Categories of natural models of type theory
ASL Logic Colloquium 2016 (Leeds, UK)

Clive Newstead
Carnegie Mellon University

Thursday 4th August 2016
1. Review of background material

2. Algebraic description of homomorphisms

3. Functorial description of homomorphisms

4. Interpreting the syntax
Representable natural transformations

Let \mathcal{C} be a category and let $\mathcal{U}, \tilde{\mathcal{U}} : \mathcal{C}^{\text{op}} \to \text{Set}$. Recall that a natural transformation $p : \mathcal{U} \to \mathcal{U}$ is *representable* if it satisfies one of the following equivalent conditions:
Representable natural transformations

Let \mathcal{C} be a category and let $\mathcal{U}, \tilde{\mathcal{U}} : \mathcal{C}^{\text{op}} \to \text{Set}$. Recall that a natural transformation $p : \mathcal{U} \to \mathcal{U}$ is representable if it satisfies one of the following equivalent conditions:

- For all $\Gamma \in \text{ob}(\mathcal{C})$ and all $A \in \mathcal{U}(\Gamma)$,

\[
\begin{array}{c}
\tilde{\mathcal{U}} \\
\downarrow p \\
\mathcal{U}
\end{array}
\]

\[
y(\Gamma) \quad A \quad \mathcal{U}
\]

The induced functor $\int_{\mathcal{C}} p : \int_{\mathcal{C}} \tilde{\mathcal{U}} \to \int_{\mathcal{C}} \mathcal{U}$ on categories of elements has a right adjoint.
Representable natural transformations

Let \(\mathcal{C} \) be a category and let \(\mathcal{U}, \tilde{\mathcal{U}} : \mathcal{C}^{\text{op}} \to \text{Set} \). Recall that a natural transformation \(p : \mathcal{U} \to \mathcal{U} \) is representable if it satisfies one of the following equivalent conditions:

- For all \(\Gamma \in \text{ob}(\mathcal{C}) \) and all \(A \in \mathcal{U}(\Gamma) \), there exist \(\Gamma \cdot A, p^\Gamma_A, q^\Gamma_A \) making the following diagram a pullback:

\[
\begin{array}{ccc}
\ y(\Gamma \cdot A) & \xrightarrow{q^\Gamma_A} & \tilde{\mathcal{U}} \\
\ | \downarrow & & \downarrow p \\
\ y(p^\Gamma_A) & & \ \mathcal{U}
\end{array}
\]
Representable natural transformations

Let \mathcal{C} be a category and let $\mathcal{U}, \tilde{\mathcal{U}} : \mathcal{C}^{\text{op}} \to \text{Set}$. Recall that a natural transformation $p : \mathcal{U} \to \mathcal{U}$ is representable if it satisfies one of the following equivalent conditions:

- For all $\Gamma \in \text{ob}(\mathcal{C})$ and all $A \in \mathcal{U}(\Gamma)$, there exist $\Gamma \cdot A, p_A^\Gamma, q_A^\Gamma$ making the following diagram a pullback:

\[
\begin{array}{ccc}
y(\Gamma \cdot A) & \xrightarrow{q_A^\Gamma} & \tilde{\mathcal{U}} \\
y(p_A^\Gamma) \downarrow & & \downarrow p \\
y(\Gamma) & \xrightarrow{A} & \mathcal{U}
\end{array}
\]

- The induced functor $\int \mathcal{C} p : \int \mathcal{C} \tilde{\mathcal{U}} \to \int \mathcal{C} \mathcal{U}$ on categories of elements has a right adjoint.
Definition of a natural model

Definition

A **natural model** is an octuple \(\mathcal{C} = (\mathcal{C}, \odot, \mathcal{U}, \tilde{\mathcal{U}}, p, p^*, \eta, \varepsilon) \) consisting of the following data:
Definition of a natural model

Definition

A **natural model** is an octuple \(\mathcal{C} = (\mathcal{C}, \Diamond, \mathcal{U}, \tilde{\mathcal{U}}, p, p^*, \eta, \varepsilon) \) consisting of the following data:

- A base category \(\mathcal{C} \) with a terminal object \(\Diamond \);
Definition of a natural model

Definition

A **natural model** is an octuple \(\mathcal{C} = (\mathcal{C}, \diamond, \mathcal{U}, \mathcal{\tilde{U}}, p, p^*, \eta, \varepsilon) \) consisting of the following data:

- A base category \(\mathcal{C} \) with a terminal object \(\diamond \);
- Presheaves \(\mathcal{U}, \mathcal{\tilde{U}} : \mathcal{C}^{\text{op}} \to \text{Set} \);
Definition of a natural model

Definition

A **natural model** is an octuple \(\mathcal{C} = (\mathbb{C}, \diamond, \mathcal{U}, \tilde{\mathcal{U}}, \rho, \rho^*, \eta, \varepsilon) \) consisting of the following data:

- A base category \(\mathbb{C} \) with a terminal object \(\diamond \);
- Presheaves \(\mathcal{U}, \tilde{\mathcal{U}} : \mathbb{C}^{\text{op}} \to \text{Set} \);
- Functors

\[
\int_{\mathbb{C}} \tilde{\mathcal{U}} \xrightarrow{\rho} \int_{\mathbb{C}} \mathcal{U}
\]

\[
\int_{\mathbb{C}} \tilde{\mathcal{U}} \xleftarrow{\rho^*} \int_{\mathbb{C}} \mathcal{U}
\]

such that \(\rho \) commutes with the projection maps to \(\mathbb{C} \);
Definition of a natural model

Definition

A **natural model** is an octuple \(\mathcal{C} = (\mathcal{C}, \diamond, \mathcal{U}, \tilde{\mathcal{U}}, p, p^*, \eta, \varepsilon) \) consisting of the following data:

- A base category \(\mathcal{C} \) with a terminal object \(\diamond \);
- Presheaves \(\mathcal{U}, \tilde{\mathcal{U}} : \mathcal{C}^{\text{op}} \to \text{Set} \);
- Functors
 \[
 \int_{\mathcal{C}} \tilde{\mathcal{U}} \xrightarrow{p} \int_{\mathcal{C}} \mathcal{U} \xleftarrow{p^*}
 \]
 such that \(p \) commutes with the projection maps to \(\mathcal{C} \);
- Natural transformations
 \[
 \eta : \text{id} \to p^* \circ p \quad \text{and} \quad \varepsilon : p \circ p^* \to \text{id}
 \]
 forming the unit and counit, respectively, of an adjunction \(p \dashv p^* \).
Outline

We’ll follow the standard pattern for functorial semantics:
Outline

We’ll follow the standard pattern for functorial semantics:

- Define the notion of *homomorphism* of natural models;
We’ll follow the standard pattern for functorial semantics:

- Define the notion of *homomorphism* of natural models;
- Show that the syntax for type theory on a given signature Σ presents the *free* natural model \mathcal{Z} on Σ;
We’ll follow the standard pattern for functorial semantics:

- Define the notion of *homomorphism* of natural models;
- Show that the syntax for type theory on a given signature Σ presents the *free* natural model T on Σ;
- \rightsquigarrow An interpretation of Σ in a natural model \mathcal{C} is given by a homomorphism $T \rightarrow \mathcal{C}$.
1. Review of background material
2. Algebraic description of homomorphisms
3. Functorial description of homomorphisms
4. Interpreting the syntax
Algebraic description of homomorphisms

Definition
Let \(\mathcal{C} = (C, \diamond, U, \tilde{U}, p, p^*, \eta, \varepsilon) \) and \(\mathcal{D} = (D, \bullet, V, \tilde{V}, q, q^*, \sigma, \tau) \) be natural models. A homomorphism from \(\mathcal{C} \) to \(\mathcal{D} \) is a triple \((F, \Phi, \tilde{\Phi})\) consisting of:
Algebraic description of homomorphisms

Definition
Let $\mathcal{C} = (\mathcal{C}, \diamond, U, \tilde{U}, p, p^*, \eta, \varepsilon)$ and $\mathcal{D} = (\mathcal{D}, \bullet, V, \tilde{V}, q, q^*, \sigma, \tau)$ be natural models. A homomorphism from \mathcal{C} to \mathcal{D} is a triple $(F, \Phi, \tilde{\Phi})$ consisting of:

- A functor $F : \mathcal{C} \to \mathcal{D}$;
Algebraic description of homomorphisms

Definition
Let $\mathcal{C} = (C, \diamond, U, \tilde{U}, p, p^*, \eta, \varepsilon)$ and $\mathcal{D} = (D, \bullet, V, \tilde{V}, q, q^*, \sigma, \tau)$ be natural models. A **homomorphism** from \mathcal{C} to \mathcal{D} is a triple $(F, \Phi, \tilde{\Phi})$ consisting of:

- A functor $F : C \to D$;
- Functors
 \[
 \Phi : \int_C U \to \int_D V \quad \text{and} \quad \tilde{\Phi} : \int_C \tilde{U} \to \int_D \tilde{V}
 \]

such that...
Algebraic description of homomorphisms

... the following diagrams commute (highlighted in red):

\[\int_C \tilde{U} \xrightarrow{\tilde{\Phi}} \int_D \tilde{V} \]

\[\begin{array}{c}
\int_C U \\
\downarrow p
\end{array} \xrightarrow{p^*} \begin{array}{c}
\int_D V \\
\downarrow q
\end{array} \]

\[\begin{array}{c}
\int_C U \\
\downarrow \Phi
\end{array} \xrightarrow{\Phi} \begin{array}{c}
\int_D V \\
\downarrow F
\end{array} \]

Action on types respects context and substitution
Algebraic description of homomorphisms

... the following diagrams commute (highlighted in red):

\[
\begin{array}{ccc}
\int_C \tilde{U} & \xrightarrow{\tilde{\Phi}} & \int_D \tilde{V} \\
p & \quad & q \\
\downarrow & \quad & \downarrow \\
\int_C U & \xrightarrow{\Phi} & \int_D V \\
\end{array}
\]

\[
\begin{array}{cc}
\int_C \tilde{U} & \xrightarrow{\tilde{\Phi}} & \int_D \tilde{V} \\
\end{array}
\]

Action on terms respects context and substitution
Algebraic description of homomorphisms

... the following diagrams commute (highlighted in red):

\[\int_C \tilde{U} \xrightarrow{\tilde{\Phi}} \int_D \tilde{V} \]

\[\int_C U \xrightarrow{\Phi} \int_D V \]

Action on terms respects typing
Algebraic description of homomorphisms

... the following diagrams commute (highlighted in red):

Action on contexts and substitutions respects context extension
Algebraic description of homomorphisms

... and \(\Phi, \tilde{\Phi} \) respect the adjunctions \((p \dashv p^*, \eta, \varepsilon)\) and \((q \dashv q^*, \sigma, \tau)\), i.e.
Algebraic description of homomorphisms

... and $\Phi, \tilde{\Phi}$ respect the adjunctions $(p \dashv p^*, \eta, \varepsilon)$ and $(q \dashv q^*, \sigma, \tau)$, i.e.

\[
\begin{array}{ccc}
\int_C U & \xrightarrow{id} & \int_C U \\
\Phi & \downarrow \varepsilon & \Phi \\
\int_D V & \xrightarrow{id} & \int_D V \\
q \circ q^* & \downarrow \sigma & \end{array}
\]

- **Counit.** $\Phi \cdot \varepsilon = \tau \cdot \Phi \leadsto Fp_A^\Gamma = p_{FA}^{F\Gamma} : F\Gamma \cdot FA \to F\Gamma$
Algebraic description of homomorphisms

... and $\Phi, \tilde{\Phi}$ respect the adjunctions $(\rho \vdash \rho^*, \eta, \epsilon)$ and $(q \vdash q^*, \sigma, \tau)$, i.e.

\[
\begin{align*}
\int_C U & \xrightarrow{\Phi} \int_C U \\
\Phi \downarrow & \quad \downarrow \epsilon \\
\int_D V & \xleftarrow{q \circ q^*} \quad \quad \int_D V
\end{align*}
\]

\[
\begin{align*}
\int_C \tilde{U} & \xrightarrow{\tilde{\Phi}} \int_C \tilde{U} \\
\tilde{\Phi} \downarrow & \quad \downarrow \eta \\
\int_D \tilde{V} & \xleftarrow{q^* \circ q} \quad \quad \int_D \tilde{V}
\end{align*}
\]

- **Counit.** $\Phi \cdot \epsilon = \tau \cdot \Phi \quad \sim \quad FP^\Gamma_A = p_{FA}^{\Gamma} : F\Gamma \cdot FA \to F\Gamma$
- **Unit.** $\tilde{\Phi} \cdot \eta = \sigma \cdot \tilde{\Phi} \quad \sim \quad F\langle \text{id}_\Gamma, q_A^\Gamma \rangle = \langle \text{id}_{FA}^\Gamma, q_{FA}^{\Gamma} \rangle : F\Gamma \to F\Gamma \cdot FA$
Algebraic description of homomorphisms

... and $\Phi, \tilde{\Phi}$ respect the adjunctions $(p \dashv p^*, \eta, \varepsilon)$ and $(q \dashv q^*, \sigma, \tau)$, i.e.

\[
\begin{align*}
\int C U & \xrightarrow{p \circ p^*} \int C U \\
\Phi & \downarrow \text{id} \\
\int D V & \xrightarrow{q \circ q^*} \int D V
\end{align*}
\]

\[
\begin{align*}
\int \tilde{C} \tilde{U} & \xrightarrow{id} \int \tilde{C} \tilde{U} \\
\tilde{\Phi} & \downarrow \text{id} \\
\int \tilde{D} \tilde{V} & \xrightarrow{id} \int \tilde{D} \tilde{V}
\end{align*}
\]

- **Counit.** $\Phi \cdot \varepsilon = \tau \cdot \Phi \quad \leadsto \quad Fp^\Gamma_A = p^F\Gamma_{FA} : F\Gamma \cdot FA \to F\Gamma$

- **Unit.** $\tilde{\Phi} \cdot \eta = \sigma \cdot \tilde{\Phi} \quad \leadsto \quad F\langle \text{id}_\Gamma, q^\Gamma_A \rangle = \langle \text{id}_F\Gamma, q^F\Gamma_{FA} \rangle : F\Gamma \to F\Gamma \cdot FA$

... and $F(\Diamond) = \bullet$.
Category of natural models

Theorem
There is a category NM, where:

- The objects of NM are natural models;
- The morphisms of NM are homomorphisms;
- The identity morphism on a natural model \mathcal{C} is $(\text{id}_\mathcal{C}, \text{id}_\mathcal{U}, \text{id}_\mathcal{\tilde{U}})$;
- Composition is given componentwise:

$$(G, \psi, \tilde{\psi}) \circ (F, \phi, \tilde{\phi}) = (G \circ F, \psi \circ \phi, \tilde{\psi} \circ \tilde{\phi})$$
Category of natural models

Theorem

There is a category \mathbf{NM}, where:

- The objects of \mathbf{NM} are natural models;
- The morphisms of \mathbf{NM} are homomorphisms;
- The identity morphism on a natural model \mathcal{C} is $(\text{id}_\mathcal{C}, \text{id}_\mathcal{U}, \text{id}_\mathcal{\tilde{U}})$;
- Composition is given componentwise:

\[(G, \Psi, \tilde{\Psi}) \circ (F, \Phi, \tilde{\Phi}) = (G \circ F, \Psi \circ \Phi, \tilde{\Psi} \circ \tilde{\Phi})\]

Since homomorphisms are defined diagramatically, this is extremely simple to prove.
1. Review of background material
2. Algebraic description of homomorphisms
3. Functorial description of homomorphisms
4. Interpreting the syntax
Remark on Kan extension

Any functor $F : \mathcal{C} \to \mathcal{D}$ between small categories induces an adjunction $F_! \dashv F^*$ between presheaf categories

$$
\begin{array}{c}
\text{Set}^{\mathcal{C}^{\text{op}}} \\
\overset{F_!}{\Longrightarrow} \\
\text{Set}^{\mathcal{D}^{\text{op}}}
\end{array}
\xrightarrow{F^*}

$$

where

- $F^* = - \circ F$ is precomposition with F; and
- $F_!$ is left Kan extension along F.
Remark on Kan extension

Any functor $F : \mathcal{C} \to \mathcal{D}$ between small categories induces an adjunction $F_! \dashv F^*$ between presheaf categories

$$
\begin{array}{ccc}
\mathcal{C} & \xymatrix{ & \mathcal{D} \ar[ll]_{F} \ar[rr]^{F^*} & & \mathcal{D}^\text{op} \ar[ll]_{F_!}} & \mathcal{D} \\
& \ar[u]^{y} & \ar[u]_{y} \\
\mathcal{C}^\text{op} & \xymatrix{ & \mathcal{D}^\text{op} \ar[ll]_{F_!} \ar[rr]^{F^*} & & \mathcal{D}^\text{op} \ar[ll]_{F} & \mathcal{D}^\text{op}} & \mathcal{D}^\text{op} \\
\end{array}
$$

where

- $F^* = - \circ F$ is precomposition with F; and
- $F_!$ is left Kan extension along F.

Moreover, $F_! \circ y \simeq y \circ F : \mathcal{C} \to \mathcal{D}^\text{op}$.

Clive Newstead
Carnegie Mellon University

Categories of natural models of type theory
Functorial presentation of homomorphisms

Specifying a homomorphism \((F, \Phi, \tilde{\Phi}) : \mathcal{C} \to \mathcal{D}\) is equivalent to specifying:

\[F(\cdot A) = F(\cdot) \cdot F(A) \quad \text{for all } \Gamma \in \text{ob}(\mathcal{C}); \]

where \(\cdot\) denotes the internal homomorphism.
Functorial presentation of homomorphisms

Specifying a homomorphism \((F, \Phi, \tilde{\Phi}) : \mathcal{C} \to \mathcal{D}\) is equivalent to specifying:

- A functor \(F : \mathcal{C} \to \mathcal{D}\);
Functorial presentation of homomorphisms

Specifying a homomorphism \((F, \Phi, \tilde{\Phi}) : \mathcal{C} \to \mathcal{D}\) is equivalent to specifying:

- A functor \(F : \mathcal{C} \to \mathcal{D}\);
- Natural transformations \(\varphi : F_!U \to \mathcal{V}\) and \(\tilde{\varphi} : F_!\tilde{U} \to \tilde{\mathcal{V}}\)
Functorial presentation of homomorphisms

Specifying a homomorphism \((F, \Phi, \tilde{\Phi}) : \mathcal{C} \to \mathcal{D}\) is equivalent to specifying:

- A functor \(F : \mathcal{C} \to \mathcal{D}\);
- Natural transformations \(\varphi : F_i U \to \mathcal{V}\) and \(\tilde{\varphi} : F_i \tilde{U} \to \tilde{\mathcal{V}}\)

such that

- \(F(\diamond) = \bullet\);
Functorial presentation of homomorphisms

Specifying a homomorphism \((F, \Phi, \tilde{\Phi}) : \mathcal{C} \to \mathcal{D}\) is equivalent to specifying:

- A functor \(F : \mathcal{C} \to \mathcal{D}\);
- Natural transformations \(\varphi : F_! U \to V\) and \(\tilde{\varphi} : F_! \tilde{U} \to \tilde{V}\) such that
- \(F(\diamond) = \bullet\);
- The diagram \(\begin{array}{ccc} F_! \tilde{U} & \xrightarrow{\tilde{\varphi}} & \tilde{V} \\ F_! p \downarrow & & \downarrow q \\ F_! U & \xrightarrow{\varphi} & V \end{array}\) commutes;
Functorial presentation of homomorphisms

Specifying a homomorphism \((F, \Phi, \tilde{\Phi}) : \mathcal{C} \to \mathcal{D}\) is equivalent to specifying:

- A functor \(F : \mathcal{C} \to \mathcal{D}\);
- Natural transformations \(\varphi : F_iU \to \mathcal{V}\) and \(\tilde{\varphi} : F_i\tilde{U} \to \tilde{\mathcal{V}}\)

such that

- \(F(\diamond) = \bullet\);
- The diagram \[
\begin{array}{ccc}
F_i\tilde{U} & \xrightarrow{\tilde{\varphi}} & \tilde{\mathcal{V}} \\
\downarrow p & & \downarrow q \\
F_iU & \xrightarrow{\varphi} & \mathcal{V}
\end{array}
\]
commutes;
- \(F(\Gamma \cdot A) = F\Gamma \cdot FA\) for all \(\Gamma \in \text{ob}(\mathcal{C})\); and
Functorial presentation of homomorphisms

Specifying a homomorphism \((F, \Phi, \tilde{\Phi}) : \mathcal{C} \to \mathcal{D}\) is equivalent to specifying:

- A functor \(F : \mathcal{C} \to \mathcal{D}\);
- Natural transformations \(\varphi : F_U \to V\) and \(\tilde{\varphi} : F_{\tilde{U}} \to \tilde{V}\)

such that

- \(F(\circ) = \bullet\);
- The diagram \(\begin{array}{ccc} F_{\tilde{U}} & \xrightarrow{\tilde{\varphi}} & \tilde{V} \\ _F \downarrow_p & & \downarrow_q \\ F_U & \xrightarrow{\varphi} & V \end{array}\) commutes;
- \(F(\Gamma \cdot A) = F\Gamma \cdot FA\) for all \(\Gamma \in \text{ob}(\mathcal{C})\); and
- The comparison morphisms \(c^\Gamma_A : F(\Gamma \cdot A) \to F\Gamma \cdot FA\) are identities.
Action on types and terms

We obtain an action of φ on types and $\tilde{\varphi}$ on terms as follows.
Action on types and terms

We obtain an action of \(\varphi \) on types and \(\tilde{\varphi} \) on terms as follows.

- **Action on types.** \(A \in \mathcal{U}(\Gamma) \leadsto FA \in \mathcal{V}(F\Gamma) \) via
Action on types and terms

We obtain an action of φ on types and $\tilde{\varphi}$ on terms as follows.

- **Action on types.** $A \in \mathcal{U}(\Gamma) \leadsto FA \in \mathcal{V}(F\Gamma)$ via

 $\ y(\Gamma) \xrightarrow{A} \mathcal{U} \ $
Action on types and terms

We obtain an action of φ on types and $\tilde{\varphi}$ on terms as follows.

- **Action on types.** $A \in \mathcal{U}(\Gamma) \leadsto FA \in \mathcal{V}(F\Gamma)$ via

\[
y(\Gamma) \xrightarrow{A} \mathcal{U} \quad \quad \quad \quad \quad F_!y(\Gamma) \xrightarrow{F_!A} F_!\mathcal{U}
\]
Action on types and terms

We obtain an action of φ on types and $\tilde{\varphi}$ on terms as follows.

- **Action on types.** $A \in \mathcal{U}(\Gamma) \leadsto FA \in \mathcal{V}(F\Gamma)$ via

$$y(\Gamma) \xrightarrow{A} \mathcal{U} \quad F_{!}y(\Gamma) \xrightarrow{F_{!}A} F_{!}\mathcal{U} \xrightarrow{\varphi} \mathcal{V}$$
Action on types and terms

We obtain an action of φ on types and $\tilde{\varphi}$ on terms as follows.

- **Action on types.** $A \in \mathcal{U}(\Gamma) \leadsto FA \in \mathcal{V}(F\Gamma)$ via

\[
\begin{align*}
 y(\Gamma) & \xrightarrow{A} \mathcal{U} \\
 F_!y(\Gamma) & \xrightarrow{F_!A} F_!\mathcal{U} \xrightarrow{\varphi} \mathcal{V} \\
 & \xrightarrow{\sim} \mathcal{V}
\end{align*}
\]
Action on types and terms

We obtain an action of φ on types and $\tilde{\varphi}$ on terms as follows.

- **Action on types.** $A \in \mathcal{U}(\Gamma) \leadsto FA \in \mathcal{V}(F\Gamma)$ via

 \[y(\Gamma) \xrightarrow{A} \mathcal{U} \quad \xrightarrow{\sim} \quad F_{!}y(\Gamma) \xrightarrow{F_{!}A} F_{!}\mathcal{U} \xrightarrow{\varphi} \mathcal{V} \]

 \[\xrightarrow{\sim} \quad y(F\Gamma) \xrightarrow{FA} \]
We obtain an action of φ on types and $\tilde{\varphi}$ on terms as follows.

- **Action on types.** $A \in \mathcal{U}(\Gamma) \rightsquigarrow FA \in \mathcal{V}(F\Gamma)$ via

 \[
 y(\Gamma) \xrightarrow{A} \mathcal{U} \quad \text{and} \quad F_{\downarrow} y(\Gamma) \xrightarrow{F_{\downarrow}A} F_{\downarrow} \mathcal{U} \xrightarrow{\varphi} \mathcal{V}
 \]

 \[
 \sim \quad \uparrow_{\mathcal{R}} \quad \sim \quad \to \quad FA
 \]

- **Action on terms.** $a \in \tilde{\mathcal{U}}(\Gamma) \rightsquigarrow Fa \in \tilde{\mathcal{V}}(F\Gamma)$ via

 \[
 y(\Gamma) \xrightarrow{a} \tilde{\mathcal{U}} \quad \text{and} \quad F_{\downarrow} y(\Gamma) \xrightarrow{F_{\downarrow}a} F_{\downarrow} \tilde{\mathcal{U}} \xrightarrow{\tilde{\varphi}} \tilde{\mathcal{V}}
 \]

 \[
 \sim \quad \uparrow_{\mathcal{R}} \quad \sim \quad \to \quad Fa
 \]
Where the comparison morphisms c^Γ_A come from

Set-up: A type in context Γ
Where the comparison morphisms c^Γ_A come from

\[
y(\Gamma \cdot A) \quad \xrightarrow{q^\Gamma_A} \quad \tilde{U} \\
y(p^\Gamma_A) \quad \downarrow \quad \downarrow p \\
y(\Gamma) \quad \xrightarrow{A} \quad U
\]

Context extension of Γ by A
Where the comparison morphisms c_A^Γ come from

\[
\begin{align*}
F_1y(\Gamma \cdot A) & \xrightarrow{F_1q_A^\Gamma} F_1\tilde{U} \\
F_1y(p_A^\Gamma) & \downarrow \quad \quad \quad \downarrow F_1(p) \\
F_1y(\Gamma) & \xrightarrow{F_1A} F_1U \\
\end{align*}
\]

Apply F_1
Where the comparison morphisms c^Γ_A come from

\[
\begin{align*}
 y(F(\Gamma \cdot A)) & \xrightarrow{\mathcal{R}} F_1 y(\Gamma \cdot A) & & \xrightarrow{F_1 q_A^\Gamma} & F_1 \tilde{U} \\
 y(F p_A^\Gamma) & & \downarrow F_1 y(p_A^\Gamma) & & \downarrow F_1(p) \\
 y(F \Gamma) & \xrightarrow{\mathcal{R}} F_1 y(\Gamma) & & \xrightarrow{F_1 A} & F_1 U
\end{align*}
\]

\[F_1 \circ y \simeq y(F-)\]
Where the comparison morphisms c^Γ_A come from

\[
y(F(\Gamma \cdot A)) \xrightarrow{\cong} F!y(\Gamma \cdot A) \xrightarrow{F!q^\Gamma_A} F!\tilde{U} \xrightarrow{\varphi} \tilde{V}
\]

\[
y(Fp^\Gamma_A) \downarrow \quad F!y(p^\Gamma_A) \downarrow \quad F!(p) \downarrow \quad q
\]

\[
y(F\Gamma) \xrightarrow{\cong} F!y(\Gamma) \xrightarrow{F!A} F!U \xrightarrow{\varphi} V
\]

Paste square for $\varphi, \tilde{\varphi}$
Where the comparison morphisms c^Γ_A come from

\[
\begin{align*}
y(F(\Gamma \cdot A)) & \quad \xrightarrow{Fq^\Gamma_A} \quad \tilde{\tilde{\nu}} \\
y(Fp^\Gamma_A) & \quad \downarrow \\
y(F\Gamma) & \quad \quad \xrightarrow{FA} \quad \nu
\end{align*}
\]

Action of φ on types and $\tilde{\varphi}$ on terms
Where the comparison morphisms c^Γ_A come from

Extend context $F\Gamma$ by FA
Where the comparison morphisms c^Γ_A come from

Obtain $c^\Gamma_A : F(\Gamma \cdot A) \to F\Gamma \cdot FA$ as shown
Where the comparison morphisms c^Γ_A come from

$c^\Gamma_A = \text{id} \Rightarrow Fp^\Gamma_A = p^{\Gamma A}_{FA} \quad \text{and} \quad Fq^\Gamma_A = q^{\Gamma A}_{FA}$.
Proof of equivalence

The idea behind the proof of equivalence of defining homomorphisms ‘algebraically’ and defining them ‘functorially’ is as follows:
Proof of equivalence

The idea behind the proof of equivalence of defining homomorphisms ‘algebraically’ and defining them ‘functorially’ is as follows:

■ Write $\varphi' : \mathcal{U} \to F^*\mathcal{V}$ for the transpose of $\varphi : F_!\mathcal{U} \to \mathcal{V}$ with respect to the adjunction $F_! \dashv F^*$;
Proof of equivalence

The idea behind the proof of equivalence of defining homomorphisms ‘algebraically’ and defining them ‘functorially’ is as follows:

- Write \(\varphi' : \mathcal{U} \to F^* \mathcal{V} \) for the transpose of \(\varphi : F! \mathcal{U} \to \mathcal{V} \) with respect to the adjunction \(F! \dashv F^* \);
- Note there is an embedding \(\iota : \int_C F^* \mathcal{V} \to \int_D \mathcal{V} \);
Proof of equivalence

The idea behind the proof of equivalence of defining homomorphisms ‘algebraically’ and defining them ‘functorially’ is as follows:

- Write $\varphi' : \mathcal{U} \to F^* \mathcal{V}$ for the transpose of $\varphi : F_! \mathcal{U} \to \mathcal{V}$ with respect to the adjunction $F_! \dashv F^*$;
- Note there is an embedding $\iota : \int_{\mathcal{C}} F^* \mathcal{V} \hookrightarrow \int_{\mathcal{D}} \mathcal{V}$;
- Define Φ to be the composite $\int_{\mathcal{C}} \mathcal{U} \xrightarrow{\int_{\mathcal{C}} \varphi'} \int_{\mathcal{C}} F^* \mathcal{V} \xrightarrow{\iota} \int_{\mathcal{D}} \mathcal{V}$.
Proof of equivalence

The idea behind the proof of equivalence of defining homomorphisms ‘algebraically’ and defining them ‘functorially’ is as follows:

- Write \(\varphi' : \mathcal{U} \to F^* \mathcal{V} \) for the transpose of \(\varphi : F! \mathcal{U} \to \mathcal{V} \) with respect to the adjunction \(F! \dashv F^* \);
- Note there is an embedding \(\iota : \int_{\mathcal{C}} F^* \mathcal{V} \hookrightarrow \int_{\mathcal{D}} \mathcal{V} \);
- Define \(\Phi \) to be the composite \(\int_{\mathcal{C}} \mathcal{U} \xrightarrow{\int_{\mathcal{C}} \varphi'} \int_{\mathcal{C}} F^* \mathcal{V} \xrightarrow{\iota} \int_{\mathcal{D}} \mathcal{V} \);
- Define \(\tilde{\Phi} \) likewise.
Proof of equivalence

The idea behind the proof of equivalence of defining homomorphisms ‘algebraically’ and defining them ‘functorially’ is as follows:

- Write $\varphi' : \mathcal{U} \to F^* \mathcal{V}$ for the transpose of $\varphi : F! \mathcal{U} \to \mathcal{V}$ with respect to the adjunction $F! \dashv F^*$;
- Note there is an embedding $\iota : \int_{\mathcal{C}} F^* \mathcal{V} \hookrightarrow \int_{\mathcal{D}} \mathcal{V}$;
- Define Φ to be the composite $\int_{\mathcal{C}} \mathcal{U} \xrightarrow{\int_{\mathcal{C}} \varphi'} \int_{\mathcal{C}} F^* \mathcal{V} \xrightarrow{\iota} \int_{\mathcal{D}} \mathcal{V}$;
- Define $\tilde{\Phi}$ likewise.

The assignment $(F, \varphi, \tilde{\varphi}) \mapsto (F, \Phi, \tilde{\Phi})$ is as required.
1. Review of background material

2. Algebraic description of homomorphisms

3. Functorial description of homomorphisms

4. Interpreting the syntax
Interpreting the syntax

We take a similar approach to that of S. Castellan, P. Clairambault, P. Dybjer (2015). The idea is as follows:
Interpreting the syntax

We take a similar approach to that of S. Castellan, P. Clairambault, P. Dybjer (2015). The idea is as follows:

- Work in a system of type theory with four kinds of judgements

\[\Gamma = \Gamma' \vdash, \quad \Delta \vdash \gamma = \gamma' : \Gamma, \quad \Gamma \vdash A = A', \quad \Gamma \vdash a = a' : A \]

(We write \(\Gamma \vdash \) instead of \(\Gamma = \Gamma \vdash \), and so on.)
Interpreting the syntax

We take a similar approach to that of S. Castellan, P. Clairambault, P. Dybjer (2015). The idea is as follows:

■ Work in a system of type theory with four kinds of judgements

\[
\Gamma = \Gamma' \vdash, \quad \Delta \vdash \gamma = \gamma' : \Gamma, \quad \Gamma \vdash A = A', \quad \Gamma \vdash a = a' : A
\]

(We write \(\Gamma \vdash\) instead of \(\Gamma = \Gamma \vdash\), and so on.)

■ From the syntax, build a natural model

\[
\mathcal{T} = (\mathbb{T}, [], \text{Ty}, \text{Tm}, \text{ty}, \text{ext}, \text{sub}, \text{proj})
\]

called the *term model* of the system.
Interpreting the syntax

We take a similar approach to that of S. Castellan, P. Clairambault, P. Dybjer (2015). The idea is as follows:

- Work in a system of type theory with four kinds of judgements

\[\Gamma = \Gamma' \vdash, \quad \Delta \vdash \gamma = \gamma' : \Gamma, \quad \Gamma \vdash A = A', \quad \Gamma \vdash a = a' : A \]

(We write \(\Gamma \vdash \) instead of \(\Gamma = \Gamma \vdash \), and so on.)

- From the syntax, build a natural model

\[\mathfrak{T} = (\mathbb{P}, [], Ty, Tm, ty, ext, sub, proj) \]

called the term model of the system.

- \(\mathfrak{T} \) will (in a suitable sense) be the free natural model supporting the derivation rules for this system.
Example 1: basic syntax

With no rules for type formation, the term model is very simple:
Example 1: basic syntax

With no rules for type formation, the term model is very simple:

- \mathbb{T} has the empty context $[]$ as its only object and the identity substitution $[] \vdash \text{id} : []$ as its only morphism;
Example 1: basic syntax

With no rules for type formation, the term model is very simple:

- \mathbb{T} has the empty context $[]$ as its only object and the identity substitution $[] \vdash \text{id} : []$ as its only morphism;
- $\text{Ty, Tm} : \mathbb{T}^{op} \to \textbf{Set}$ are the empty presheaves;
Example 1: basic syntax

With no rules for type formation, the term model is very simple:

- \mathbb{T} has the empty context $[]$ as its only object and the identity substitution $[] \vdash \text{id} : []$ as its only morphism;
- $\text{Ty}, \text{Tm} : \text{Top} \rightarrow \text{Set}$ are the empty presheaves;
- ty, ext are the unique (empty) functor between empty categories;
Example 1: basic syntax

With no rules for type formation, the term model is very simple:

- \mathbb{T} has the empty context $[]$ as its only object and the identity substitution $[] \vdash \text{id} : []$ as its only morphism;
- $\text{Ty}, \text{Tm} : \mathbb{T}^{\text{op}} \to \textbf{Set}$ are the empty presheaves;
- ty, ext are the unique (empty) functor between empty categories;
- sub, proj are the unique natural transformations with no components.
Example 1: basic syntax

With no rules for type formation, the term model is very simple:

- \mathbb{T} has the empty context $[]$ as its only object and the identity substitution $[] \vdash \text{id} : []$ as its only morphism;
- $\text{Ty}, \text{Tm} : \mathbb{T}^{\text{op}} \rightarrow \text{Set}$ are the empty presheaves;
- ty, ext are the unique (empty) functor between empty categories;
- sub, proj are the unique natural transformations with no components.

It is very easy to prove the following result.

Theorem

*This data defines a natural model \mathcal{T}, which is an initial object in NM.***
Example 2: adding a unit type

Consider the type theory obtained by adding a unit type 1, i.e. we add the following rules to our syntax:

\[
\begin{align*}
\vdash 1 \\
\vdash \ast : 1 \\
\vdash a : 1 \\
\vdash a = \ast : 1
\end{align*}
\]

The term model \(\mathcal{E} \) for this system is defined as follows:
Example 2: adding a unit type

Consider the type theory obtained by adding a unit type \(1 \), i.e. we add the following rules to our syntax:

\[
\begin{align*}
\Gamma & \vdash 1 \\
\Gamma & \vdash \ast : 1 \\
\Gamma & \vdash a : 1 \\
\end{align*}
\]

\[
\begin{align*}
\Gamma & \vdash a = \ast : 1 \\
\end{align*}
\]

The term model \(\mathcal{S} \) for this system is defined as follows:

- The objects of \(T \) are the empty context \([0] := []\) and finite strings of the form \([n] := [1 \cdot 1 \cdots 1]\) for \(n \geq 1\);
 \[n \text{ times} \]
Example 2: adding a unit type

Consider the type theory obtained by adding a unit type \(1 \), i.e. we add the following rules to our syntax:

\[
\begin{align*}
\Gamma &\vdash 1 \\
\Gamma &\vdash \star : 1 \\
\Gamma &\vdash a : 1 \\
\end{align*}
\]

The term model \(\mathcal{T} \) for this system is defined as follows:

- The objects of \(\mathcal{T} \) are the empty context \([0] := [] \) and finite strings of the form \([n] := [1 \cdot 1 \cdots 1] \) for \(n \geq 1 \);
 \(n \) times
- There is a unique morphism \(\gamma_{n,m} : [n] \to [m] \) for all \(n, m \in \mathbb{N} \).
Example 2: adding a unit type

Consider the type theory obtained by adding a unit type 1, i.e. we add the following rules to our syntax:

$$
\frac{}{\vdash 1} \quad \frac{}{\vdash \star : 1} \quad \frac{\vdash a : 1}{\vdash a = \star : 1}
$$

The term model \mathcal{S} for this system is defined as follows:

- The objects of \mathcal{T} are the empty context $[0] := []$ and finite strings of the form $[n] := [1 \cdot 1 \cdot \cdots 1]$ for $n \geq 1$; n times
- There is a unique morphism $\gamma_{n,m} : [n] \to [m]$ for all $n, m \in \mathbb{N}$.
- $\text{Ty}([n]) = \{[1]\}$ and $\text{Ty}(\gamma_{n,m}) = \text{id}_{\{[1]\}}$;
Example 2: adding a unit type

Consider the type theory obtained by adding a unit type \(1 \), i.e. we add the following rules to our syntax:

\[
\begin{align*}
\vdash 1 \\
\vdash \star : 1 \\
\vdash a : 1 \\
\vdash a = \star : 1
\end{align*}
\]

The term model \(\mathcal{T} \) for this system is defined as follows:

- The objects of \(\mathcal{T} \) are the empty context \([0] := [] \) and finite strings of the form \([n] := [1 \cdot 1 \cdot \cdots 1] \) for \(n \geq 1 \);

 \(n \) times

- There is a unique morphism \(\gamma_{n,m} : [n] \to [m] \) for all \(n, m \in \mathbb{N} \).

- \(\text{Ty}([n]) = \{[1]\} \) and \(\text{Ty}(\gamma_{n,m}) = \text{id}_{\{1\}} \);

- \(\text{Tm}([n]) = \{[\star]\} \) and \(\text{Tm}(\gamma_{n,m}) = \text{id}_{\{[\star]\}} \);
Example 2: adding a unit type

Consider the type theory obtained by adding a unit type 1, i.e. we add the following rules to our syntax:

\[
\begin{align*}
\vdash 1 \\
\vdash \star : 1 \\
\vdash a : 1 \\
\vdash a = \star : 1
\end{align*}
\]

The term model Ξ for this system is defined as follows:

- The objects of Ξ are the empty context $[0] := []$ and finite strings of the form $[n] := [1 \cdot 1 \cdot 1 \cdots 1]$ for $n \geq 1$;
- There is a unique morphism $\gamma_{n,m} : [n] \to [m]$ for all $n, m \in \mathbb{N}$.
- $\mathrm{Ty}([n]) = \{[1]\}$ and $\mathrm{Ty}(\gamma_{n,m}) = \mathrm{id}_{\{[1]\}}$;
- $\mathrm{Tm}([n]) = \{[\star]\}$ and $\mathrm{Tm}(\gamma_{n,m}) = \mathrm{id}_{\{[\star]\}}$;
- $\mathrm{ty}([n], [\star]) = ([n], [1])$ and $\mathrm{ext}([n], [1]) = ([n+1], [\star])$;
Example 2: adding a unit type

Consider the type theory obtained by adding a unit type 1, i.e. we add the following rules to our syntax:

\[
\begin{align*}
\vdash 1 \\
\vdash \star : 1 \\
\vdash a : 1 \\
\vdash a = \star : 1
\end{align*}
\]

The term model \mathcal{T} for this system is defined as follows:

- The objects of \mathcal{T} are the empty context $[0] := []$ and finite strings of the form $[n] := [1 \cdot 1 \cdots 1]$ for $n \geq 1$; n times
- There is a unique morphism $\gamma_{n,m} : [n] \to [m]$ for all $n, m \in \mathbb{N}$.
- $\text{Ty}([n]) = \{[1]\}$ and $\text{Ty}(\gamma_{n,m}) = \text{id}_{\{1\}}$;
- $\text{Tm}([n]) = \{[\star]\}$ and $\text{Tm}(\gamma_{n,m}) = \text{id}_{\{\star\}}$;
- $\text{ty}([n],[\star]) = ([n],[1])$ and $\text{ext}([n],[1]) = ([n+1],[\star])$;
- $\text{sub}([n],[\star]) = \gamma_{n,n+1}$ and $\text{proj}([n],[\star]) = \gamma_{n+1,n}$.
Example 2: adding a unit type

A natural model \mathcal{C} supports the unit type if there exist

$$1_{\mathcal{C}} \in U(\Diamond) \quad \text{and} \quad \star_{\mathcal{C}} \in \tilde{U}(\Diamond)$$

such that $p_{\Diamond}^{-1}(\{1_{\mathcal{C}}\}) = \{\star_{\mathcal{C}}\}.$
Example 2: adding a unit type

A natural model \mathcal{C} supports the unit type if there exist

$$1_{\mathcal{C}} \in \mathcal{U}(\diamond) \quad \text{and} \quad \star_{\mathcal{C}} \in \tilde{\mathcal{U}}(\diamond)$$

such that $p_{\diamond}^{-1}(\{1_{\mathcal{C}}\}) = \{\star_{\mathcal{C}}\}$.

Theorem

The data \mathcal{T} on the previous slide defines a natural model, which is the free natural model supporting the unit type, i.e.
Example 2: adding a unit type

A natural model \mathcal{C} supports the unit type if there exist

$$1_{\mathcal{C}} \in U(\diamond) \quad \text{and} \quad \star_{\mathcal{C}} \in \tilde{U}(\diamond)$$

such that $p_\diamond^{-1}(\{1_{\mathcal{C}}\}) = \{\star_{\mathcal{C}}\}$.

Theorem

The data \mathcal{Z} on the previous slide defines a natural model, which is the free natural model supporting the unit type, i.e. if \mathcal{C} is any natural model supporting the unit type, and $1_{\mathcal{C}} \in U(\diamond)$ and $\star_{\mathcal{C}} \in \tilde{U}(\diamond)$ are as above, then there is a unique homomorphism

$$(F, \Phi, \tilde{\Phi}) : \mathcal{Z} \rightarrow \mathcal{C}$$

such that

$$F[1] = 1_\mathcal{C} \quad \text{and} \quad F[\star] = \star_\mathcal{C}$$
Future work on natural models

In the pipeline:
Future work on natural models

In the pipeline:

- Uniform way of constructing the term model for a signature;
Future work on natural models

In the pipeline:
- Uniform way of constructing the term model for a signature;
- 2-category theoretic aspects;
Future work on natural models

In the pipeline:

- Uniform way of constructing the term model for a signature;
- 2-category theoretic aspects;
- Lawvere duality for generalised algebraic theories;
Future work on natural models

In the pipeline:

- Uniform way of constructing the term model for a signature;
- 2-category theoretic aspects;
- Lawvere duality for generalised algebraic theories;
- Investigation of the polynomial functor induced by $p : \tilde{U} \rightarrow U$.
Acknowledgements and references

This is joint work with my PhD advisor, Steve Awodey.
This is joint work with my PhD advisor, Steve Awodey.

Introduction and basic theory of natural models:

Acknowledgements and references

This is joint work with my PhD advisor, Steve Awodey.

Introduction and basic theory of natural models:

Some analogous results for categories with families:

- S. Castellan, *Categories with families as the initial category with families* (2014).
Acknowledgements and references

This is joint work with my PhD advisor, Steve Awodey.

Introduction and basic theory of natural models:

Some analogous results for categories with families:
- S. Castellan, *Categories with families as the initial category with families* (2014).

Thank you for listening!