
CHAPTER III

NORMAL SERIES

1. Normal Series

A group is called simple if it has no nontrivial, proper, normal subgroups. The only abelian simple
groups are cyclic groups of prime order, but some authors exclude these by requiring simple groups to be
non-abelian. An is a simple non-abelian group for n > 4.

Let G be a group. A sequence of subgroups

{1} = Gs C . . . C G2 C G1 C G0 = G

where each subgroup is normal in the next one as indicated is called a normal series for the group G. The
length s of a normal series is the number of factors Gi/Gi+1 rather than the number of subgroups. In
general, a normal subgroup of a normal subgroup need not be normal. (Can you find an example in any of
the previous pages?) So the terms in a normal series need not be normal in G.

Example:
{1} C An C Sn is a normal series for Sn.

For n = 4, A4 has the normal series {1} C V C A4 where V = {id, (1 2)(3 4), (1 3)(2 4),
(1 4)(2 3)} is easily seen to be a normal subgroup isomorphic to the Klein 4-group (the direct product
of two cyclic subgroups of order 2.) In fact, in this case V is normal in S4.

A composition series for G is a normal series such that each factor is simple, i.e., each factor is either
cyclic of prime order or a simple nonabelian group.

Clearly, a finite group always has a composition series since we can keep inserting normal subgroups into
the factors until all the factors have no proper nontrivial normal subgroups. On the other hand, an infinite
group may or may not have a composition series. (Z does not have a composition series since the last
nontrivial subgroup would be isomorphic to Z again.)

Let
{1} = Gs C . . . C G2 C G1 C G0 = G

be a normal series for G. A refinement of this series is another normal series such that every subgroup Gi in
the first series appears as a term in the second series. In this case, we can describe the situation notationally
as follows. For each layer Gi ≥ Gi+1 in the first series, we can insert additional factors

Gi+1 = Hi,t C . . . C Hi,1 C Hi,0 = Gi

and putting these together yields the refined series.
Note that a composition series does not have any proper refinements, i.e., the only way to refine a

composition series is to add trivial layers. (That is, all the intermediate layers Hi,j+1 C Hi,j are in fact
equalities.)

Two normal series are said to be equivalent if they have the same length and the factors are the same up to
isomorphism except for the order in which they occur. Note that two different groups could have equivalent
normal series without being isomorphic. For example, both a cyclic group of order 4 and the Klein 4-group
have composition series in which both factors are cyclic of order 2.
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26 III. NORMAL SERIES

Theorem. (Schreier) Any two normal series for the same group have equivalent refinements.

We shall prove this theorem below.

Corollary. (Jordan-Hölder) If a group has a composition series, then all composition series for that
group are equivalent.

Proof. The only way a refinement of a composition series can differ from the original composition series
is by the insertion of trivial factors. Hence, using Schreier’s theorem we see that there must be a one-to-one
correspondence between the (isomorphic) nontrivial factors in the refinements, and these factors must be
the same as the original factors in the two composition series. �

Proof of Schreier’s Theorem.
We introduce some terminology. Let L ≤M be subgroups of G with M normal in L. Then L/M is called

a section of G. Suppose H is another subgroup of G. Put H∗ = (H ∩ L)M . Then H∗/M is a subgroup of
the section L/M . Note that if K C H then K∗ C H∗. (For, K ∩ L C H ∩ L and it is not hard to see that
multiplying by M will preserve normality.) H∗/M is in some sense the largest subgroup of the section L/M
that we can “construct” from H.

Lemma. (Zassenhaus) Let G be a group with sections H/K and L/M . Then (H ∩ L)M/(K ∩ L)M ∼=
(L∩H)K/(M ∩H)K. (This can be written H∗/K∗ ∼= L∗/M∗ if we stipulate that the ∗ operation on the left
is relative to the section L/M and that on the right is relative to the section H/K.)

G
/ \

H L
| |
L∗ H∗

| |
M∗ K∗

| |
K M

Proof. Under the canonical epimorphism L → L/M , the subgroup H ∩ L of L gets carried onto the
factor group (H ∩ L)M/M , and the kernel of the restriction of this canonical epimorphism to H ∩ L is

(H ∩ L) ∩M = H ∩ (L ∩M) = H ∩M.

Thus, using the canonical maps as in the second isomorphism theorem, we have

(*) (H ∩ L)/(H ∩M) ∼= (H ∩ L)M/M.

Similarly, under the epimorphism φ : H ∩ L → (H ∩ L)M/M , the subgroup K ∩ L gets carried onto
(K ∩ L)M/M . On the other, hand the largest subgroup of H ∩ L with this property is (K ∩ L)(Kerφ) =
(K ∩L)(H ∩M). Hence, the subgroup of (H ∩L)/(H ∩M) on the left of (*) corresponding to (K ∩L)M/M
on the right is (K ∩ L)(H ∩M)/(H ∩M).

(H ∩ L)/(H ∩M) −→(H ∩ L)M/M

| |
(K ∩ L)(H ∩M)/H ∩M →(K ∩ L)M/M

| |
1 1

From the third isomorphism theorem, we have

(H ∩ L)/(K ∩ L)(H ∩M) ∼= (H ∩ L)M/(K ∩ L)M.
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However, the expression on the left is does not change if the pairs (H,K) and (L,M) are switched. Hence,
the result follows. �

To complete the proof of Schreier’s Theorem, suppose we have two normal series

1 = Gs C . . . C Gi C . . . C G0 = G

and
1 = Ht C . . . C Hj C . . . C H0 = G.

Between Gi+1 and Gi insert the subgroups (Hj ∩ Gi)Gi+1 where j = 0, 1, . . . , t. Similarly, between Hj+1

and Hj insert the subgroups (Gi ∩Hj)Hj+1 where i = 0, 1, . . . , s. The refined normal series have the same
length st. Also, by Zassenhaus’s Lemma, we have isomorphisms of factors

(Hj ∩Gi)Gi+1

(Hj+1 ∩Gi)Gi+1

∼=
(Gi ∩Hj)Hj+1

(Gi+1 ∩Hj)Hj+1

so that shows there is a one-to-one correspondence of isomorphic factors. �
As we noted earlier, a finite group necessarily has a composition series but an infinite group need not

have one. In particular, Z has many infinite descending chains such that each factor is cyclic of prime order.
Similarly, Q/Z has many infinite ascending chains in which each factor is cyclic of prime order.

Important Note. In many circumstances, one wishes to consider normal series or composition series not
of arbitrary subgroups but of subgroups meeting some further condition. As long as the basic isomorphism
theorems remain true, then conclusions such at the Jordan–Hölder Theorem remain true. For example, the
group G could be the additive group of a vector space, and we might restrict attention is subgroups which
are subspaces. Provided the reasoning about homomorphisms and isomorphisms remains valid we can still
derive the analogue of the Jordan–Hölder Theorem. Of course, in the definition of composition series, we
would have to require the factors be irreducible in the new sense—i.e. have no proper, nontrivial subspaces.

Exercises.
1. Find all subgroups of S4. Exhibit them in a lattice diagram Determine all normality relations and
exhibit all composition series for S4.

2. Solvability

Let G be a group. For x, y ∈ G, define

[x, y] = xyx−1y−1 = (xy)y−1.

[x, y] is called the commutator of x and y. (Group theorists often define [x, y] to be x−1y−1xy instead.) The
commutator satisfies many important relations, one of which is

[x, yz] = [x, y](y[x, z]) = [x, y][x, z]([y, [z, x]])−1.

(See the Exercises.) We define the commutator subgroup [G,G] to be the subgroup generated by all [x, y]
with x, y ∈ G. The commutator subgroup is also denoted G′, and it is also called the derived subgroup.

Note that G/G′ is abelian because modulo G′ we have xy ≡ yx. Conversely, if N is any normal subgroup
of G such that G/N is abelian, then xy ≡ yx mod N holds for all x, y ∈ G. It follows that each [x, y] =
xyx−1y−1 ∈ N , i.e. G′ ≤ N . It follows that G′ is the intersection of all normal subgroups N of G for which
G/N is abelian.

We can repeat the process of finding the commutator subgroup. Namely, define G′′ to be [G′, G′]. It
is not hard to see that G′′ is even normal in G. (See the Exercises.) Continue in this way and define
G1 = G,G2 = G′, . . . , Gi+1 = [Gi, Gi], . . . . This provides a descending chain of subgroups each normal in
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the whole group. It is called the derived series for the group. Notice that it could go on ‘forever’. Even for
a finite group, it is quite possible that the terms of the series could stabilize on a single non-trivial subgroup
which repeats, so the series would go on forever without terminating with {1},

A group G is called solvable if its derived series has Gi = {1} for some i. Of course, every abelian group
is solvable. Any p-group G is also solvable. (See the Exercises.) Sn is solvable for n = 2, 3, and 4, but it is
not solvable if n > 4. (See the Exercises.)

Another criterion for solvability which is simpler to apply in specific examples is derived from the following
proposition.

Proposition. Assume G has a sequence of subgroups

. . . Hi+1 C Hi C . . . H2 C H1 = G

such that each factor Hi/Hi+1 is abelian. Then for each i, the ith term in the derived series Gi ≤ Hi. In
particular, G is solvable if and only if it has a finite normal series in which each factor is abelian.

Proof. Clear by induction and the definition of Gi as the commutator subgroup of Gi−1. �

Proposition. Let G have a composition series. Then G is solvable if and only if the factors in its
composition series are cyclic of prime order.

Proof. Assume G is solvable. By Schreier’s Theorem, we can find equivalent refinements of its derived
series and some composition series. That means that the factors in the composition series must be sections
of the groups Gi/Gi+1 which are abelian. That excludes the possibility of simple nonabelian factors in the
composition series so they are all cyclic of prime order.

Assume G has a composition series with cyclic factors. Then it has a normal series with abelian factors,
and by the above proposition, the derived series must terminate. �

Proposition. Let N C G. Then G is solvable if and only if both N and G/N are solvable. More
generally, any subgroup and any factor group of a solvable group are solvable.

Proof. Assume first that G is solvable and choose a normal series for G with abelian factors. If H is
any subgroup, then the intersection of this normal series with H will produce a normal series for H, and it
is not hard to see the factors will be abelian. (Proof? Relate these factors somehow to the factors in the
original normal series.) Similarly, if G/N is a factor group of G, we may project the normal series for G onto
a normal series for G/N , and again it is easy to see that the factors in the second series will be abelian.

Conversely, assume G/N and N are solvable. Choose a normal series for G/N with abelian factors and
pull it back to a series for G with abelian factors which terminates in N . (Use the third isomorphism
theorem.) Since N is solvable, we can continue with a normal series for N with abelian factors, and the
result is such a normal series for G. �

Exercises.

1. Derive the commutator inequality

[x, yz] = [x, y](y[x, z]) = [x, y][x, z]([y, [z, x]])−1.

2. Show that each term of the derived series is normal in the whole group.

3. Show that every group of order pq, where p < q are primes, is solvable.

4. Show that every group of order smaller than 60 is solvable. Show in particular that Sn is solvable for
n = 2, 3, 4, but it is not solvable for n = 5.

5. Give an example of a solvable group which does not have a composition series.
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3. Nilpotent Groups

Let G be a group, and let K and H be subgroups of G. Define [K,H] to be the subgroup generated by
all [k, h] where k ∈ K and h ∈ H. If H C G and K C G then [K,H] C G. For,

g[k, h]g−1 = [gkg−1, ghg−1] ∈ [K,H] for each k ∈ K,h ∈ H.

Define Γ1(G) = G,Γ2(G) = [G,Γ1(G)], . . . ,Γi+1(G) = [G,Γi(G)], . . . . These groups form a descending chain
of subgroups each normal in the whole group G.

The chain is called the descending central series of the groupG. A group is called nilpotent if its descending
central series stops with the trivial subgroup.

Every nilpotent group is solvable since we have G1 = Γ1, G2 = [G,G] = Γ2, . . . , Gi+1 = [Gi, Gi] ≤
[G,Gi] ≤ [G,Γi] = Γi+1 by induction.

Proposition. A finite p-group is nilpotent.

Proof. Every abelian group is certainly nilpotent. Proceeding by induction, we may assume thatG/Z(G)
is nilpotent. (|G/Z(G)| < |G| since Z(G) is nontrivial.) For x, y ∈ G, z ∈ Z(G) we have

[xz, yz] = [x, y].

(This is easily verified by direct computation.) It follows that in G/Z, [xZ, yZ] = [x, y]Z. From this, it
follows that

Γi(G/Z) = Γi(G)Z/Z ∼= Γi(G)/Γi(G) ∩ Z.

Assume Γn(G/Z) = {1}. Then Γn(G) ⊆ Z(G). Hence, Γn+1(G) ⊆ [G,Z] = {1} so G is also nilpotent. �

Note that a solvable group need not be nilpotent. For example, direct calculations in S3 show that all
Γi = A3 for i ≥ 2. In fact, it can be shown that a finite group is nilpotent if and only if it is isomorphic to
the direct product of its p-Sylow subgroups for the primes p dividing its order. (See the Exercises.)

Exercises.

1. (a) Show that the center of any nilpotent group is non-trivial.
(b) Conversely, suppose G has a normal series

{1} = Z0 ≤ Z1 ≤ · · · ≤ Zk−1 ≤ Zk = G

such that each Zi is normal in G and Zi+1/Zi is in the center of G/Zi for each i = 0, . . . , k − 1. Show that
G is nilpotent.
2. Let G be a finite group.

(a) Assume G is nilpotent. Show that for every prime p dividing |G|, any p-Sylow subgroup Gp is normal.
(Hence, there is only one Sylow subgroup for each prime.) Conclude from this that G is isomorphic to the
direct product of its p-Sylow subgroups for p dividing |G|.

(b) Assume conversely that G is a direct product of p-groups for distinct primes p. Show that G is
nilpotent.
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