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DEPTH OF FIELD FOR THE TILTED LENS PLANE

LEONARD EVENS

1. Introduction

The purpose of this article is to discuss a subtle point which arises in the calcula-
tion of depth of field when movements such as tilts or swings are employed in view
camera photography.1 I would like to express my gratitude to Jeff Conrad, who
made many useful comments, most of which I have included without attribution.

Explaining why there is a problem requires some background, so let me start
with a general picture of how tilting the lens affects depth of field. (Many of us
learned this from Merklinger’s expositions. If the subject is unfamiliar to you,
that is as good a place as any to start. His collected articles may be found at
www.trenholm.org/hmmerk.) This is summarized in Figure 1 which shows the
lens plane, upper and lower2 planes, which delineate the depth of field, and the
exact subject plane. The three corresponding image planes are also indicated.
The subject planes all intersect in the indicated hinge line, and each subject plane
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Figure 1. Basic Diagram

Date: May 16, 2012.
1I have included numerous footnotes, mostly for the experts, but they can generally be ignored.
2These terms make sense in the case of a pure tilt with respect to the horizontal plane. They

may also be called respectively the near and far subject planes, which describes their distance from
the reference plane, but as we shall see that terminology can be confusing, since what happens in
the distant background is more affected by the ‘near’ plane than by the ‘far’ plane.
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intersects its corresponding image plane in a Scheimpflug line. By definition the
hinge line lies in what I call the reference plane, which is the plane through the
lens3 parallel to the image plane. The hinge line is also the intersection of the front
focal plane with the reference plane, a fact that is useful in trying to understand the
optics. The distance of the hinge line below the lens is called the hinge distance.
The hinge distance is proportional to the focal length and inversely proportional to
the tilt angle.4 It can’t be shorter than the focal length, but in fact it never even
gets close to that.5. You can usually see roughly where the hinge line should go
by visualizing the desired subject plane extending backwards under the lens. Its
position is controlled by the tilt angle, while the position of the exact subject plane,
and with it the entire wedge, is controlled by the position of the rear standard. The
entire wedge swings about the hinge line as you focus, which explains its name.

It can be shown that, if you start with the upper and lower image planes, then
the correct place to put the exact subject plane, to have both bounding planes
“equally out of focus”6, is so that the vertical split distances above and below it
are equal. The depth of field region is the wedge centered on the hinge line, lying
between the upper and lower bounding planes.

Correspondingly, you should focus so that the exact image plane is at the har-
monic mean7 of the two points on the rail corresponding to the upper and lower
bounding subject planes, but that point is normally so close to halfway between
those points that we need not worry about the difference. The only exception would
be an extreme close-up using an extremely short focal length lens.

The proper f-number to use to be sure the previously set bounding planes are in
focus may be calculated from the the focus spread between the points on the rail,
corresponding to the upper and lower planes, by one of the commonly used methods.
(See, for example, www.largeformatphotography.info/how-to-focus.html.) If you
ignore diffraction, the rule is to divide the focus spread by twice the maximum
acceptable circle of confusion (CoC). For 4 x 5 photography, a common choice for
CoC is 0.1 mm, so the rule becomes: multiply the focus spread by ten and divide
the result by two. If you wish to take diffraction into account, you would use some
other rule. 8

3Just which point in the lens to use is a bit complicated. Suffice to say that for most lenses, you
can use the point where the lens axis intersects the front plane of the lensboard. For a telephoto
lens, it gets much more complicated

4The formula is
f

sin φ
, where f is the focal length and φ is the tilt angle.

5All my diagrams will be for the more common case of a pure tilt downward. For a pure swing,
you have to turn the diagram on its side. The hinge line will then lie to the side that the lens
has been swung. You can even apply the method to a combination of a tilt with a swing, but you
will have to view if from an appropriate vantage point in space for the diagram to look right. If
you tilt the back instead, that is equivalent to tilting the whole camera, shifting the rear standard
and then tilting the front standard, so the diagram still describes the situation, but relating it to
the vertical and horizontal directions is more complicated.

6This is actually a little tricky. You have to look at points in those planes on the same ray
through the lens, but I won’t dwell on such subtleties in this article.

7The harmonic mean of two numbers is calculated by taking the average of the reciprocals of
those numbers and then taking the reciprocal of that. In symbols, it is given by the equation
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8This is a complicated subject. See www.largeformatphotography.info/articles/DoFinDepth.pdf

for a nuanced discussion.
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Any such rule for determining the proper f-number is only an approximation,
but for typical tilt angles, which are usually small, it gives a slight overestimate.

In plausible scenes, where the exact subject plane doesn’t rise too steeply, the
common split distance above and below the exact subject plane, measured at the
hyperfocal distance H ,9 is very close to the hinge distance. So, the total vertical

range in focus at the hyperfocal distance is roughly twice the hinge distance. At any

other distance u, you should multiply that quantity by the ratio
u

H
. For example,

for a 150 mm lens at f/22, with CoC 0.1 mm, the hyperfocal distance is about 10
1/4 meters. If the subject plane passes 1 meter below the lens (which would require
a tilt of about 8 1/2 degrees), the vertical extent in focus at 10 1/4 meters would
be about 2 meters. At 30 meters it would be 30/10.25 or about 3 times that, or 6
meters.

It is also instructive to look at how this affects what you see on the ground
glass. The vertical range in focus at any specific distance from the lens determines
a window in the image plane. See Figure 2, which shows the situation for the case
of a pure tilt. (If the tilt axis is skew with respect to the sides of the frame, the
frame would be tilted with respect to the window.) The height of that window is
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Figure 2. The In-focus Window

independent of the chosen distance, but the position of the window moves down in
the image plane from the foreground to the background. The height of the window
is proportional to the f-number10, so, stopping down one stop increases the height
by a factor of 1.4.

9The hyperfocal distance is given by the formula H =
f2

NC
, where f is the focal length, N the

f-number, and c the diameter of the maximum acceptable circle of confusion, (CoC ). If you prefer
you can look it up in a table. The important thing is to realize it is inversely proportional to the
f-number.

10The exact formula is
2Nc

sinφ
. For small tilts, sin φ ≈ φ when the angle is given in radians.

Using degrees or radians, the height of the window is roughly inversely proportional to the tilt
angle, so if you double the angle, you halve the height of the window
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Note that the window may extend in whole or part beyond the frame depending
on where you look. As you move to the extreme foreground, in principle, it could
move above the top of the frame and as you move to the extreme background, it
could move below the bottom of the frame.

Note also that when you look at the ground glass, you won’t see the clearly
delineated window in the figure. The window only shows you what is in adequate
focus at one specific distance, and it will not generally be possible to isolate that in
your mind as you look at the ground glass. More important, the top and bottom of
the window are not clearly defined dividing lines. In principle, sharpness is greatest
on the center line of the window and gets progressively worse as you depart from
it. The image won’t suddenly go from sharp to fuzzy at the boundaries of the DOF
region, but according to some previously chosen criterion for sharpness, everything
within the wedge will be ‘sharp enough’.

There are a couple of other lines in the image plane which play a role in posi-
tioning the frame. See Figure 3. On the left, we see the placement of the various
planes in cross-section. On the right, we see how things might appear on the ground
glass. The plane through the lens parallel to the exact subject plane intersects the
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Figure 3. Horizon, Tilt Horizon, Upper Tilt Horizon

image plane in a line which is the image of the tilt horizon. That is, all extremely
distant points in the exact subject plane come to focus close to that line. Similarly,
the plane through the lens parallel to the upper subject plane intersects the image
plane in a line which is the image of the upper tilt horizon, and the plane through
the lens parallel to the lower subject plane intersects the image plane in a line which
is the image of the lower tilt horizon.

A ray starting at a point A above the upper tilt horizon comes to focus at a point
A′ below the image of the upper tilt horizon, and that point can’t be in focus using
the criterion for sharpness you have chosen. (See Figure 3.) Such points may still
be acceptable in the scene if they don’t involve detail that needs to be sharp—I call
that the open sky exception for obvious reasons. But, except for that, the image of
the upper tilt horizon can be thought of as a line below which the bottom of the
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frame should not extend. And that, in turn, may force the top of the frame higher
than may be desirable, either because of mechanical limitations on movements of
the standards, or because of aesthetic considerations.

The lower tilt horizon and its image function somewhat differently. As mentioned
above, at any given distance from the lens, there is a relatively narrow window in
the image plane of points in focus at that distance. The window moves down in the
image plane as you move from foreground to background. As a result, the image

of the lower tilt horizon only limits what can be in focus on the ground glass for
points at great distance. A point B′ above that line may still be the image of a
point B in the DOF wedge at a closer distance. (See the figure.) The absolute
limit of how close you can get while still remaining in the wedge is the hinge line,
but of course, you will never get anywhere near it. The real limits on how high the
frame may rise are those imposed by the mechanics of the camera or what you are
willing to accept aesthetically. Often objects at such extreme angles may appear
‘distorted’.

You would use these principles in the field as follows. Remembering the wedge
shape of the depth of field region, you would pick some details you would expect
to be in the upper and lower planes bounding that region. You would try to put
the exact subject plane so it passes midway between them by adjusting the tilt.
Exactly, how you do that depends on how your camera works. I’m fond of the
near point/far point method described at lfphoto.net. But those with axial tilt
may prefer other methods. Having fixed the tilt, you would focus on the selected
upper detail, noting the point on the rail where it comes into focus, and then do
the same for the selected lower detail. Placing the standard halfway between those
points should put you back at the exact subject plane. You would then use the
focus spread between the upper and lower points to determine the proper aperture.
Note that the process may possibly involve four points on the rail: the near and
far points to position the exact subject plane, if you use that method, and also the
upper and lower points to establish the limits of depth of field about it.

There is an important problem with all this. Namely, the upper and lower
bounding surfaces of the depth of field are not actually planes. I call these surfaces
the upper and lower surfaces of good definition, and the primary purpose of this
article is to explain why they aren’t planes, and to determine where, and by how
much, these surfaces differ from the bounding planes. It will not be surprising to
experienced view camera photographers to discover that the differences are usually
so small that, practically speaking, they may be ignored. But the analysis is of some
interest in its own right, and understanding the issues involved will indicate when
the differences might be large enough to matter. The complete analysis requires
rather complicated mathematics, which I worked out in another article. In this
article I will omit the mathematics almost entirely and try to explain the results.
A little geometry will be needed, but nothing that should be specially challenging.

Before going further, let me address the question of whether or not the analysis
could have practical consequences. It is often argued that the view camera is
the ultimate WSIWYG (“What you see is what you get”) device. That is, the
photographer may rely entirely on what appears on the ground glass, and will
never go wrong by so doing. There is much to be said for this point of view, and I
adopt it myself for most of what I do. But there are some important caveats.
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Let’s assume you have chosen the plane of exact focus, as above, or by any other
convenient method. You can then stop down, observing what comes into focus on
the ground glass, until the desired depth of field is obtained. That way, any effect
of tilting will automatically be taken care of along with anything else that might
occur.

There are several problems with this. The first is that as you stop down the image
gets dimmer, so it gets increasingly more difficult to judge what is in focus. I’ve
done some informal surveys and found that most people can’t see much of anything
at f/22 and beyond. There are a couple of ways to deal with such dimming. First,
you can get a bright viewing screen. I have one such, made by Jim Maxwell, and
it does help, but it has limits. Except in very bright light, I still can’t see much of
anything beyond f/22. Another is to use a 4 × or stronger loupe. That seems to
concentrate light and make it easier to see detail.

So lets think a bit about depth of field and how it relates to what you see on the
ground glass, with or without a loupe. The idea is that the human visual system’s
ability to distinguish detail is limited. This is usually characterized by saying that
any disc smaller than a certain size, the CoC, can’t be distinguished from a point.
But implicitly, that CoC depends on what you are looking at, and how far away you
are when you look at it. A standard to which we can relate everything else is an 8
x 10 print viewed from about 12 inches. There are two reasons for choosing that
standard. First, except for very young people or myopes without their glasses, most
people are not comfortable viewing a print from closer than 10 inches. Second, for
any size print, most people put themselves about the diagonal of the print from it.
The diagonal of an 8 x 10 print is just about 12 inches, when the margin is taken
into account. The 4 x 5 image in the camera needs to be enlarged 2 ×. A larger
print would be enlarged proportionately more, so it would yield a larger CoC, but
viewing that CoC from proportionally further away would produce the same effect
as viewing the 8 x 10 print at 12 inches.11

Using the 8 x 10 print at 12 inches as the standard, you should view the 4 x 5
ground glass image at about 6 inches. For most people getting that close to the
ground glass requires 2 × magnification. If instead you use a 4 × loupe, you are in
effect putting your eye at 3 inches and reducing the acceptable CoC in half. Thus,
you would end up choosing an f-number twice what would be acceptable for normal
viewing of the standard print. That would amount to a change of two stops. It
might be argued that there is no harm in stopping down too far, but that is not
really the case. Each extra stop requires doubling the exposure time. If subject
movement, such as leaves rustling in the wind, is an issue, then you really don’t
want to stop down any more than you must. In addition, the smaller the aperture,
the more likely that diffraction, which is not usually a problem for view camera
photography, will degrade the image.

But there is one way you can use the WYSIWIG method to advantage, when
tilting. As we saw, the height of the in focus window on your ground glass is
proportional to the f-number. So look at the in-focus window at some distance when
you have stopped as far as you can and still make out detail. You can then estimate
how much that would be increased if you stopped down more by multiplying by the

11Of course, there are always ‘grain sniffers’ who will insist on getting as close as possible, no
matter how large the print is. My attitude is that like the serpents in “Alice in Wonderland”,
“there’s no pleasing them”, so I don’t see any point in trying.
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ratio of the f-numbers. For example, suppose you can still see something at f/22,
but you think you may need to stop down to f/32. Just multiply the height of the
window you see at f/22 by 32/22 ≈ 1.4, and you will have a good estimate of what
you would see were you still able to see anything at f/32.

2. Circles and Ellipses of Confusion
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Figure 4. Circle of Confusion

The basic problem is that if the image plane is tilted with respect to the lens
plane, then the circles of confusion become ellipses. Recall how circles of confusion
arise. For any specific image plane, only points in the corresponding subject plane
will be exactly in focus. For a point P not in that subject plane, the corresponding
image point P ′ will be outside the image plane. The rays from the image point to
the aperture will form a cone, and that cone will intersect the image plane in an
extended region called a circle of confusion. See Figure 4. If that region is small
enough, it won’t be distinguishable from a point, and the corresponding subject
point will still be adequately in focus. That is the basis for the theory of depth of
field.

If the image plane is parallel to the lens plane, then the circle of confusion is
really a circle, but if the image plane is tilted with respect to the lens plane, it is
an ellipse. This is illustrated schematically in Figure 5, which shows the lens plane,
the image plane, a point P ′ outside the image plane, the ray connecting that point
to the center of the aperture, and the point Q where that ray intersects the image
plane. That is the point in the frame where the image would be formed in a pinhole
camera, and it is what the circle of confusion appears to reduce to. The figure also
shows a plane through Q parallel to the lens plane, which does intersect the cone
in a circle. The problem is to determine when the diameter c of that circle and the
diameter c′ of the ellipse differ significantly, since the usual calculations are based
on using c instead of c′.

Before beginning, let me make one important point. Two-dimensional dia-
grams like these are highly misleading since they ignore the fact that space is
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Figure 5. ‘Circles and Ellipses of Confusion’ in Image Plane and
Plane Parallel to Aperture

three-dimensional. The actual geometry can be fairly complicated, and no two-
dimensional diagram which just captures one cross-section can accurately display
what is going on. Indeed, Wheeler12, in his analysis of the problem, was apparently
misled in just this way. His calculations, while correct in so far as they go, only
tell us something about what happens for image points along the central line of the
frame and even for those, it ignores what happens transverse to that line. As we
shall see, the transverse direction plays a major role.

In Figure 6, we show a sampling of these circles and ellipses of confusion at dif-
ferent points in the image plane for the indicated choice of tilt angle and distance
of the image plane to the reference plane. In each case, the circle and the corre-
sponding ellipse are shown together. The line at the bottom is the Scheimpflug line
where the lens plane intersects the images plane, so no image point can be below
it. The diagram shows what you would see at each point if you used a microscope.
At the scale of the diagram you would just see points.

Note certain features of the ellipses of confusion in the figure. The major axes
all point upward and away from the center line, except on the center line. Along
the center line, from the Scheimpflug line up to a point just above the center, the
ellipse is contained in the circle, so its major axis is horizontal. Above that point,
the ellipse contains the circle, so its major axis is vertical. More generally, near
the center of the field, the circle and ellipse are almost indistinguishable, but the
ellipse departs significantly from the circle as you move away from the center. Note
however, that for any real view camera, the distance you can move the frame from
the center is severely limited by available rise/fall or shifts. So the more peripheral
positions are inaccessible. Also, the characteristics of the scene will generally limit
how far way from the center you may want to put the frame.

For example, note that for image points close to the Scheimpflug line, the ellipse
of confusion reduces almost to a line segment. Typically, limits on rise/fall will
preclude that since the Scheimpflug line is usually at a substantial distance down

12As best I can tell, the first one to look at this issue was Wheeler in Section 10.5 of his Notes,
which may be found at /www.bobwheeler.com/photo/ViewCam.pdf.
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in the image plane. But, even if that weren’t true, the nature of the scene would
probably preclude an image point P ′ that low. For, the corresponding subject
point P would have to be quite high. For that to happen, since the depth of field
above the exact subject plane is limited by the smallest available aperture—usually
f/64—that plane would have to slope strongly upward. See Figure 7. That in turn
would entail an even shorter hinge distance, which would require both a very short
focal length and a large tilt. The only conceivable circumstance in which any of
this might be plausible is an extreme close-up using a very short focal length lens
and a large tilt. For normal view camera photography, we can be confident nothing
like this will ever occur.

From qualitative considerations of this nature, it appears that there really isn’t a
problem, i.e., that usually the ellipses are so close to the circles that the difference
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doesn’t matter. Unfortunately, without doing a quantitative analysis, we can’t
really be sure that is the case, and it is the purpose of this article to discuss the
broad outlines of such an analysis.

Before going on, let’s think a bit about what an appropriate measure is for the
size of the ellipse. For a circle, there is only one reasonable choice, its diameter.
But an ellipse has both a major axis and a minor axis. I have chosen the major
axis as the appropriate measure, but one can envision other choices. For example
one might look at the area, which is equivalent to taking the geometric mean of the
major and minor axes. Or one could take some sort of weighted average of the two.
Choosing the major axis has the advantage of dealing with the worst case, which
is what we ordinarily do in depth of field calculations. Thus, we try to make sure
the image is sufficiently sharp at the edges of the DOF region; we don’t settle for
making the average over the region sufficiently sharp. What we have in this case
is a kind of ‘astigmatic’ effect. If the two axes differ substantially in size, how well
detail is resolved along the major axis is relatively decreased, while that along the
minor axis is improved. Since the directions of the two axes vary so dramatically
over the field, as indicated in Figure 6, it is hard to envision a scene where only
detail along the minor axes is interesting. Finally, for plausible positions of the
frame, the major and minor axes don’t differ that much, but it may still be the
case that the difference from the circle is large enough to matter. So, it is not clear
a plausible alternate measure would change the estimates much. Ultimately, this
question could be settled by an appropriately designed experimental investigation.
On the other hand, given that we shall find. using this worst case analysis, that in
typical situations, the tilt effect is negligible, perhaps the question is moot.

In order to estimate the effect of using the major axis of the ellipse instead of

the diameter of the circle, I’ve defined κ13 to be the ratio
c

c′
of the diameter of the

circle to that of the ellipse. κ by definition is between 0 and 1. It is 1 at the center
of the field and it approaches zero as we move progressively further away.

κ depends only on the tilt angle and the direction of the ray from the subject
point (or image point) to the lens. As in the untitled case, we would insist that
the maximum diameter of any of the ellipses be less than some value, e.g., 0.1 mm.
The result would be that instead of bounding planes, we would get upper and lower
bounding surfaces, which I call the surfaces of good definition. These surfaces are
between the corresponding bounding planes and the exact subject plane, but much
closer to the former than to the latter. The exact displacement at each point on one
of these surfaces from the corresponding bounding plane depends on the value of
κ for the ray from the origin to that point. This is indicated graphically in Figure
8—which should be compared to Figure 2. But keep in mind that everything
has been exaggerated for purposes of illustration. In real examples occurring in
practice, the curves would be too close to the lines for you to see any difference in a
diagram drawn to scale. On the left, we see the windows for a vertical range in the
foreground and under it a window for the background. The frame is supposed to be
in the same position in both cases, but I have moved the views apart for purposes
of illustration. In each window, the two curves indicate the traces of the upper and
lower surfaces of definition. In the background, we see that they touch the upper
and lower planes in the center but depart on either side. In the background, they

13The terminology has no special meaning. I just wanted a convenient Greek letter and κ

seemed to be the best choice at the time.
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Figure 8. Windows for Foreground and Background

don’t touch those planes anywhere. Also, although it is not specially clear in the
diagram, we see that the size of the shift differs from foreground to background.
Generally speaking, you are more likely to have problems with the ‘κ effect’ in the
foreground than in the background.

The previous remarks about the window apply even more strongly. The greatest
sharpness is at the center of the window, and it gets progressively worse as you
move from the center, either up and down or to the sides. Again, the curves aren’t
clear delineating boundaries between what is ‘in focus’ and what is ‘out of focus’.
But everything in the window, within the curves, is sufficiently sharp according to
your previously chosen criteria.

It turns out that κ is also the ratio of the f-number that would work for c to
that which works for c′. In other words, κ tells us how much to stop down to
compensate. It is best to measure this is fractions of a stop. There is a formula
for that14, but it is easy to read it from a table such as that in Appendix A. For
example, if κ = 0.9, we should stop down about 3/10 of a stop to compensate. I
would consider that negligible. On the other hand, for κ = 0.7, we need to stop
more than a full stop, which I would consider significant.

3. Estimating κ

I’ve derived a formula for κ, but it is a bit complicated, so I won’t try to describe
it here.15 But, it is fairly easy to illustrate graphically. Figure 9 shows, for a tilt of
about 14.3 degrees, an image plane at distance 100 mm from the reference plane.
That distance is usually denoted by v and is called the bellows extension. The ray
from a given point in the image plane to the lens will determine a value of κ, so κ

will vary over the image plane, decreasing as we move away from the center of the
field, i.e., where the original line of sight intersects the image plane. If we fix a value

14Number of Stops =
2 log(κ)

log(2)
15See Appendix C.
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for κ, and plot all points with that value, we get what is called a contour curve.
It turns out the resulting curves are ellipses—don’t confuse these with the ellipses
of confusion—and they all have a common center, the point where the central line
intersects the Scheimpflug line, i.e., the line of intersection of the image plane with
the lens plane. Since any point below the Scheimpflug line is outside the camera, we
only plot half of each contour ellipse. Figure 9 shows these half ellipses for different
values of κ.16 Note that for κ equal to 1, the ‘contour ellipse’ degenerates into a line
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Figure 9. Contour Ellipses for φ ≈ 14.3 degrees and v = 100 mm.

segment along the vertical central line, which extends from the Scheimpflug line to
just above the center. Look again at Figure 6, and you will see why. κ = 1 where
the ellipse of confusion has horizontal major axis, and κ < 1 where the ellipse of
confusion has vertical major axis.

You can also now see why just looking along the central line can be misleading.
κ may equal 1 for part of that line, but, as soon as you go off it, κ is less than 1,
and since the frame must necessarily extend some distance to either side, it is never

true that κ is equal to one over the entire frame. But, by knowing the position of
the frame, we can use diagrams such at that in Figure 9 to estimate how small it
gets for points in the frame.

Figure 9 shows one possible position of the frame. You can see that the frame
is entirely within the contour curve for κ = 0.8. A reasonable estimate for κ at
the upper left corner of the frame would about 0.83, and it would be greater than
that throughout the rest of the frame. That would require stopping down a little
more than half a stop to compensate. But the parameters in this example, while
certainly possible, are not really typical. First, the frame has been shifted about 12
mm up and 30 mm to one side. Were it more centered, the lowest value of κ in the
frame might be more like 0.87. More important, the distance to the Scheimpflug
line is about 380 mm, which is rather short. That usually means either that the
focal length is short or the tilt angle is large, or, as is likely in this case, both.

16In Appendix B, we shall show expanded views of contour ellipses and describe rules for
interpreting the diagrams for different values of the focal length, the bellows extension, and the
tilt angle.
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Consider instead the situation in Figure 10. The tilt angle is much smaller, and
the bellows extension is much larger. This is how things might look for a normal
lens with a moderate tilt. Note that in this case the Scheimplfug distance is about
1 meter. With the frame in the same position, it is clear that κ is now greater than
about 0.93 throughout the frame. That would require stopping down a mere two
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Figure 10. Contour Ellipses for φ ≈ 8.6 degrees and v = 155 mm.

tenths of a stop to compensate.
What these two examples appear to illustrate is in fact true in general. If the

distances of the corners of the frame from the center of the field are insignificant
compared to the distance to the Scheimpflug line, then we can ignore the effect of
tilting on the circles of confusion. On the other hand we may encounter problems if
either the Scheimpflug distance is relatively small, or the corner distances are large
because of major shifts of the frame. Also, the Scheimpflug distance is usually
about the same as the hinge distance, and it is almost always larger than it. Hence,
we can use the hinge distance instead as a substitute. The hinge distance will be
relatively small for short focal length lenses and/or large tilt angles, so that is when
we may need to pay attention to the effect.
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Appendix A. F-numbers and Number of Stops

f-number ratio/κ number of stops
0.95 0.15
0.90 0.30
0.85 0.47
0.80 0.64
0.75 0.83
0.70 1.03
0.65 1.24
0.60 1.47
0.55 1.72
0.50 2.00

Table 1. Stops Down for Different F-numbers Ratios or Different
Values of κ

stops f-number ratio/κ

0.33 0.89
0.50 0.84
0.67 0.79
1.00 0.71
1.33 0.63
1.50 0.59
1.67 0.56
2.00 0.50

Table 2. F-number ratios/κ for Different Stops Down

Appendix B. κ Graphs

I show the contour ellipses for several different focal lengths and tilt angles. In
each case, it is assumed that the exact subject plane is chosen so that the scale
of reproduction where it crosses the line of sight is 1:100, i.e., the magnification is
0.01. In practice, this magnification will usually be quite small, and its exact value
won’t matter. Using the focal length, the tilt angle, and the magnification, it is
possible to calculate the bellows extension and the Scheimpflug distance, and these
values are listed. At the end, I will explain how to extrapolate for different values
of the parameters.
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Figure 11. Contour ellipses for focal length 90 mm, tilt 5 degrees
(bellows extension = 91 mm, Scheimpflug distance = 1043 mm)

B.1. Extrapolations to Other Values of the Parameters. Suppose you are
using one of the two tilt angles, 5 degrees or 10 degrees, in the above charts, but
you want to use a different focal length. Choose the chart with the same tilt angle
and the closest focal length. Find the ratio of the new focal length to the one in
the figure. Leave the contour ellipses where they are, but multiply the units next
to the tick marks by that ratio. For example, suppose you want the chart for 5
degrees tilt and focal length 135 mm. The ratio 135/150 = 0.9 . Take the chart in
figure 12, replace 500 by 450, 1000 by 900, 1500 by 1350, etc.

Suppose instead you are happy with one of the focal lengths, but you want to
use a different tilt angle. Take the chart with the right focal length and the closer
tilt angle. Find the ratio of the tilt angle in the chart to the new tilt angle—the
reverse of the previous order—and multiply the units at the tick marks by that
ratio.17 For example, suppose you wanted the chart for focal length 90 mm and
tilt 8 degrees. Take the chart for 90 mm, 10 degrees in Figure 14 and multiply the

17This method is only an approximation based on the assumption that the tilt angle is not
very large, but that will almost always be the case
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Figure 12. Contour ellipses for focal length 150 mm, tilt 5 degrees
(bellows extension 152 mm, Scheimpflug distance 1738 mm)

units at the tick marks by 10/8 = 1.2. Thus 100 would become 120, 200 would
become 240, etc.

If you want to change both focal length and tilt angle, multiply by both ratios,
in either order.

These calculations are based on the assumption that the magnification at the
distance at which the subject plane crosses the line of sight stays small. More
generally, you would have to multiply the units at the tick marks by the ratio

1 + true magnification

1.01
.

But an alternate method which would work in any case would be the following.
Measure the actual bellows extension. For a normal lens, that would be the perpen-
dicular distance from the ground glass to the point where the lens axis intersects
the front of lensboard. For a telephoto lens and some inverted telephoto lenses, you
have to locate the rear principal point of the lens along the lens axis, and measure
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Figure 13. Contour ellipses for focal length 300 mm, tilt 5 degrees
(bellows extension 304 mm, Scheimpflug distance 3477 mm)

the perpendicular distance to that, also taking into account the tilt.18 Take the
ratio of the bellows extension to that given in parentheses in one of the charts with
the right tilt angle, and multiply the units at the tick marks by that. If you also
change the tilt angle, apply the same method as above to the previous result.

This last method will work even if you make radical changes in the bellows
extension, such as might arise for a steeply rising subject plane in a close-up.

Appendix C. The General Formula for κ

If you want to calculate κ, here is a formula you can use.

18The position of the rear principal point can be determined from the rear flange focal distance.
That can be found is the lens specifications. It would also be the perpendicular distance from the
ground glass to the front of the lensboard when the lens is focused at infinity. The position of the

rear principal point can then be determined by comparing that to the focal length. If the flange
focal length is less than the focal length, the principal point is further away from the ground glass
by the difference, and if it greater than the focal length, the principal point is closer to the ground
glass by the difference.
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Figure 14. Contour ellipses for focal length 90 mm, tilt 10 degrees
(bellows extension = 92 mm, Scheimpflug distance = 523 mm)

(Qκ) κ =

√

x2
1 + (1 + x2)2 + sec2 φ −

√

(x2
1 + (1 + x2)2 − sec2 φ)2 + 4x2

1 sec2 φ

2(1 + x2)2

where φ is the tilt angle, and x1 and x2 describe the position of the point in the
image plane, where you want to know κ, relative to the center of the field. More
specifically, let S be the distance to the Scheimpflug line, and let x1, x2 be the
horizontal and vertical19 displacements in the image plane from the center. (x2

would be negative if the point were below the horizontal center line.) Then

x1 =
x1

S
x2 =

x2

S
.

19Of course, the language must be reversed for swings, and must be interpreted correctly for
combinations of tilts and swings.
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Figure 15. Contour ellipses for focal length 150 mm, tilt 10 de-
grees (bellows extension = 154 mm, Scheimpflug distance = 872
mm)

In other words these describe the displacement from the center of the field relative
to the Scheimpflug distance.20

The reader who is interested in how this comes about should look at my article
“View Camera Geometry” at www.math.northwestern/∼len/photos/pages/vc.pdf.

Department of Mathematics, Northwestern University, Evanston, Illinois

20Formula (Qκ) doesn’t work for x2 = −S, i.e., when we are on the Scheimpflug line, but we
may safely assume that never happens.
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Figure 16. Contour ellipses for focal length 300 mm, tilt 10 de-
grees (bellows extension = 308 mm, Scheimpflug distance = 1744
mm)


