
Formalisation
or: How I Learned to Stop Worrying and Love the Computer

Clive Newstead

Graduate Student Seminar

Tuesday 30th January 2018



Motivation Interactive theorem provers Foundations Lean demo The future The end

1 Why use computers to do mathematics?

2 Interactive theorem provers

3 Foundational issues

4 Demonstration using Lean

5 Considerations for the future

Clive Newstead (cnewstead@cmu.edu) Graduate Student Seminar

Formalisation



Motivation Interactive theorem provers Foundations Lean demo The future The end

1 Why use computers to do mathematics?

2 Interactive theorem provers

3 Foundational issues

4 Demonstration using Lean

5 Considerations for the future

Clive Newstead (cnewstead@cmu.edu) Graduate Student Seminar

Formalisation



Motivation Interactive theorem provers Foundations Lean demo The future The end

What is a proof?

A proof of a proposition P is. . .
an argument that convinces yourself that P is correct;
an argument that convinces others that P is correct;
a logically coherent sequence of statements, beginning with
axioms or known results, and ending with P;
all of the above?
something else entirely?
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Observation #1: the literature

Mathematicians are only human. (Most of us, anyway. . . )

We make lots of errors.
We’re lazy.
We rely heavily on our intuition.
We have no idea what we’re doing.

 We cannot be fully confident in the mathematical literature.
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Observation #2: the difficulty

Mathematics is really really really hard!

It takes a long time to get to grips with the theory.
Proof techniques are never guaranteed to work.
Lots of what we do is very tedious.

 We waste a lot of time and effort.
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Observation #3: the isolation

We’re not very good at speaking to each other.

There is little communication between fields.
It’s often hard to tell if a result has already been proved.
It is difficult to read papers in other areas.
We alienate non-mathematicians.

 The mathematical community is isolated and disjointed.
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Computers to the rescue!

Using computers might help with some of these issues.
They can verify the correctness of proofs.
They can assist with the process of proving a result.
They can provide extensive databases of mechanised results.

. . . in theory. . .

Clive Newstead (cnewstead@cmu.edu) Graduate Student Seminar

Formalisation



Motivation Interactive theorem provers Foundations Lean demo The future The end

1 Why use computers to do mathematics?

2 Interactive theorem provers

3 Foundational issues

4 Demonstration using Lean

5 Considerations for the future

Clive Newstead (cnewstead@cmu.edu) Graduate Student Seminar

Formalisation



Motivation Interactive theorem provers Foundations Lean demo The future The end

What is an interactive theorem prover?

An interactive theorem prover (ITP) typically consists of:
An underlying logical system.
A trusted kernel.
An elaborator.
One or more libraries.

Clive Newstead (cnewstead@cmu.edu) Graduate Student Seminar

Formalisation



Motivation Interactive theorem provers Foundations Lean demo The future The end

Examples of ITPs

Proof assistants have been around for a while.

Examples: Coq, Agda, HOL (& variants), Isabelle, NuPRL, Lean
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Proof that
√

2 is irrational in Isabelle

Source: Wikipedia
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Some verified results

Four colour theorem (B. Werner & G. Gonthier, 2005, Coq)

Dirichlet’s theorem (J. Harrison, 2010, HOL Light)

Feit–Thompson theorem (G. Gonthier, 2012, Coq)

Kepler conjecture (T. Hales et al., 2014, HOL Light & Isabelle)

Green’s theorem (M. Abdulaziz & L. Paulson, 2016, Isabelle)

Many results are still up for grabs!
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Formalisation projects in Pittsburgh

Lots of formalisation is being done right under our noses!

At CMU:
Lean standard library (J. Avigad, R. Lewis, . . . )

Homotopy theory (S. Awodey, F. van Doorn, E. Rijke, J. Frey, F. Wellen, . . . )

RedPRL (R. Harper, J. Sterling, C. Angiuli, E. Cavallo, Favonia, D. Gratzer, . . . )

At Pitt:
Formal Abstracts in Mathematics (T. Hales, . . . )
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Set theory?

Most ‘formal’ mathematics is done in ZFC set theory.

This is not ideal for formalisation.

∀x , y , z (x · y) · z = x · (y · z)

(x + y)n =
n∑

k=0

(n
k

)
xk yn−k is true in any commutative ring.

What does ‘2’ refer to?

Problem: The role of an object is not inherent to the object.
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Type theory!

In type theory, every object (or term) has a unique type.

2N : N 2Z : Z (x 7→ x2) : R→ R N : Type

We can interpret types as propositions, whose terms are proofs.

Example. If a is a proof of A and b is a proof of B, how do we get a
proof of ‘A and B’?

Solution. Paste together a and b!

In type theory:
a : A,b : B ⇒ 〈a,b〉 : A× B
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Some more analogies

type as a set as a proposition
A× B cartesian product conjunction
A + B disjoint union disjunction
A→ B function set implication∑
x :A B(x) indexed disjoint union existential quantification∏
x :A B(x) indexed product universal quantification

term as an element as a proof
〈a,b〉 : A× B ordered pair proof of A and proof of B

c : A + B element of A or of B proof of A or of B
f : A→ B function from A to B proof of B from proof of A

〈a,b〉 :
∑

x :A B(x) ordered pair witness & proof
f :
∏

x :A B(x) dependent function proof for arbitrary x : A
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Suitability of type theory

Type theory is also useful because. . .
It mirrors programming.
It is constructive. (Non-constructive mathematics is still possible!)

It is proof-relevant.
It makes heavy use of induction and recursion.

Most mathematicians wouldn’t detect a foundational shift.
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What’s good

Some things are going well in the world of formalisation.

It’s fun.
There’s lots of interest right now.
The technology is getting better by the day.
Non-mathematicians are becoming interested in mathematics.
Libraries are getting bigger.
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What’s bad

Some things are going less well in the world of formalisation.
It’s a steep learning curve.
It feels like programming.
There is little consensus.
There’s not much money in it.
Mathematicians are skeptics.
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Considerations for the future

There are lots of issues affecting the future of ITPs.
One foundation to rule them all?
User-friendliness.
The right level of interactivity.
Incorporation in mainstream mathematical education.
Automatic generation of human-readable proofs.
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Thanks for listening!

These slides are available at
http://math.cmu.edu/˜cnewstea/talks/20180130.pdf
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