Formalisation

or: How I Learned to Stop Worrying and Love the Computer

Clive Newstead

Graduate Student Seminar

Tuesday 30th January 2018

Motivation	Interactive theorem provers	Foundations		

- 2 Interactive theorem provers
- 3 Foundational issues
- 4 Demonstration using Lean
- 5 Considerations for the future

Motivation	Interactive theorem provers	Foundations		

- 2 Interactive theorem provers
- 3 Foundational issues
- 4 Demonstration using Lean
- 5 Considerations for the future

Motivation ●0000	Interactive theorem provers	Foundations		

What is a proof?

A proof of a proposition P is...

- an argument that convinces yourself that P is correct;
- an argument that convinces others that P is correct;
- a logically coherent sequence of statements, beginning with axioms or known results, and ending with P;
- all of the above?
- something else entirely?

Motivation			
00000			

Observation #1: the literature

Mathematicians are only human. (Most of us, anyway...)

- We make lots of errors.
- We're lazy.
- We rely heavily on our intuition.
- We have no idea what we're doing.
- ~ We cannot be fully confident in the mathematical literature.

Motivation			
00000			

Observation #2: the difficulty

Mathematics is really really really hard!

- It takes a long time to get to grips with the theory.
- Proof techniques are never guaranteed to work.
- Lots of what we do is very tedious.
- \rightsquigarrow We waste a lot of time and effort.

Motivation			
00000			

Observation #3: the isolation

We're not very good at speaking to each other.

- There is little communication between fields.
- It's often hard to tell if a result has already been proved.
- It is difficult to read papers in other areas.
- We alienate non-mathematicians.
- ~ The mathematical community is isolated and disjointed.

Motivation	Interactive theorem provers	Foundations		
00000				

Computers to the rescue!

Using computers might help with some of these issues.

- They can verify the correctness of proofs.
- They can assist with the process of proving a result.
- They can provide extensive databases of mechanised results.
- ... in theory...

Interactive theorem provers		

- 2 Interactive theorem provers
- 3 Foundational issues
- 4 Demonstration using Lean
- 5 Considerations for the future

Interactive theorem provers		
0000		

What is an interactive theorem prover?

An interactive theorem prover (ITP) typically consists of:

- An underlying logical system.
- A trusted kernel.
- An elaborator.
- One or more libraries.

Motivation	Interactive theorem provers	Foundations	The future	

Examples of ITPs

Proof assistants have been around for a while.

Examples: Coq, Agda, HOL (& variants), Isabelle, NuPRL, Lean

Interactive theorem provers		
00000		

Proof that $\sqrt{2}$ is irrational in Isabelle

```
theorem sqrt2 not rational:
 "sqrt (real 2) ∉ 0"
proof
 let ?x = "sqrt (real 2)"
 assume "?x \in 0"
 then obtain m n :: nat where
   sqrt rat: "!?x! = real m / real n" and lowest terms: "coprime m n"
   by (rule Rats abs nat div natE)
 hence "real (m^2) = ?x^2 * real (n^2)" by (auto simp add: power2 eq square)
 hence eq: m^2 = 2 * n^2 using of nat eq iff power2 eq square by fastforce
 hence "2 dvd m^2" by simp
 hence "2 dvd m" by simp
 have "2 dvd n" proof-
   from <2 dvd m> obtain k where "m = 2 * k" ...
   with eq have "2 * n^2 = 2^2 * k^2" by simp
   hence "2 dvd n^2" by simp
   thus "2 dvd n" by simp
 aed
 with <2 dvd m> have "2 dvd gcd m n" by (rule gcd greatest)
 with lowest terms have "2 dvd 1" by simp
 thus False using odd one by blast
aed
```

Source: Wikipedia

Motivation	Interactive theorem provers	Foundations		

Some verified results

- Four colour theorem (B. Werner & G. Gonthier, 2005, Coq)
- Dirichlet's theorem (J. Harrison, 2010, HOL Light)
- Feit-Thompson theorem (G. Gonthier, 2012, Coq)
- **Kepler conjecture** (T. Hales *et al.*, 2014, HOL Light & Isabelle)
- Green's theorem (M. Abdulaziz & L. Paulson, 2016, Isabelle)

Many results are still up for grabs!

Interactive theorem provers		
00000		

Formalisation projects in Pittsburgh

Lots of formalisation is being done right under our noses!

At CMU:

- Lean standard library (J. Avigad, R. Lewis, ...)
- Homotopy theory (S. Awodey, F. van Doorn, E. Rijke, J. Frey, F. Wellen, ...)
- **RedPRL** (R. Harper, J. Sterling, C. Angiuli, E. Cavallo, Favonia, D. Gratzer, ...)

At Pitt:

■ Formal Abstracts in Mathematics (T. Hales, ...)

	Foundations		

- 2 Interactive theorem provers
- 3 Foundational issues
- 4 Demonstration using Lean
- 5 Considerations for the future

Motivation	Interactive theorem provers	Foundations •000		
0				

Set theory?

Most 'formal' mathematics is done in ZFC set theory.

This is not ideal for formalisation.

■
$$\forall x, y, z (x \cdot y) \cdot z = x \cdot (y \cdot z)$$

■ $(x + y)^n = \sum_{k=0}^n {n \choose k} x^k y^{n-k}$ is true in any commutative ring.

What does '2' refer to?

Problem: The role of an object is not inherent to the object.

Motivation	Interactive theorem provers	Foundations O • O O		
Type t	heory!			

In type theory, every object (or term) has a unique type.

 $\mathbf{2}_{\mathbb{N}}:\mathbb{N}$ $\mathbf{2}_{\mathbb{Z}}:\mathbb{Z}$ $(x\mapsto x^2):\mathbb{R} o\mathbb{R}$ $\mathbb{N}:$ Type

We can interpret types as **propositions**, whose terms are **proofs**.

Example. If *a* is a proof of *A* and *b* is a proof of *B*, how do we get a proof of '*A* and *B*'?

Solution. Paste together a and b!

In type theory:

$$a: A, b: B \Rightarrow \langle a, b \rangle : A \times B$$

Motivation	Interactive theorem provers	Foundations ○O●O		

Some more analogies

type	as a set	as a proposition
$A \times B$	cartesian product	conjunction
A + B	disjoint union	disjunction
$oldsymbol{A} ightarrow oldsymbol{B}$	function set	implication
$\sum_{x \in A} B(x)$	indexed disjoint union	existential quantification
$\overline{\prod}_{x:A}^{X:A} B(x)$	indexed product	universal quantification
term	as an element	as a proof
$\frac{\textbf{term}}{\langle a,b\rangle:A\times B}$	as an element ordered pair	as a proof proof of <i>A</i> and proof of <i>B</i>
$\frac{\text{term}}{\langle a,b\rangle:A\times B}\\c:A+B$	as an element ordered pair element of <i>A</i> or of <i>B</i>	as a proof proof of <i>A</i> and proof of <i>B</i> proof of <i>A</i> or of <i>B</i>
	as an element ordered pair element of <i>A</i> or of <i>B</i> function from <i>A</i> to <i>B</i>	as a proof proof of <i>A</i> and proof of <i>B</i> proof of <i>A</i> or of <i>B</i> proof of <i>B</i> from proof of <i>A</i>
$\begin{array}{c} \textbf{term} \\ \hline \langle a,b\rangle : A \times B \\ c:A+B \\ f:A \rightarrow B \\ \langle a,b\rangle : \sum_{x:A} B(x) \end{array}$	as an element ordered pair element of <i>A</i> or of <i>B</i> function from <i>A</i> to <i>B</i> ordered pair	as a proof proof of A and proof of B proof of A or of B proof of B from proof of A witness & proof

Motivation	Interactive theorem provers	Foundations		

Suitability of type theory

Type theory is also useful because...

- It mirrors programming.
- It is constructive. (Non-constructive mathematics is still possible!)
- It is proof-relevant.
- It makes heavy use of induction and recursion.

Most mathematicians wouldn't detect a foundational shift.

	Lean demo	

- 2 Interactive theorem provers
- 3 Foundational issues
- 4 Demonstration using Lean
- 5 Considerations for the future

Motivation	Interactive theorem provers	Foundations	The future	

- 2 Interactive theorem provers
- 3 Foundational issues
- 4 Demonstration using Lean
- 5 Considerations for the future

Motivation	Interactive theorem provers	Foundations	The future ●OO	

What's good

Some things are going well in the world of formalisation.

- It's fun.
- There's lots of interest right now.
- The technology is getting better by the day.
- Non-mathematicians are becoming interested in mathematics.
- Libraries are getting bigger.

Motivation	Interactive theorem provers	Foundations	The future O●O	

What's bad

Some things are going less well in the world of formalisation.

- It's a steep learning curve.
- It feels like programming.
- There is little consensus.
- There's not much money in it.
- Mathematicians are skeptics.

		The future	
		000	

Considerations for the future

There are lots of issues affecting the future of ITPs.

- One foundation to rule them all?
- User-friendliness.
- The right level of interactivity.
- Incorporation in mainstream mathematical education.
- Automatic generation of human-readable proofs.

Motivation	Interactive theorem provers	Foundations	The future	The end
00000				

Thanks for listening!

These slides are available at http://math.cmu.edu/~cnewstea/talks/20180130.pdf

Clive Newstead (cnewstead@cmu.edu)