10.3. Language Recognition

10.3.1. Regular Languages. Recall that a regular language is the language associated to a regular grammar, i.e., a grammar $G = (V, T, \sigma, P)$ in which every production is of the form:

$$A \rightarrow a \quad \text{or} \quad A \rightarrow aB \quad \text{or} \quad A \rightarrow \lambda,$$

where $A, B \in N = V - T, a \in T$.

Regular languages over an alphabet T have the following properties (recall that λ = 'empty string', $\alpha\beta$ = 'concatenation of α and β', α^n = 'α concatenated with itself n times'):

1. $\emptyset, \{\lambda\}$, and $\{a\}$ are regular languages for all $a \in T$.

2. If L_1 and L_2 are regular languages over T the following languages also are regular:

$$L_1 \cup L_2 = \{\alpha \mid \alpha \in L_1 \text{ or } \alpha \in L_2\}$$

$$L_1L_2 = \{\alpha\beta \mid \alpha \in L_1, \beta \in L_2\}$$

$$L_1^* = \{\alpha_1 \ldots \alpha_n \mid \alpha_k \in L_1, n \in \mathbb{N}\},$$

$$T^* - L_1 = \{\alpha \in T^* \mid \alpha \notin L_1\},$$

$$L_1 \cap L_2 = \{\alpha \mid \alpha \in L_1 \text{ and } \alpha \in L_2\}.\]

We justify the above claims about $L_1 \cup L_2, L_1L_2$ and L_1^* as follows. We already know how to combine two grammars (see 10.2.4) L_1 and L_2 to obtain $L_1 \cup L_2, L_1L_2$ and L_1^*, the only problem is that the rules given in section 10.2.4 do not have the form of a regular grammar, so we need to modify them slightly (we use the same notation as in section 10.2.4):

1. **Union Rule:** Instead of adding $\sigma \rightarrow \sigma_1$ and $\sigma \rightarrow \sigma_2$, add all productions of the form $\sigma \rightarrow \text{RHS}$, where RHS is the right hand side of some production $(\sigma_1 \rightarrow \text{RHS}) \in P_1$ or $(\sigma_2 \rightarrow \text{RHS}) \in P_2$.

2. **Product Rule:** Instead of adding $\sigma \rightarrow \sigma_1\sigma_2$, use σ_1 as start symbol and replace each production $(A \rightarrow a) \in P_1$ with $A \rightarrow a\sigma_2$ and $(A \rightarrow \lambda) \in P_1$ with $A \rightarrow \sigma_2$.

3. **Closure Rule:** Instead of adding $\sigma \rightarrow \sigma_1\sigma$ and $\sigma \rightarrow \lambda$, use σ_1 as start symbol, add $\sigma_1 \rightarrow \lambda$, and replace each production $(A \rightarrow a) \in P_1$ with $A \rightarrow a\sigma_1$ and $(A \rightarrow \lambda) \in P_1$ with $A \rightarrow \sigma_1$. \]
10.3.2. Regular Expressions. Regular languages can be characterized as languages defined by regular expressions. Given an alphabet T, a regular expression over T is defined recursively as follows:

1. \emptyset, λ, and a are regular expressions for all $a \in T$.

2. If R and S are regular expressions over T the following expressions are also regular: (R), $R + S$, $R \cdot S$, R^*.

In order to use fewer parentheses we assign those operations the following hierarchy (from do first to do last): \ast, \cdot, $+$. We may omit the dot: $\alpha \cdot \beta = \alpha \beta$.

Next we define recursively the language associated to a given regular expression:

$$
L(\emptyset) = \emptyset,
L(\lambda) = \{\lambda\},
L(a) = \{a\} \quad \text{for each } a \in T,
L(R + S) = L(R) \cup L(S),
L(R \cdot S) = L(R)L(S) \quad \text{(language product)},
L(R^*) = L(R)^* \quad \text{(language closure)}.
$$

So, for instance, the expression $a^* bb^*$ represents all strings of the form $a^n b^m$ with $n \geq 0$, $m > 0$, $a^*(b + c)$ is the set of strings consisting of any number of a’s followed by a b or a c, $a(a + b)^*b$ is the set of strings over $\{a, b\}$ than start with a and end with b, etc.

Another way of characterizing regular languages is as sets of strings recognized by finite-state automata, as we will see next. But first we need a generalization of the concept of finite-state automaton.

10.3.3. Nondeterministic Finite-State Automata. A nondeterministic finite-state automaton is a generalization of a finite-state automaton so that at each state there might be several possible choices for the “next state” instead of just one. Formally a nondeterministic finite-state automaton consists of

1. A finite set of states S.
2. A finite set of input symbols I.
3. A next-state or transition function $f: S \times I \rightarrow \mathcal{P}(S)$.
4. An initial state $\sigma \in S$.
5. A subset F of S of accepting or final states.

We represent the automaton $A = (S, I, f, \sigma, F)$. We say that a non-deterministic finite-state automaton accepts or recognizes a given string of input symbols if in its transition diagram there is a path from the starting state to a final state with its edges labeled by the symbols of the given string. A path (which we can express as a sequence of states) whose edges are labeled with the symbols of a string is said to represent the given string.

Example: Consider the nondeterministic finite-state automaton defined by the following transition diagram:

```
start → a ↘ ↗ b → C ↘ ↗ b → F
```

This automaton recognizes precisely the strings of the form $b^n a b^m$, $n \geq 0$, $m > 0$. For instance the string $bbabb$ is represented by the path $(\sigma, \sigma, \sigma, C, C, F)$. Since that path ends in a final state, the string is recognized by the automaton.

Next we will see that there is a precise relation between regular grammars and nondeterministic finite-state automata.

Regular grammar associated to a nondeterministic finite-state automaton. Let A be a non-deterministic finite-state automaton given as a transition diagram. Let σ be the initial state. Let T be the set of inputs symbols, let N be the set of states, and $V = N \cup T$. Let P be the set of productions

$$S \rightarrow xS'$$

if there is an edge labeled x from S to S' and

$$S \rightarrow \lambda$$

if S is a final state. Let G be the regular grammar

$$G = (V, T, \sigma, P).$$

Then the set of strings recognized by A is precisely $L(G)$.

Example: For the nondeterministic automaton defined above the corresponding grammar will be:
T = \{a, b\}, N = \{\sigma, C, F\}, with productions

\[
\begin{align*}
\sigma & \rightarrow b\sigma, \\
\sigma & \rightarrow aC, \\
C & \rightarrow bC, \\
C & \rightarrow bF, \\
F & \rightarrow \lambda.
\end{align*}
\]

The string \textit{bbabb} can be produced like this:

\[
\begin{align*}
\sigma & \Rightarrow b\sigma \\
& \Rightarrow bb\sigma \\
& \Rightarrow bbaC \\
& \Rightarrow bbabC \\
& \Rightarrow bbabbF \\
& \Rightarrow bbabb.
\end{align*}
\]

\textit{Nondeterministic finite-state automaton associated to a given regular grammar.} Let \(G = (V, T, \sigma, P)\) be a regular grammar. Let

\[
\begin{align*}
I &= T, \\
S &= N \cup \{F\}, \text{ where } N = V - T, \text{ and } F \notin V. \\
f(S, x) &= \{S' \mid S \rightarrow xS' \in P\} \cup \{F \mid S \rightarrow x \in P\}. \\
\mathcal{F} &= \{F\} \cup \{S \mid S \rightarrow \lambda \in P\}.
\end{align*}
\]

Then the nondeterministic finite-state automaton \(A = (S, I, f, \sigma, \mathcal{F})\) recognizes precisely the strings in \(L(G)\).

\textbf{10.3.4. Relationships Between Regular Languages and Automata.} In the previous section we saw that regular languages coincide with the languages recognized by nondeterministic finite-state automata. Here we will see that the term “nondeterministic” can be dropped, so that regular languages are precisely those recognized by (deterministic) finite-state automata. The idea is to show that given any nondeterministic finite-state automata it is possible to construct an equivalent deterministic finite-state automata recognizing exactly the same set of strings. The main result is the following:

Let \(A = (S, I, f, \sigma, \mathcal{F})\) be a nondeterministic finite-state automaton. Then \(A\) is equivalent to the finite-state automaton \(A' = (S', I', f', \sigma', \mathcal{F}')\), where

\[
\begin{align*}
1. \quad S' &= \mathcal{P}(S). \\
2. \quad I' &= I. \\
3. \quad \sigma' &= \{\sigma\}. \\
4. \quad \mathcal{F}' &= \{X \subseteq S \mid X \cap \mathcal{F} \neq \emptyset\}. \\
5. \quad f'(X, x) &= \bigcup_{S \in X} f(S, x), \quad f'\emptyset, x) = \emptyset.
\end{align*}
\]
Example: Find a (deterministic) finite-state automaton A' equivalent to the following nondeterministic finite-state automaton A:

$$
\text{start} \xrightarrow{a} \{\sigma\} \xrightarrow{b} \{C\} \xrightarrow{b} \{\sigma, C, F\}
$$

Answer: The set of input symbols is the same as that of the given automaton: $\mathcal{I'} = \mathcal{I} = \{a, b\}$. The set of states is the set of subsets of $S = \{\sigma, C, F\}$, i.e.:

$$S' = \{\emptyset, \{\sigma\}, \{C\}, \{F\}, \{\sigma, C\}, \{\sigma, F\}, \{C, F\}, \{\sigma, C, F\}\}.$$

The starting state is $\{\sigma\}$. The final states of A' are the elements of S' containing some final state of A:

$$\mathcal{F'} = \{\{F\}, \{\sigma, F\}, \{C, F\}, \{\sigma, C, F\}\}.$$

Then for each element X of S' we draw an edge labeled x from X to $\bigcup_{S \in X} f(S, x)$ (and from \emptyset to \emptyset):

We notice that some states are unreachable from the starting state. After removing the unreachable states we get the following simplified version of the finite-state automaton:
So, once proved that every nondeterministic finite-state automaton is equivalent to some deterministic finite-state automaton, we obtain the main result of this section: A language L is regular if and only if there exists a finite-state automaton that recognizes precisely the strings in L.