eB+C = eBeC .

Hint: You may assume that the binomial theorem applies to commuting matrices,
i.e.,

(B + C)n =
∑

i+j=n

n!
i!j!

BiCj .

6. Let

B =
[

0 1
0 0

]
C =

[
0 0

−1 0

]
.

(a) Show that BC 6= CB.
(b) Show that

eB =
[

1 1
0 1

]
eC =

[
1 0

−1 1

]
.

(c) Show that eBeC 6= eB+C . Hint: B + C = J , where etJ was calculated in the
text.

7. Review

Exercises for Section 7.

1. What is det


 0 0 1

0 2 1
3 2 1


? Find the answer without using the recursive formula

or Gaussian reduction.

2. Tell whether each of the following statements is true or false. and, if false,
explain why.

(a) If A and B are n× n matrices then det(AB) = detAdet B.
(b) If A is an n× n matrix and c is a scalar, then det(cA) = cdet A.
(c) If A is m× n and B is n× p, then (AB)t = BtAt.
(d) If A is invertible, then so it At.
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3. A =


 0 1 1

1 0 1
1 1 0


. Find the eigenvalues and eigenvectors of A.

4. Find det




1 3 1 1
1 2 4 3
2 4 1 1
1 1 6 1


.

5. Each of the following statements is not generally true. In each case explain
briefly why it is false.

(a) An n× n matrix A is invertible if and only if detA = 0.
(b) If A is an n × n real matrix, then there is a basis for Rn consisting of

eigenvectors for A.
(c) detAt = det A. Hint. Are these defined?

6. Let A =


 2 1 6

1 3 1
2 2 5


. Is v =


 1

1
1


 an eigenvector for A? Justify your answer.

7. (a) The characteristic equation of

A =


 2 −4 1

0 3 0
1 −4 2




is −(λ− 3)2(λ− 1) = 0. Is A diagonalizable? Explain.

(b) Is B =


 1 2 3

0 4 5
0 0 6


 diagonalizable? Explain.

8. Let A be an n× n matrix with the property that the sum of all the entries in
each row is always the same number a. Without using determinants, show that the
common sum a is an eigenvalue. Hint: What is the corresponding eigenvector?
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