
CHAPTER III

APPLICATIONS

1. Real Symmetric Matrices

The most common matrices we meet in applications are symmetric, that is, they
are square matrices which are equal to their transposes. In symbols, At = A.

Examples. [
1 2
2 2

]
,


 1 −1 0
−1 0 2

0 2 3




are symmetric, but 
 1 2 2

0 1 3
0 0 4


 ,


 0 1 −1
−1 0 2

1 −2 0




are not.

Symmetric matrices are in many ways much simpler to deal with than general
matrices.

First, as we noted previously, it is not generally true that the roots of the char-
acteristic equation of a matrix are necessarily real numbers, even if the matrix has
only real entries. However,

if A is a symmetric matrix with real entries, then the roots of its charac-
teristic equation are all real.

Example 1. The characteristic equations of[
0 1
1 0

]
and

[
0 −1
1 0

]

are
λ2 − 1 = 0 and λ2 + 1 = 0

respectively. Notice the dramatic effect of a simple change of sign.

The reason for the reality of the roots (for a real symmetric matrix) is a bit
subtle, and we will come back to it later sections.

The second important property of real symmetric matrices is that they are always
diagonalizable, that is, there is always a basis for Rn consisting of eigenvectors for
the matrix.
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Example 2. We previously found a basis for R2 consisting of eigenvectors for
the 2× 2 symmetric matrix

A =
[

2 1
1 2

]
The eigenvalues are λ1 = 3, λ2 = 1, and the basis of eigenvectors is{

v1 =
[

1
1

]
,v2 =

[−1
1

]}
.

If you look carefully, you will note that the vectors v1 and v2 not only form a basis,
but they are perpendicular to one another, i.e., v1 · v2 = 1(−1) + 1(1) = 0.

The perpendicularity of the eigenvectors is no accident. It is always the case for
a symmetric matrix by the following reasoning.

First, recall that the dot product of two column vectors u and v in Rn can be
written as a row by column product

u · v = utv = [ u1 u2 . . . un ]




v1

v2
...

vn


 =

n∑
i=1

uivi.

Suppose now that Au = λu and Av = µv, i.e., u and v are eigenvectors for A with
corresponding eigenvalues λ and µ. Assume λ 6= µ. Then

(1) u · (Av) = ut(Av) = ut(µv) = µ(utv) = µ(u · v).

On the other hand,

(2) (Au) · v = (Au)tv = (λu)tv = λ(utv) = λ(u · v).

However, since the matrix is symmetric, At = A, and

(Au)tv = (utAt)v = (utA)v = ut(Av).

The first of these expressions is what was calculated in (2) and the last was calcu-
lated in (1), so the two are equal, i.e.,

µ(u · v) = λ(u · v).

If u · v 6= 0, we can cancel the common factor to conclude that µ = λ, which is
contrary to our assumption, so it must be true that u · v = 0, i.e., u ⊥ v.

We summarize this as follows.
Eigenvectors for a real symmetric matrix which belong to different eigen-

values are necessarily perpendicular.
This fact has important consequences. Assume first that the eigenvalues of A

are distinct and that it is real and symmetric. Then not only is there a basis
consisting of eigenvectors, but the basis elements are also mutually perpendicular.



2. REAL SYMMETRIC MATRICES 113

This is reminiscent of the familiar situation in R2 and R3, where coordinate axes
are almost always assumed to be mutually perpendicular. For arbitrary matrices,
we may have to face the prospect of using ‘skew’ axes, but the above remark tells
us we can avoid this possibility in the symmetric case.

In two or three dimensions, we usually require our basis vectors to be unit vectors.
There is no problem with that here. Namely, if u is not a unit vector, we can always
obtain a unit vector by dividing u by its length |u|. Moreover, if u is an eigenvector
for A with eigenvalue λ, then any nonzero multiple of u is also such an eigenvector,

in particular, the unit vector
1
|u|u is.

Example 2, revisited. The eigenvectors v1 and v2 both have length
√

2. So
we replace them by the corresponding unit vectors

1√
2
v1 =

[
1√
2

1√
2

]
1√
2
v2 =

[
− 1√

2
1√
2

]

which also constitute a basis for R2.

There is some special terminology which is commonly used in linear algebra for
the familiar concepts discussed above. Two vectors are said to be orthogonal if
they are perpendicular. A unit vector is said to be normalized . The idea is that if
we started with a non-unit vector, we would produce an equivalent unit vector by
dividing it by its length. The latter process is called normalization. Finally, a basis
for Rn consisting of mutually perpendicular unit vectors is called an orthonormal
basis.

Exercises for Section 1.

1. (a) Find a basis of eigenvectors for A =
[−3 4

4 3

]
.

(b) Check that the basis vectors are orthogonal, and normalize them to yield an
orthonormal basis.

2. (a) Find a basis of eigenvectors for A =
[−3 2

8 3

]
.

(b) Are the basis vectors orthogonal to one another? If not what might be the
problem?

3. (a) Find a basis of eigenvectors for A =


 1 0 1

0 1 0
1 0 1


.

(b) Check that the basis vectors are orthogonal, and normalize them to yield an
orthonormal basis.

4. Let A =


 1 4 3

4 1 0
3 0 1


. Find an orthonormal basis of eigenvectors.

5. Let A be a symmetric n×n matrix, and let P be any n×n matrix. Show that
P tAP is also symmetric.
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2. Repeated Eigenvalues, The Gram–Schmidt Process

We now consider the case in which one or more eigenvalues of a real symmetric
matrix A is a repeated root of the characteristic equation. It turns out that we can
still find an orthonormal basis of eigenvectors, but it is a bit more complicated.

Example 1. Consider

A =


−1 1 1

1 −1 1
1 1 −1


 .

The characteristic equation is

det


−1− λ 1 1

1 −1− λ 1
1 1 −1− λ




= −(1 + λ)((1 + λ)2 − 1)− 1(−1− λ− 1) + 1(1 + 1 + λ)

= −(1 + λ)(λ2 + 2λ) + 2(λ + 2)

= −(λ3 + 3λ2 − 4) = 0.

Using the method suggested in Chapter 2, we may find the roots of this equation by
trying the factors of the constant term. The roots are λ = 1, which has multiplicity
1, and λ = −2, which has multiplicity 2.

For λ = 1, we need to reduce

A− I =


−2 1 1

1 −2 1
1 1 −2


 →


 1 1 −2

0 −3 3
0 3 −3


 →


 1 0 −1

0 1 −1
0 0 0


 .

The general solution is v1 = v3, v2 = v3 with v3 free. A basic eigenvector is

v1 =


 1

1
1




but we should normalize this by dividing it by |v1| =
√

3. This gives

u1 =
1√
3


 1

1
1


 .

For λ = −2, the situation is more complicated. Reduce

A + 2I =


 1 1 1

1 1 1
1 1 1


 →


 1 1 1

0 0 0
0 0 0
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which yields the general solution v1 = −v2 − v3 with v2, v3 free. This gives basic
eigenvectors

v2 =


−1

1
0


 , v3 =


−1

0
1


 .

Note that, as the general theory predicts, v1 is perpendicular to both v2 and v3.
(The eigenvalues are different). Unfortunately, v2 and v3 are not perpendicular to
each other . However, with a little effort, this is easy to remedy. All we have to do
is pick another basis for the subspace spanned by {v2,v3}. The eigenvectors with
eigenvalue −2 are exactly the non-zero vectors in this subspace, so any basis will
do as well. Hence, we arrange to pick a basis consisting of mutually perpendicular
vectors.

It is easy to construct the new basis. Indeed we need only replace one of the two
vectors. Keep v2, and let v′3 = v3 − cv2 where c is chosen so that

v2 · v′3 = v2 · v3 − cv2 · v2 = 0,

i.e., take c =
v2 · v3

v2 · v2
. (See the diagram to get some idea of the geometry behind

this calculation.)

v

3

2

3

v

v

We have

v2 · v3

v2 · v2
=

1
2

v′3 = v3 − 1
2
v2 =


−1

0
1


− 1

2


−1

1
0


 =


−1

2

− 1
2
1


 .

We should also normalize this basis by choosing

u2 =
1
|v2|v2 =

1√
2


−1

1
0


 , u3 =

1
|v′3|

v′3 =

√
2
3


− 1

2

− 1
2
1


 .

Putting this all together, we see that

u1 =
1√
3


 1

1
1


 , u2 =

1√
2


−1

1
0


 , u3 =

√
2
3


− 1

2

− 1
2
1




form an orthonormal basis for R3 consisting of eigenvectors for A.
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The Gram–Schmidt Process. In Example 1, we used a special case of a more
general algorithm in order to construct an orthonormal basis of eigenvectors. The
algorithm, called the Gram–Schmidt Process works as follows. Suppose

{v1,v2, . . . ,vk}

is a linearly independent set spanning a certain subspace W of Rn. We construct
an orthonormal basis for W as follows. Let

v′1 = v1

v′2 = v2 − v2 · v′1
v′1 · v′1

v′1

v′3 = v3 − v3 · v′1
v′1 · v′1

v′1 −
v3 · v′2
v′2 · v′2

v′2

...

v′k = vk −
k−1∑
j=1

vk · v′j
v′j · v′j

v′j .

It is not hard to see that each new v′k is perpendicular to those constructed
before it. For example,

v′1 · v′3 = v′1 · v3 − v3 · v′1
v′1 · v′1

v′1 · v′1 −
v3 · v′2
v′2 · v′2

v′1 · v′2.

However, we may suppose that we already know that v′1 ·v′2 = 0 (from the previous
stage of the construction), so the above becomes

v′1 · v′3 = v′1 · v3 − v3 · v′1 = 0.

The same argument works at each stage.
It is also not hard to see that at each stage, replacing vj by v′j in

{v′1,v′2, . . . ,v′j−1,vj}

does not change the subspace spanned by the set. Hence, for j = k, we conclude
that {v′1,v′2, . . . ,v′k} is a basis for W consisting of mutually perpendicular vectors.
Finally, to complete the process simply divide each v′j by its length

uj =
1
|v′j |

v′j .

Then {u1, . . . ,uk} is an orthonormal basis for W .



2. REPEATED EIGENVALUES, THE GRAM––SCHMIDT PROCESS 117

Example 2. Consider the subspace of R4 spanned by

v1 =



−1

1
0
1


 ,v2 =



−1

1
1
0


 ,v3 =




1
0
0
1


 .

Then

v′1 =



−1

1
0
1




v′2 =



−1

1
1
0


− 2

3



−1

1
0
1


 =



−1

3
1
3
1

− 2
3




v′3 =




1
0
0
1


− 0

3



−1

1
0
1


− −1

15
9



− 1

3
1
3
1

− 2
3


 =




4
5
1
5
3
5
3
5


 .

Normalizing, we get

u1 =
1√
3



−1

1
0
1




u2 =
3√
15



− 1

3
1
3
1

− 2
3


 =

1√
15



−1

1
3

−2




u3 =
5√
35




4
5
1
5
3
5
3
5


 =

1√
35




4
1
3
3


 .

The Principal Axis Theorem. The Principal Axis Theorem asserts that
the process outlined above for finding mutually perpendicular eigenvectors always
works.

If A is a real symmetric n×n matrix, there is always an orthonormal basis
for Rn consisting of eigenvectors for A.
Here is a summary of the method. If the roots of the characteristic equation are

all different, then all we need to do is find an eigenvector for each eigenvalue and if
necessary normalize it by dividing by its length. If there are repeated roots, then
it will usually be necessary to apply the Gram–Schmidt process to the set of basic
eigenvectors obtained for each repeated eigenvalue.
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Exercises for Section 2.
1. Apply the Gram–Schmidt Process to each of the following sets of vectors.

(a)





 1

0
1


 ,


 2

1
0







(b)







1
0
2
0


 ,




1
1
0
1


 ,




0
2
1

−1





.

2. Find an orthonormal basis of eigenvectors for A =


 1 1 1

1 1 1
1 1 1


.

3. Find an orthonormal basis of eigenvectors for

A =


−1 2 2

2 −1 2
2 2 −1


 .

Hint: 3 is an eigenvalue.

4. Let {v1,v2,v3} be a linearly independent set. Suppose {v′1,v′2,v′3} is the set
obtained (before normalizing) by the Gram-Schmidt Process. (a) Explain why v′2
is not zero. (b) Explain why v′3 is not zero.

The generalization of this to an arbitrary linearly independent set is one rea-
son the Gram-Schmidt Process works. The vectors produced by that process are
mutually perpendicular provided they are non-zero, and so they form a linearly
independent set. Since they are in the subspace W spanned by the original set of
vectors and there are just enough of them, they must form a basis a basis for W .

3. Change of Coordinates

As we have noted previously, it is probably a good idea to use a special basis like
an orthonormal basis of eigenvectors. Any problem associated with the matrix A
is likely to take a particularly simple form when expressed relative to such a basis.

To study this in greater detail, we need to talk a bit more about changes of
coordinates. Although the theory is quite general, we shall concentrate on some
simple examples.

In Rn, the entries in a column vector x may be thought of as the coordinates
x1, x2, . . . , xn of the vector with respect to the standard basis. To simplify the
algebra, let’s concentrate on one specific n, say n = 3. In that case, we may make
the usual identifications e1 = i, e2 = j, e3 = k for the elements of the standard
basis. Suppose {v1,v2,v3} is another basis. The coordinates of x with respect to
the new basis—call them x′1, x

′
2, x

′
3—are defined by the relation

(1) x = v1x
′
1 + v2x

′
2 + v3x

′
3 = [v1 v2 v3 ]


x′1

x′2
x′3


 = [v1 v2 v3 ]x′.
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One way to view this relation is as a system of equations in which the old coordinates

x =


 x1

x2

x3




are given, and we want to solve for the new coordinates

x′ =


 x′1

x′2
x′3


 .

The coefficient matrix of this system

P = [v1 v2 v3 ]

is called the change of basis matrix. It’s columns are the old coordinates of the new
basis vectors.

The relation (1) may be rewritten

(2) x = Px′

and it may also be interpreted as expressing the ‘old’ coordinates of a vector in
terms of its ‘new’ coordinates. This seems backwards, but it is easy to turn it
around. Since the columns of P are linearly independent, P is invertible and we
may write instead

(3) x′ = P−1x

where we express the ‘new’ coordinates in terms of the ‘old’ coordinates.

Example 1. Suppose in R2 we pick a new set of coordinate axes by rotating
each of the old axes through angle θ in the counterclockwise direction. Call the
old coordinates (x1, x2) and the new coordinates (x′1, x

′
2). According to the above

discussion, the columns of the change of basis matrix P come from the old coordi-
nates of the new basis vectors, i.e., of unit vectors along the new axes. From the
diagram, these are [

cos θ
sin θ

] [− sin θ
cos θ

]
.
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x
1

x’ 1

x
2x’

2

θ

θ

Hence, [
x1

x2

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x′1
x′2

]
.

The change of basis matrix is easy to invert in this case. (Use the special rule which
applies to 2× 2 matrices.)

[
cos θ − sin θ
sin θ cos θ

]−1

=
1

cos2 θ + sin2 θ

[
cos θ sin θ

− sin θ cos θ

]
=

[
cos θ sin θ

− sin θ cos θ

]

(You could also have obtained this by using the matrix for rotation through angle
−θ.) Hence, we may express the ‘new’ coordinates in terms of the ‘old’ coordinates
through the relation [

x′1
x′2

]
=

[
cos θ sin θ

− sin θ cos θ

] [
x1

x2

]
.

For example, suppose θ = π/6. The new coordinates of the point with original
coordinates (2, 6) are given by[

x′1
x′2

]
=

[√
3/2 1/2

−1/2
√

3/2

] [
2
6

]
=

[ √
3 + 3

−1 + 3
√

3

]
.

So with respect to the rotated axes, the coordinates are (3 +
√

3, 3
√

3− 1).

Orthogonal Matrices. You may have noticed that the matrix P obtained in
Example 1 has the property P−1 = P t. This is no accident. It is a consequence of
the fact that its columns are mutually perpendicular unit vectors. Indeed,

The columns of an n× n matrix form an orthonormal basis for Rn if and
only if its inverse is its transpose.
An n× n real matrix with this property is called orthogonal .
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Example 2. Let

P =
[

3
5 − 4

5
4
5

3
5

]
.

The columns of P are

u1 =
[

3
5
4
5

]
, u2 =

[− 4
5
3
5

]
,

and it is easy to check that these are mutually perpendicular unit vectors in R2.
To see that P−1 = P t, it suffices to show that

P tP =
[

3
5

4
5

− 4
5

3
5

] [
3
5 − 4

5
4
5

3
5

]
=

[
1 0
0 1

]
.

Of course, it is easy to see that this true by direct calculation, but it may be more
informative to write it out as follows

P tP =
[

(u1)t

(u2)t

]
[u1 u2 ] =

[
u1 · u1 u1 · u2

u2 · u1 u2 · u2

]

where the entries in the product are exhibited as row by column dot products. The
off diagonal entries are zero because the vectors are perpendicular, and the diagonal
entries are ones because the vectors are unit vectors.

The argument for n×n matrices is exactly the same except that there are more
entries.

Note. The terminology is very confusing. The definition of an orthogonal matrix
requires that the columns be mutually perpendicular and also that they be unit
vectors. Unfortunately, the terminology reminds us of the former condition but not
of the latter condition. It would have been better if such matrices had been named
‘orthonormal’ matrices rather than ‘orthogonal’ matrices, but that is not how it
happened, and we don’t have the option of changing the terminology at this late
date.

The Principal Axis Theorem Again. As we have seen, given a real sym-
metric n× n matrix A, the Principal Axis Theorem assures us that we can always
find an orthonormal basis {v1,v2, . . . ,vn} for Rn consisting of eigenvectors for A.
Let

P = [v1 v2 . . . vn ]
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be the corresponding change of basis matrix. As in Chapter II, Section 5, we have

Av1 = v1λ1 = [v1 v2 . . . vn ]




λ1

0
...
0




Av2 = v2λ2 = [v1 v2 . . . vn ]




0
λ2
...
0




...

Avn = vnλn = [v1 v2 . . . vn ]




0
0
...

λn




where some eigenvalues λj for different eigenvectors might be repeated. These
equations can be written in a single matrix equation

A [v1 v2 . . . vn ] = [v1 v2 . . . vn ]




λ1 0 . . . 0
0 λ2 . . . 0
...

... . . .
...

0 0 . . . λn




or
AP = PD

where D is a diagonal matrix with eigenvalues (possibly repeated) on the diagonal.
This may also be written
(4) P−1AP = D.

Since we have insisted that the basic eigenvectors form an orthonormal basis, the
change of basis matrix P is orthogonal, and we have P−1 = P t. Hence, (4) can be
written in the alternate form
(5) P tAP = D with P orthogonal.

Example 3. Let A =
[−7 14

14 7

]
. The characteristic equation of A turns out

to be λ2 − 625 = 0, so the eigenvalues are λ = ±25. Calculation shows that an
orthonormal basis of eigenvectors is formed by

u1 =
[

3
5
4
5

]
for λ = 25 and u2 =

[− 4
5
3
5

]
for λ = −25.

Hence, we may take P to be the orthogonal matrix[
3
5 − 4

5
4
5

3
5

]
.

The reader should check in this case that

P tAP =
[

3
5

4
5

− 4
5

3
5

]
.

[−7 14
14 7

] [
3
5 − 4

5
4
5

3
5

]
=

[
25 0
0 −25

]
.
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Appendix. A Proof of the Principal Axis Theorem.
The following section outlines how the Principal Axis Theorem is proved for the

very few of you who may insist on seeing it. It is not necessary for what follows.
In view of the previous discussions, we can establish the Principal Axis Theorem

by showing that there is an orthogonal n× n matrix P such that

(6) AP = PD or equivalently P tAP = D

where D is a diagonal matrix with the eigenvalues of A (possibly repeated) on its
diagonal.

The method is to proceed by induction on n.
If n = 1 there really isn’t anything to prove. (Take P = [ 1 ].) Suppose the

theorem has been proved for (n − 1) × (n − 1) matrices. Let u1 be a unit eigen-
vector for A with eigenvalue λ1. Consider the subspace W consisting of all vectors
perpendicular to u1. It is not hard to see that W is an n−1 dimensional subspace.
Choose (by the Gram–Schmidt Process) an orthonormal basis {w2,w2 . . . ,wn} for
W . Then {u1,w2, . . . ,wn} is an orthonormal basis for Rn, and

Au1 = u1λ1 = [u1 w2 . . . wn ]︸ ︷︷ ︸
P1




λ1

0
...
0


 .

This gives the first column of AP1, and we want to say something about its remain-
ing columns

Aw2, Aw2, . . . , Awn.

To this end, note that if w is any vector in W , then Aw is also a vector in W . For,
we have

u1 · (Aw) = (u1)tAw = (u1)tAtw = (Au1)tw = λ1(u1)tw) = λ1(u1 ·w) = 0,

which is to say, Aw is perpendicular to u1 if w is perpendicular to u1. It follows
that each Awj is a linear combination just of w2,w3, . . . ,wn, i.e.,

Awj = [u1 w2 . . . wn ]




0
∗
...
∗




where ‘∗’ denotes some unspecified entry. Putting this all together, we see that

AP1 = P1




λ1 0 . . . 0
0
... A′

0




︸ ︷︷ ︸
A1
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where A′ is an (n − 1) × (n − 1) matrix. P1 is orthogonal (since its columns form
an orthonormal basis) so

P1
tAP1 = A1,

and it is not hard to derive from this the fact that A1 is symmetric. Because of
the structure of A1, this implies that A′ is symmetric. Hence, by induction we may
assume there is an (n− 1)× (n− 1) orthogonal matrix P ′ such that A′P ′ = P ′D′

with D′ diagonal. It follows that

A1




1 0 . . . 0
0
... P ′

0




︸ ︷︷ ︸
P2

=




λ1 0 . . . 0
0
... A′

0







1 0 . . . 0
0
... P ′

0




=




λ1 0 . . . 0
0
... A′P ′

0


 =




λ1 0 . . . 0
0
... P ′D′

0




=




1 0 . . . 0
0
... P ′

0




︸ ︷︷ ︸
P2




λ1 0 . . . 0
0
... D′

0




︸ ︷︷ ︸
D

= P2D.

Note that P2 is orthogonal and D is diagonal. Thus,

AP1P2︸ ︷︷ ︸
P

= P1A1P2 = P1P2︸ ︷︷ ︸
P

D

or AP = PD.

However, a product of orthogonal matrices is orthogonal—see the Exercises—so P
is orthogonal as required.

This completes the proof.
There is one subtle point involved in the above proof. We have to know that

a real symmetric n × n matrix has at least one real eigenvalue. This follows from
the fact, alluded to earlier, that the roots of the characteristic equation for such a
matrix are necessarily real. Since the equation does have a root, that root is the
desired eigenvalue.

Exercises for Section 3.

1. Find the change of basis matrix for a rotation through (a) 30 degrees in the
counterclockwise direction and (b) 30 degrees in the clockwise direction

2. Let P (θ) be the matrix for rotation of axes through θ. Show that P (−θ) =
P (θ)t = P (θ)−1.
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3. An inclined plane makes an angle of 30 degrees with the horizontal. Change
to a coordinate system with x′1 axis parallel to the inclined plane and x′2 axis
perpendicular to it. Use the change of variables formula derived in the section
to find the components of the gravitational acceleration vector −gj in the new
coordinate system. Compare this with what you would get by direct geometric
reasoning.

4. Let A =
[

1 2
2 1

]
. Find a 2×2 orthogonal matrix P such that P tAP is diagonal.

What are the diagonal entries?

5. Let A =


 1 4 3

4 1 0
3 0 1


. Find a 3 × 3 orthogonal matrix P such that P tAP is

diagonal. What are the diagonal entries?

6. Show that the product of two orthogonal matrices is orthogonal. How about
the inverse of an orthogonal matrix?

7. The columns of an orthogonal matrix are mutually perpendicular unit vectors.
Is the same thing true of the rows? Explain.

4. Classification of Conics and Quadrics

The Principal Axis Theorem derives its name from its relation to classifying
conics, quadric surfaces, and their higher dimensional analogues.

The general quadratic equation

ax2 + bxy + cy2 + dx + ey = f

(with enough of the coefficients non-zero) defines a curve in the plane. Such a curve
is generally an ellipse, a hyperbola, a parabola, all of which are called conics, or
two lines, which is considered a degenerate case. (See the Appendix to this section
for a review.)

Examples.

x2 +
y2

4
= 1

x2 − y2 = 1

x2 − 2xy + 2y2 = 1

x2 + 2xy − y2 + 3x− 5y = 10

If the linear terms are not present (d = e = 0 and f 6= 0), we call the curve a
central conic. It turns out to be an ellipse or hyperbola (but its axes of symmetry
may not be the coordinate axes) or a pair of lines in the degenerate case. Parabolas
can’t be obtained this way.
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In this section, we shall show how to use linear algebra to classify such central
conics and higher dimensional analogues such as quadric surfaces in R3. Once you
understand the central case, it is fairly easy to reduce the general case to that.
(You just use completion of squares to get rid of the linear terms in the same way
that you identify a circle with center not at the origin from its equation.)

In order to apply the linear algebra we have studied, we adopt a more systematic
notation, using subscripted variables x1, x2 instead of x, y.

Consider the central conic defined by the equation

f(x) = a11x1
2 + 2a12x1x2 + a22x2

2 = C

(The reason for the 2 will be clear shortly.)
It is more useful to express the function f as follows.

f(x) = (x1a11 + x2a21)x1 + (x1a12 + x2a22)x2

= x1(a11x1 + a12x2) + x2(a21x1 + a22x2),

where we have introduced a21 = a12. The above expression may also be written in
matrix form

f(x) =
2∑

j,k=1

xjajkxk = xtAx

where A is the symmetric matrix of coefficients.
Note what has happened to the coefficients. The coefficients of the squares

appear on the diagonal of A, while the coefficient of the cross term 2bx1x2 is divided
into two equal parts. Half of it appears as b in the 1, 2 position (corresponding to the
product x1x2) while the other half appears as b in the 2, 1 position (corresponding
to the product x2x1 which of course equals x1x2). So it is clear why the matrix is
symmetric.

This may be generalized to n > 2 in a rather obvious manner. Let A be a real
symmetric n× n matrix, and define

f(x) =
n∑

j,k=1

xjajkxk = xtAx.

For n = 3 this may be written explicitly

f(x) = (x1a11 + x2a21 + x3a31)x1

+ (x1a12 + x2a22 + x3a32)x2

+ (x1a13 + x2a23 + x3a33)x3

= a11x1
2 + a22x2

2 + a33x3
2

+ 2a12x1x2 + 2a13x1x3 + 2a23x2x3.

The rule for forming the matrix A from the equation for f(x) is the same as
in the 2 × 2 case. The coefficients of the squares are put on the diagonal. The
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coefficient of a cross term involving xixj is split in half, with one half put in the
i, j position, and the other half is put in the j, i position.

The level set defined by
f(x) = C

is called a central hyperquadric. It should be visualized as an n − 1 dimensional
curved object in Rn. For n = 3 it will be an ellipsoid or a hyperboloid (of one or
two sheets) or perhaps a degenerate ‘quadric’ like a cone. (As in the case of conics,
we must also allow linear terms to encompass paraboloids.)

If the above descriptions are accurate, we should expect the locus of the equation
f(x) = C to have certain axes of symmetry which we shall call its principal axes. It
turns out that these axes are determined by an orthonormal basis of eigenvectors for
the coefficient matrix A. To see this, suppose {u1,u2, . . . ,un} is such a basis and
P = [u1 u2 . . . un ] is the corresponding orthogonal matrix. By the Principal
Axis Theorem, P tAP = D is diagonal with the eigenvalues, λ1, λ2, . . . , λn, of A
appearing on the diagonal. Make the change of coordinates x = Px′ where x
represents the ‘old’ coordinates and x′ represents the ‘new’ coordinates. Then

f(x) = xtAx = (Px′)tA(Px′) = (x′)tP tAPx′ = (x′)tDx′.

Since D is diagonal, the quadratic expression on the right has no cross terms, i.e.

(x′)tDx′ = [ x′1 x′2 · · ·x′n ]




λ1 0 · · · 0
0 λ2 · · · 0
...

... · · · ...
0 0 · · · λn







x′1
x′2
...

x′n




= λ1(x′1)
2 + λ2(x′2)

2 + · · ·+ λn(x′n)2.

In the new coordinates, the equation takes the form

λ1(x′1)
2 + λ2(x′2)

2 + · · ·+ λn(x′n)2 = C

and its graph is usually quite easy to describe.

Example 1. We shall investigate the conic f(x, y) = x2 + 4xy + y2 = 1. First
rewrite the equation

[x y ]
[

1 2
2 1

] [
x
y

]
= 1.

(Note how the 4 was split into two symmetrically placed 2s.) Next, find the eigen-
values of the coefficient matrix by solving

det
[

1− λ 2
2 1− λ

]
= (1− λ)2 − 4 = λ2 − 2λ− 3 = 0.

This equation is easy to factor, and the roots are λ = 3, λ = −1.
For λ = 3, to find the eigenvectors, we need to solve[−2 2

2 −2

] [
v1

v2

]
= 0.
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Reduction of the coefficient matrix yields[−2 2
2 −2

]
→

[
1 −1
0 0

]

with the general solution v1 = v2, v2 free. A basic normalized eigenvector is

u1 =
1√
2

[
1
1

]
.

For λ = −1, a similar calculation (which you should make) yields the basic
normalized eigenvector

u2 =
1√
2

[−1
1

]
.

(Note that u1 ⊥ u2 as expected.)
From this we can form the corresponding orthogonal matrix P and make the

change of coordinates [
x
y

]
= P

[
x′

y′

]
,

and, according to the above analysis, the equation of the conic in the new coordinate
system is

3(x′)2 − (y′)2 = 1.

It is clear that this is a hyperbola with principal axes pointing along the new axes.

x

xy

y

Example 2. Consider the quadric surface defined by

x1
2 + x2

2 + x3
2 − 2x1x3 = 1.

We take

f(x) = x1
2 + x2

2 + x3
2 − 2x1x3 = [ x1 x2 x3 ]


 1 0 −1

0 1 0
−1 0 1





 x1

x2

x3


 .
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Note how the coefficient in −2x1x3 was split into two equal parts, a −1 in the
1, 3-position and a −1 in the 3, 1-position. The coefficients of the other cross terms
were zero. As usual, the coefficients of the squares were put on the diagonal.

The characteristic equation of the coefficient matrix is

det


 1− λ 0 −1

0 1− λ 0
−1 0 1− λ


 = (1− λ)3 − (1− λ) = −(λ− 2)(λ− 1)λ = 0

Thus, the eigenvalues are λ = 2, 1, 0.
For λ = 2, reduce 

−1 0 −1
0 −1 0

−1 0 −1


 →


 1 0 1

0 1 0
0 0 0




to obtain v1 = −v3, v2 = 0 with v3 free. Thus,

v1 =


−1

0
1




is a basic eigenvector for λ = 2, and

u1 =
1√
2


−1

0
1




is a basic unit eigenvector.
Similarly, for λ = 1 reduce

 0 0 −1
0 0 0

−1 0 0


 →


 1 0 0

0 0 1
0 0 0




which yields v1 = v3 = 0 with v2 free. Thus a basic unit eigenvector for λ = 1 is

u2 =


 0

1
0


 .

Finally, for λ = 0, reduce
 1 0 −1

0 1 0
−1 0 1


 →


 1 0 −1

0 1 0
0 0 0


 .

This yields v1 = x3, v2 = 0 with v3 free. Thus, a basic unit eigenvector for λ = 0 is

u3 =
1√
2


 1

0
1


 .
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The corresponding orthogonal change of basis matrix is

P = [u1 u2 u3 ] =


− 1√

2
0 1√

2
0 1 0

1√
2

0 1√
2


 .

Moreover, putting x = Px′, we can express the equation of the quadric surface in
the new coordinate system

(1) 2x′1
2 + 1x′2

2 + 0x′3
2 = 2x′1

2 + x′2
2 = 1.

Thus it is easy to see what this quadric surface is: an elliptical cylinder perpendic-
ular to the x′1, x

′
2 plane. (This is one of the degenerate cases.) The three ‘principal

axes’ in this case are the two axes of the ellipse in the x′1, x
′
2 plane and the x′3 axis,

which is the central axis of the cylinder.

1

2

3

new axes.  The new axes are

labelled.

Tilted cylinder relative to the

Representing the graph in the new coordinates makes it easy to understand its
geometry. Suppose, for example, that we want to find the points on the graph
which are closest to the origin. These are the points at which the x′1-axis intersects

the surface. These are the points with new coordinates x′1 = ± 1√
2
, x′2 = x′3 = 0. If

you want the coordinates of these points in the original coordinate system, use the
change of coordinates formula

x = Px′.

Thus, the old coordinates of the minimum point with new coordinates (1/
√

2, 0, 0)
are given by 

− 1√
2

0 1√
2

0 1 0
1√
2

0 1√
2





 1√

2
0
0


 =


− 1

2
0
1
2


 .
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Appendix. A review of conics and quadrics.
You are probably familiar with certain graphs when they arise in standard con-

figurations.
In two dimensions, the central conics have equations of the form

±x2

a2
± y2

b2
= 1.

If both signs are +, the conic is an ellipse. If one sign is + and one is −, then the
conic is a hyperbola. The + goes with the axis which crosses the hyperbola. Some
examples are sketched below.

Ellipse Hyperbola

Two − signs result in an empty graph, i.e., there are no points satisfying the
equation.

Parabolas arise from equations of the form y = px2 with p 6= 0.

Parabolas

For x = py2, the parabola opens along the positive or negative y-axis.
There are also some degenerate cases. For example, x2

a2 − y2

b2 = 0 defines two lines
which intersect at the origin.

In three dimensions, the central quadrics have equations of the form

±x2

a2
± y2

b2
± z2

c2
= 1.



132 III. APPLICATIONS

If all three signs are +, the quadric is an ellipsoid. If two of the three signs are +
and one is −, the quadric is a hyperboloid of one sheet. If one of the two signs is
+ and the other two are −, the quadric is a hyperboloid of two sheets. Notice that
the number of sheets is the same as the number of − signs. It is not hard to figure
out how the quadric is oriented, depending on how the signs are arranged. The
‘axis’ of a hyperboloid is labeled by the variable whose sign in the equation is in
the minority, i.e., the − sign in the one sheet case and the + sign in the two sheet
case.

Hyperboloid of one sheetEllipsoid Hyperboloid of two sheets

If all three signs are −, we get an empty graph.
Paraboloids arise from equations of the form

z = ±x2

a2
± y2

b2
,

or similar equations with x, y, z rearranged. If both signs are + or both are −, then
the quadric is an elliptic paraboloid or ‘bowl’. The bowl opens up along the axis
of the variable appearing on the left of the equation if the signs are + and it opens
along the negative axis of that variable if the signs are −. If one sign is + and the
other is −, the surface is a hyperbolic paraboloid or ‘saddle’. Equations of the form
z = cxy, c 6= 0 also describe saddles.

Elliptic paraboloid Hyperbolic paraboloid

There are many degenerate cases. One example would be

x2

a2
+

y2

b2
− z2

c2
= 0.
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Its graph is a double cone with elliptical cross sections. Another would be

±x2

a2
± y2

b2
= 1

with at least one + sign. Its graph is a ‘cylinder’ perpendicular to the x, y-plane.
The cross sections are ellipses or hyperbolas, depending on the combination of signs.

Cone Cylinder

Exercises for Section 4.

1. Find the principal axes and classify the central conic x2 + xy + y2 = 1.

2. Identify the conic defined by x2 + 4xy + y2 = 4. Find its principal axes, and
find the points closest and furthest (if any) from the origin.

3. Identify the conic defined by 2x2 + 72xy + 23y2 = 50. Find its principal axes,
and find the points closest and furthest (if any) from the origin.

4. Find the principal axes and classify the central quadric defined by

x2 − y2 + z2 − 4xy − 4yz = 1.

5. (Optional) Classify the surface defined by

x2 + 2y2 + z2 + 2xy + 2yz − z = 0.

Hint: This is not a central quadric. To classify it, first apply the methods of the
section to the quadratic expression x2+2y2+z2+2xy+2yz to find a new coordinate
system in which this expression has the form λ1x

′2 +λ2y
′2 +λ3z

′2. Use the change
of coordinates formula to express z in terms of x′, y′, and z′ and then complete
squares to eliminate all linear terms. At this point, it should be clear what the
surface is.
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5. Conics and the Method of Lagrange Multipliers

There is another approach to finding the principal axes of a conic, quadric, or
hyperquadric. Consider for an example an ellipse in R2 centered at the origin. One
of the principal axes intersects the conic in the two points at greatest distance from
the origin, and the other intersects it in the two points at least distance from the
origin. Similarly, two of the three principal axes of a central ellipsoid in R3 may be
obtained in this way. Thus, if we didn’t know about eigenvalues and eigenvectors,
we might try to find the principal axes by maximizing (or minimizing) the function
giving the distance to the origin subject to the quadratic equation defining the conic
or quadric. In other words, we need to minimize a function given a constraint among
the variables. Such problems are solved by the method of Lagrange multipliers,
which you learned in your multidimensional calculus course.

Here is a review of the method. Suppose we want to maximize (minimize) the
real valued function f(x) = f(x1, x2, . . . , xn) subject to the constraint g(x) =
g(x1, x2, . . . , x1) = c. For n = 2, this has a simple geometric interpretation. The
locus of the equation g(x1, x2) = c is a level curve of the function g, and we want
to maximize (minimize) the function f on that curve. Similarly, for n = 3, the level
set g(x1, x2.x3) = c is a surface in R3, and we want to maximize (minimize) f on
that surface.

g(  ) = cx
g(  ) = cx

n = 2.   Level curve in the plane. n = 3.  Level surface in space.

Examples. Maximize f(x, y) = x2 + y2 on the ellipse g(x, y) = x2 + 4y2 = 3.
(This is easy if you draw the picture.)

Minimize f(x, y, z) = 2x2 + 3xy + y2 + xz − 4z2 on the sphere g(x, y, z) =
x2 + y2 + z2 = 1.

Minimize f(x, y, z, t) = x2 + y2 + z2 − t2 on the ‘hypersphere’ g(x, y, z, t) =
x2 + y2 + z2 + t2 = 1.

We shall concentrate on the case of n = 3 variables, but the reasoning for any
n is similar. We want to maximize (or minimize) f(x) on a level surface g(x) = c
in R3, where as usual we abbreviate x = (x1, x2, x3). At any point x on the level
surface at which such an extreme value is obtained, we must have

(1) ∇f(x) = λ∇g(x)

for some scalar λ.
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is parallel to     g

maximum point

f

g

other point

f

(1) is a necessary condition which must hold at the relevant points. (It doesn’t by
itself guarantee that there is a maximum or a minimum at the point. There could
be no extreme value at all at the point.) In deriving this condition, we assume
implicitly that the level surface is smooth and has a well defined normal vector
∇g 6= 0, and that the function f is also smooth. If these conditions are violated at
some point, that point could also be a candidate for a maximum or minimum.

Taking components, we obtain 3 scalar equations for the 4 variables x1, x2, x3, λ.
We would not expect, even in the best of circumstances to get a unique solution
from this, but the defining equation for the level surface

g(x) = c

provides a 4th equation. We still won’t generally get a unique solution, but we
will usually get at most a finite number of possible solutions. Each of these can
be examined further to see if f attains a maximum (or minimum) at that point in
the level set. Notice that the variable λ plays an auxiliary role since we really only
want the coordinates of the point x. (In some applications, λ has some significance
beyond that.) λ is called a Lagrange multiplier.

The method of Lagrange multipliers often leads to a set of equations which is
difficult to solve. However, in the case of quadratic functions f , there is a typical
pattern which emerges.

Example 1. Suppose we want to minimize the function f(x, y) = x2 +4xy +y2

on the circle x2 +y2 = 1. For this problem n = 2, and the level set is a curve. Take
g(x, y) = x2 + y2. Then ∇f = 〈2x + 4y, 4x + 2y〉, ∇g = 〈2x, 2y〉, and ∇f = λ∇g
yields the equations

2x + 4y = λ(2x)

4x + 2y = λ(2y)

to which we add

x2 + y2 = 1.
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After canceling a common factor of 2, the first two equations may be written in
matrix form [

1 2
2 1

] [
x
y

]
= λ

[
x
y

]
which says that [

x
y

]
is an eigenvector for the eigenvalue λ, and the equation x2 + y2 = 1 says it is a
unit eigenvector. You should know how to solve such problems, and we leave it to
you to make the required calculations. (See also Example 1 in the previous section
where we made these calculations in another context.) The eigenvalues are λ = 3
and λ = −1. For λ = 3, a basic unit eigenvector is

u1 =
1√
2

[
1
1

]
,

and every other eigenvector is of the form cu1. The latter will be a unit vector
if and only |c| = 1, i.e., c = ±1. We conclude that λ = 3 yields two solutions of
the Lagrange multiplier problem: (1/

√
2, 1/

√
2) and (−1/

√
2,−1/

√
2). At each of

these points f(x, y) = x2 + 4xy + y2 = 3.
For λ = −1, we obtain the basic unit eigenvector

u2 =
1√
2

[−1
1

]
,

and a similar analysis (which you should do) yields the two points: (1/
√

2,−1/
√

2)
and (−1/

√
2, 1/

√
2). At each of these points f(x, y) = x2 + 4xy + y2 = −1.

Max

Max

Min

Min

Hence, the function attains its maximum value at the first two points and its
minimum value at the second two.



5. CONICS AND THE METHOD OF LAGRANGE MULTIPLIERS 137

Example 2. Suppose we want to minimize the function g(x, y) = x2+y2 (which
is the square of the distance to the origin) on the conic f(x, y) = x2 +4xy +y2 = 1.
Note that this is basically the same as the previous example except that the roles
of the two functions are reversed. The Lagrange multiplier condition ∇g = λ∇f is
the same as the condition ∇f = (1/λ)∇g provided λ 6= 0. (λ 6= 0 in this case since
otherwise ∇g = 0, which yields x = y = 0. However, (0, 0) is not a point on the
conic.) We just solved that problem and found eigenvalues 1/λ = 3 or 1/λ = −1.
In this case, we don’t need unit eigenvectors, so to avoid square roots we choose
basic eigenvectors

v1 =
[

1
1

]
and

[−1
1

]
corresponding respectively to λ = 3 and λ = −1. The endpoint of v1 does not lie
on the conic, but any other eigenvector for λ = 3 is of the form cv1, so all we need
to do is adjust c so that the point satisfies the equation f(x, y) = x2 +4xy+y2 = 1.
Substituting (x, y) = (c, c) yields 6c2 = 1 or c = ±1/

√
6. Thus, we obtain the

two points (1/
√

6, 1/
√

6) and (−1/
√

6,−1/
√

6). For λ = −1, substituting (x, y) =
(−c, c) in the equation yields −2c2 = 1 which has no solutions.

Thus, the only candidates for a minimum (or maximum) are the first pair of
points: (1/

√
6, 1/

√
6) and (−1/

√
6,−1/

√
6). A simple calculation shows these are

both 1/
√

3 units from the origin, but without further analysis, we can’t tell if this
is the maximum, the minimum, or neither. However, it is not hard to classify this
conic—see the previous section—and discover that it is a hyperbola. Hence, the
two points are minimum points.

The Rayleigh-Ritz Method. Example 1 above is typical of a certain class
of Lagrange multiplier problems. Let A be a real symmetric n × n matrix, and
consider the problem of maximizing (minimizing) the quadratic function f(x) =
xtAx subject to the constraint g(x) = |x|2 = 1. This is called the Rayleigh–Ritz
problem. For n = 2 or n = 3, the level set |x|2 = 1 is a circle or sphere, and for
n > 3, it is called a hypersphere.

Alternately, we could reverse the roles of the functions f and g, i.e., we could
try to maximize (minimize) the square of the distance to the origin g(x) = |x|2
on the level set f(x) = 1. Because the Lagrange multiplier condition in either
case asserts that the two gradients ∇f and ∇g are parallel, these two problems are
very closely related. The latter problem—finding the points on a conic, quadric,
or hyperquadric furthest from (closest to) the origin—is easier to visualize, but
the former problem—maximizing or minimizing the quadratic function f on the
hypersphere |x| = 1 —is easier to compute with.

Let’s go about applying the Lagrange Multiplier method to the Rayleigh–Ritz
problem. The components of ∇g are easy:

∂g

∂xi
= 2xi, i = 1, 2, . . . n.

The calculation of ∇f is harder. First write

f(x) =
n∑

j=1

xj(
n∑

k=1

ajkxk)
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and then carefully apply the product rule together with ajk = akj . The result is

∂f

∂xi
= 2

n∑
j=1

aijxj i = 1, 2, . . . , n.

(Work this out explicitly in the cases n = 2 and n = 3 if you don’t believe it.)
Thus, the Lagrange multiplier condition ∇f = λ∇g yields the equations

2
n∑

j=1

aijxj = λ(2xi) i = 1, 2, . . . , n

which may be rewritten in matrix form (after canceling the 2’s)

(3) Ax = λx.

To this we must add the equation of the level set

g(x) = |x|2 = 1.

Thus, any potential solution x is a unit eigenvector for the matrix A with eigenvalue
λ. Note also that for such a unit eigenvector, we have

f(x) = xtAx = xt(λx) = λxtx = λ|x|2 = λ.

Thus the eigenvalue is the extreme value of the quadratic function at the point on
the (hyper)sphere given by the unit eigenvector.

The upshot of this discussion is that for a real symmetric matrix A, the Rayleigh–
Ritz problem is equivalent to the problem of finding an orthonormal basis of eigen-
vectors for A.

The Rayleigh–Ritz method may be used to show that the characteristic equa-
tion of a real symmetric matrix only has real eigenvalues. This was an issue left
unresolved in our earlier discussions. Here is an outline of the argument. The
hypersphere g(x) = |x|2 = 1 is a closed bounded set in Rn for any n. It follows
from a basic theorem in analysis that any continuous function, in particular the
quadratic function f(x), must attain both maximum and minimum values on the
hypersphere. Hence, the Lagrange multiplier problem always has solutions, which
by the above algebra amounts to the assertion that the real symmetric matrix A
must have at least one eigenvalue. This suggests a general procedure for showing
that all the eigenvalues are real. First find the largest eigenvalue by maximizing
the quadratic function f(x) on the set |x|2 = 1. Let x = u1 be the corresponding
eigenvector. Change coordinates by choosing an orthonormal basis starting with
u1. Then the additional basis elements will span the subspace perpendicular to u1

and we may obtain a lower dimensional quadratic function by restricting f to that
subspace. We can now repeat the process to find the next smaller real eigenvalue.
Continuing in this way, we will obtain an orthonormal basis of eigenvectors for A
and each of the corresponding eigenvalues will be real.
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Exercises for Section 5.

1. Find the maximum and minimum values of the function f(x, y) = x2+y2 given
the constraint x2 + xy + y2 = 1.

2. Find the maximum and/or minimum value of f(x, y, z) = x2−y2+z2−4xy−4yz
subject to x2 + y2 + z2 = 1.

3. (Optional) The derivation of the Lagrange multiplier condition ∇f = λ∇g
assumes that the ∇g 6= 0, so there is a well defined tangent ‘plane’ at the potential
maximum or minimum point. However, a maximum or minimum could occur at a
point where ∇g = 0, so all such points should also be checked. (Similarly, either
f or g might fail to be smooth at a maximum or minimum point.) With these
remarks in mind, find where f(x, y, z) = x2 + y2 + z2 attains its minimum value
subject to the constraint g(x, y, z) = x2 + y2 − z2 = 0.

4. Consider as in Example 2 the problem of maximizing f(x, y) = x2 + 4xy + y2

given the constraint x2 + y2 = 1. This is equivalent to maximizing F (x, y) = xy on
the circle x2+y2 = 1. (Why?) Draw a diagram showing the circle and selected level
curves F (x, y) = c of the function F . Can you see why F (x, y) attains its maximum
at (1/

√
2, 1/

√
2) and (−1/

√
2,−1/

√
2) without using any calculus? Hint: consider

how the level curves of F intersect the circle and decide from that where F is
increasing, and where it is decreasing on the circle.

6. Normal Modes

Eigenvalues and eigenvectors are an essential tool in solving systems of linear
differential equations. We leave an extended treatment of this subject for a course
in differential equations, but it is instructive to consider an interesting class of vi-
bration problems that have many important scientific and engineering applications.

We start with some elementary physics you may have encountered in a physics
class. Imagine an experiment in which a small car is placed on a track and connected
to a wall though a stiff spring. With the spring in its rest position, the car will
just sit there forever, but if the car is pulled away from the wall a small distance
and then released, it will oscillate back and forth about its rest position. If we
assume the track is so well greased that we can ignore friction, this oscillation will
in principle continue forever.

x

k m

We want to describe this situation symbolically. Let x denote the displacement
of the car from equilibrium, and suppose the car has mass m. Hooke’s Law tells
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us that there is a restoring force of the form F = −kx where k is a constant called
the spring constant. Newton’s second law relating force and acceleration tells us

(1) m
d2x

dt2
= −kx.

This is also commonly written
d2x

dt2
+

k

m
x = 0. You may have learned how to solve

this differential equation in a previous course, but in this particular case, it is not
really necessary. From the physical characteristics of the solution, we can pretty
much guess what it should look like.

(2) x = A cos(ωt)

where A is the amplitude of the oscillation and ω is determined by the frequency
or rapidity of the oscillation. It is usually called the angular frequency and it is
related to the actual frequency f by the equation

ω = 2πf.

A is determined by the size of the initial displacement. It gives the maximum
displacement attained as the car oscillates. ω however is determined by the spring
constant. To see how, just substitute (2) in (1). We get

m(−ω2A cos(ωt)) = −kA cos(ωt)

which after canceling common factors yields

mω2 = k

or ω =

√
k

m
.

The above discussion is a bit simplified. We could not only have initially dis-
placed the car from rest, but we could also have given it an initial shove or velocity.
In that case, the maximal displacement would be shifted in time. The way to
describe this symbolically is

x = A cos(ωt + δ)

where δ is called the phase shift. This complication does not change the basic
character of the problem since it is usually the fundamental vibration of the system
that we are interested in, and that turns out to be the same if we include a possible
phase shift.

We now want to generalize this to more than one mass connected by several
springs. This may seem a bit bizarre, but it is just a model for situations com-
monly met in scientific applications. For example, in chemistry, one often needs
to determine the basic vibrations of a complex molecule. The molecule consists of
atoms ‘connected’ by interatomic forces. As a first approximation, we may treat
the atoms as point masses and the forces between them as linear restoring forces
from equilibrium positions. Thus the mass-spring model may tell us something
useful about real problems.
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Example 1. Consider the the configuration of masses and springs indicated
below, where m is the common mass of the two particles and k is the common
spring constant of the three springs.

x 1
x

2

k m k m k

Look at the first mass. When it is displaced a distance x1 to the right from
equilibrium, it will be acted upon by two forces. Extension of the spring on the
left will pull it back with force −kx1. At the same time, the spring in the middle
will push or pull it depending on whether it is compressed or stretched. If x2 is
the displacement of the second mass from equilibrium, the change in length of the
second spring will be x1 − x2, so the force on the first mass will be −k(x1 − x2).
This yields a total force of

−kx1 − k(x1 − x2) = −2kx1 + kx2.

A similar analysis works for the second mass. Thus, we obtain the system of
differential equations

m
d2x1

dt2
= −2kx1 + kx2

m
d2x2

dt2
= kx1 − 2kx2.

The system may also be rewritten in matrix form

(3) m
d2x
dt2

=
[−2k k

k −2k

]
x where x =

[
x1

x2

]
.

Note that the matrix on the right is a symmetric matrix. This is always the case
in such problems. It is an indirect consequence of Newton’s third law which asserts
that the forces exerted by two masses on each other must be equal and opposite.

To solve this, we look for solutions of the form

x1 = v1 cos(ωt)

x2 = v2 cos(ωt)(4)

In such a solution, the two particles oscillate with the same frequency but with
possibly different amplitudes v1 and v2. Such a solution is called a normal mode.
General motions of the system can be quite a bit more complicated. First of all,
we have to worry about possible phase shifts. More important, we also have to
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allow for linear combinations of the normal modes in which there is a mixture
of different frequencies. In this way the situation is similar to that of a musical
instrument which may produce a complex sound which can be analyzed in terms
of basic frequencies or harmonics. We leave such complications for another course.
Here we content ourselves at doing the first step, which is to find the fundamental
oscillations or normal modes.

(4) may be rewritten in matrix form

(5) x = v cos(ωt)

where ω and v 6= 0 are to be determined. Then

d2x
dt2

= −ω2v cos(ωt)

Hence, putting (5) in (3) yields

m(−ω2v cos(ωt)) =
[−2k k

k −2k

]
v cos(ωt).

Now factor out the common scalar factor cos(ωt) to obtain

−ω2mv =
[−2k k

k −2k

]
v.

Note that the ‘amplitude’ v is a vector in this case, so we cannot cancel it as we
did in the case of a single particle. The above equation may now be rewritten[−2 1

1 −2

]
v = −ω2 m

k
v.

This is a trifle messy, but if we put abbreviate λ = −ω2 m
k for the scalar on the

right, we can write it [−2 1
1 −2

]
v = λv.

This equation should look familiar. It says that v is an eigenvector for the
matrix on the left, and that λ = −ω2 m

k
is the corresponding eigenvalue. However,

we know how to solve such problems. First we find the eigenvalues by solving
the characteristic equation. For each eigenvalue, we can find the corresponding

frequency ω from ω =

√
λm

k
. Next, for each eigenvalue, we can determine basic

eigenvectors as before.
In this example, the characteristic equation is

det
[−2− λ 1

1 −2− λ

]
= (−2− λ)2 − 1

= λ2 + 4λ + 4− 1

= λ2 + 4λ + 3

= (λ + 1)(λ + 3) = 0.
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Hence, the roots are λ = −1 (ω =
√

k/m) and λ = −3 (ω =
√

3k/m).
For λ = −1 (ω =

√
k/m), finding the eigenvectors results in reducing the matrix

[−2 + 1 1
1 −2 + 1

]
=

[−1 1
1 −1

]
→

[
1 −1
0 0

]
.

Hence, the solution is v1 = v2 with v2 free. A basic solution vector for the subspace
of solutions is

v1 =
[

1
1

]
.

The corresponding normal mode has the form

x =
[

1
1

]
cos(

√
k/m t).

Note that x1(t) = x2(t) for all t, so the two particles move together in tandem with
the same angular frequency

√
k/m. This behavior of the particles is a consequence

of the fact that the components of the basic vector v1 are equal.
Similarly, for λ = −3 (ω =

√
3k/m), we have

[−2 + 3 1
1 −2 + 3

]
=

[
1 1
1 1

]
→

[
1 1
0 0

]
.

The solution is v1 = −v2 with v2 free, and a basic solution vector for the system is

v2 =
[−1

1

]
.

The corresponding normal mode is is

x =
[−1

1

]
cos(

√
3k/m t).

Note that x1(t) = −x2(t) for all t, so the two masses move opposite to one another

with the same amplitude and angular frequency

√
3k

m
.

Note that in the above example, we could have determined the two vectors v1

and v2 by inspection. As noted, the first corresponds to motion in which the
particles move in tandem and the spring between them experiences no net change
in length. The second corresponds to motion in which the particles move back
and forth equal amounts in opposite directions but with the same frequency. This
would have simplified the problem quite a lot. For, if you know an eigenvector of
a matrix, it is fairly simple to find the corresponding eigenvalue, and hence the
angular frequency. In fact, it is often true that careful consideration of the physical
arrangement of the particles, with particular attention to any symmetries that may
be present, may suggest possible normal modes with little or no calculation.
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Relation to the Principal Axis Theorem. As noted above normal mode
problems typically result in systems of the form

(7)
d2x
dt2

= Ax

where A is a real symmetric matrix. (In the case that all the particles have the

same mass, A =
1
m

K, where K is a symmetric matrix of ‘spring constants’. If the
masses are different, the situation is a bit more complicated, but the problem may
still be restated in the above form.)

If P is a matrix with columns the elements of a basis of eigenvectors for A, then
we saw earlier that

AP = PD

where D is a diagonal matrix with the eigenvalues on the diagonal. Assume we
make the change of coordinates

x = Px′.

Then

d2Px′

dt2
= APx′

P
d2x′

dt2
= APx′

d2x′

dt2
= P−1APx′ = Dx′.

However, since D is diagonal, this last equation may be written as n scalar equations

d2x′j
dt2

= λjx
′
j j = 1, 2, . . . , n.

In the original coordinates, the motions of the particles are ‘coupled’ since the
motion of each particle may affect the motion of the other particles. In the new
coordinate system, these motions are ‘decoupled’. The new coordinates are called
normal coordinates. Each x′j may be thought of as the displacement of one of n
fictitious particles, each of which oscillates independently of the others in one of n
mutually perpendicular directions. The physical significance in terms of the original
particles of each normal coordinate is a but murky, but they presumably represent
underlying structure of some importance.

Example 1, revisited.

d2x
dt2

=
k

m

[−2 1
1 −2

]
x.

A basis of eigenvectors for the coefficient matrix is as before{
v1 =

[
1
1

]
, v2 =

[−1
1

]}
.
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If we divide the vectors by their lengths, we obtain the orthonormal basis{
1√
2

[
1
1

]
,

1√
2

[−1
1

]}
.

This in turn leads to the change of coordinates matrix

P =

[
1√
2

− 1√
2

1√
2

1√
2

]

1x’
2

x’

x
1

x
2

π /4

π /4

If you look carefully, you will see this represents a rotation of the original x1, x2-
axes through an angle π/4. However, this has nothing to do with the original ge-
ometry of the problem. x1 and x2 stand for displacements of two different particles
along the same one dimensional axis. The x1, x2 plane is a fictitious configuration
space in which a single point represents a pair of particles. It is not absolutely
clear what a rotation of axes means for this plane, but the new normal coordinates
x′1, x

′
2 obtained thereby give us a formalism in which the normal modes appear as

decoupled oscillations.

Exercises for Section 6.
1. Determine the normal modes, including frequencies and relative motions for
the system

m
d2x1

dt2
= k(x2 − x1) = −kx1 + kx2

m
d2x2

dt2
= k(x1 − x2) + k(x3 − x2) = kx1 − 2kx2 + kx3

m
d2x3

dt2
= k(x2 − x3) = kx2 − kx3
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x
2x 1

k k m

x
3

mm

Note that since the masses are not fixed to any wall, one possibility is that they
will together move freely at constant velocity without oscillating. This is reflected in
the linear algebra by one zero eigenvalue which does not actually give an oscillatory
solution. Ignore that eigenvalue and the corresponding eigenvector.

2. Determine the normal modes, including frequencies and relative motions for
the system

m
d2x1

dt2
= −kx1 + k(x2 − x1) = −2kx1 + kx2

m
d2x2

dt2
= k(x1 − x2) + k(x3 − x2) = kx1 − 2kx2 + kx3

m
d2x3

dt2
= k(x2 − x3)− kx3 = kx2 − 2kx3

x
2x 1

k k k m

x
3

m m k

3. Suppose a normal mode problem involving two particles has one normal mode
in which the displacements satisfy x1 = 2x2 for all time. What relation do the
displacements have for the other normal mode?

4. A system of two particles is similar to the example in the text except that one
end is free. It is described by the system

d2x
dt2

=
k

m

[−5 2
2 −2

]
x where x =

[
x1

x2

]
.

Find the normal modes.

5. A system of two particles is as in the example in the text except that one end
is free. It is described by the system

d2x
dt2

=
k

m

[−4 2
2 −2

]
x where x =

[
x1

x2

]
.

Find the normal modes.
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6. A certain molecule has three normal modes. One is degenerate and corresponds

to the eigenvalue λ = 0. The eigenvector for this degenerate mode is


 1

1
1


. The

relative motions for another normal mode satisfy x1 = x3, x2 = −2x3. What
relations do the relative motions for the third normal mode satisfy?

7. Review

Exercises for Section 7.
1. The Gram-Schmidt process fails when applied to the set of vectors





1
2
1
3


 ,




2
3
1
5


 ,




3
5
2
8







in R4. Explain why.

2. Let A =


 0 1 1

1 0 1
1 1 0


.

(a) Find the eigenvalues and eigenvectors of A.
(b) Find an orthonormal basis for R3 consisting of eigenvectors for A.
(c) Find an orthogonal matrix P such that P tAP is diagonal. What is P tAP?

3. What is wrong with the following statement? If the columns of an n×n matrix
P are mutually perpendicular, then P is orthogonal.

4. Consider the matrix A =
[

2 −2
−2 5

]
which has eigenvalues λ = 6, 1.

(a) Find the eigenvectors of A.
(b) Consider the conic section 2x2 − 4xy + 5y2 = 24. Find an orthogonal matrix

P such that the coordinate change
[

x
y

]
= P

[
u
v

]
transforms the equation of the

conic into the form αu2 +βv2 = 24 (that is, into an equation with zero cross term).
(c) Sketch the conic section of part (b). Include in the same sketch the xy axes

and the uv axes.

5. Use the methods introduced in this course to sketch the graph of the equation

2x2 + y2 + z2 + 4yz = 6.

6. A system of two particles with displacements x1 and x2 satisfies the system of
differential equations

m
d2x1

dt2
= −3kx1 + 2kx2

m
d2x2

dt2
= 2kx1 − 3kx2
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Find the normal modes. Include the ‘angular frequencies’ ω and the initial dis-
placements (u1, u2) for each normal mode.

7. Determine whether or not each of the following matrices may be diagonalized.
In each case, explain your answer. Using general principles may help you avoid
difficult computations.

(a) A =


 1 0 0

1 1 0
1 1 1


.

(b) B =


 3 −1 1

0 2 0
1 −1 3


. Note: The characteristic polynomial of B is −(λ −

2)2(λ− 4).

(c) C =




1 2 1 1 1
2 0 1 0 1
1 1 0 4 0
1 0 4 0 5
1 1 0 5 0


.


