An infinite descent into pure mathematics

by Clive Newstead
1. What I learnt about learning
2. Why I wrote a textbook
3. Developing the book
4. Preview of the book
5. Concluding remarks
<table>
<thead>
<tr>
<th>1</th>
<th>What I learnt about learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Why I wrote a textbook</td>
</tr>
<tr>
<td>3</td>
<td>Developing the book</td>
</tr>
<tr>
<td>4</td>
<td>Preview of the book</td>
</tr>
<tr>
<td>5</td>
<td>Concluding remarks</td>
</tr>
</tbody>
</table>
Traditional mathematics class

Course design
- Choose topics to be covered
- Choose grade weightings for assessments
- Choose textbook & set schedule

Classes
- Lecturer presents content
- Maybe some question-and-answer interaction

Assessment
- Problem sheets
- Quizzes and examinations
Current research about teaching and learning

Good practices to maximise student learning:

- Proper alignment of learning objectives, teaching strategies and methods of assessment
- Engaging students actively in the learning process
- Use of inquiry-based strategies and assessments
- Using a variety of teaching methods and assessments

Alternative teaching model

Course design
- Choose learning objectives
- Design classes around helping students achieve LOs
- Choose types of assessment that test these LOs

Classes
- Before: some content delivery (e.g. reading, video)
- During: activities targeting LOs, clarifications, some lecture

Assessment
- Problem sheets, quizzes, examinations
- Projects, presentations, group work, ...
1 What I learnt about learning

2 Why I wrote a textbook

3 Developing the book

4 Preview of the book

5 Concluding remarks
Concepts of Mathematics — description

From course catalogue:

“This course introduces the basic concepts, ideas and tools involved in doing mathematics. As such, its main focus is on presenting informal logic, and the methods of mathematical proof. […list of topics…]”

From department website:

Concepts of Mathematics — course design

Learning objectives

- “Presenting informal logic” = communication
- “Methods of mathematical proof” = problem-solving

Mathematical topics

- Symbolic logic, sets, functions
- Induction on the natural numbers
- Number theory
- Combinatorics
- Other topics (real numbers, probability theory, basic topology, ...)

Syllabus: ✓ Next step: find a textbook.
Concepts of Mathematics — textbook

Textbook criteria: A textbook for Concepts should...

- Be of an appropriate length
- Cover enough mathematical topics
- Cover communication and problem-solving skills
- Practise what it preaches
- Be as agnostic as possible
An infinite descent into pure mathematics
Concepts of Mathematics — textbook

Solution: Write my own notes

Time frame: 51 days

Backup plan: Concede
1. What I learnt about learning

2. Why I wrote a textbook

3. Developing the book

4. Preview of the book

5. Concluding remarks

Clive Newstead (cnewstead@cmu.edu)

An infinite descent into pure mathematics
An infinite descent into pure mathematics
Design considerations

Lots of decisions to make

- Mathematical areas to cover
- Definitions and theorems to emphasise
- Include exercise solutions or not?
- Level of difficulty
- Choices of convention
- Level of verbosity
- Level of detail in proofs
- General tone of the book
- How to cover both skills and content
- Name of the book
- Licensing and copyright issues
Example dilemma #1

What is a function?

Possible definitions:

(1) A set of ordered pairs such that . . .
(2) A triple \((X, Y, f)\) where \(f \subseteq X \times Y\) such that . . .
(3) A rule assigning to each \(x\) a unique \(y\)
(4) An imaginary machine taking inputs and giving outputs
(5) A primitive notion in terms of which all other mathematical notions are defined

My choice: (3) because it is the most agnostic
Example dilemma #2

Is zero a natural number?

Possible resolutions:

(1) Yes
(2) No
(3) Choose your own adventure, make explicit when needed
(4) Use \mathbb{N}_0 and \mathbb{N}_1 (or similar)

My choice: (1) for lots of reasons
Example dilemma #3

What is the best domain of discourse for number theory?

Possible answers:

(1) \mathbb{Z}
(2) \mathbb{N} (with or without zero?)
(3) Sometimes \mathbb{N}, sometimes \mathbb{Z}

My choice: (1) because it generalises easily to more general rings
Return to learning objectives

Communication skills
- Using notation accurately
- Developing mathematical fluency
- Evaluating effectiveness of others’ proofs
- Typesetting in \LaTeX

Design principles
- Write accurately and clearly
- Include discussion exercises
- Provide guidance on how to structure a proof
- Provide \LaTeX support
Return to learning objectives

Problem-solving skills
- Identifying feasible proof strategies
- Identifying relevant definitions and theorems
- Creativity in problem-solving approaches

Design principles
- Examples and exercises galore
- Vary level of difficulty
- Provide problem-solving tips
- Do not provide solutions to exercises
And so the writing began

Note: this is not actually me... I don't have a Mac
Growth of the book

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th># pages</th>
<th>Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 9, 2015</td>
<td>Started writing</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>Jun 29, 2015</td>
<td>Started teaching 21-127</td>
<td>134</td>
<td>134</td>
</tr>
<tr>
<td>Aug 7, 2015</td>
<td>Finished teaching 21-127</td>
<td>183</td>
<td>49</td>
</tr>
<tr>
<td>May 24, 2016</td>
<td>Started preparing for 21-128</td>
<td>183</td>
<td>0</td>
</tr>
<tr>
<td>Aug 29, 2016</td>
<td>Started teaching 21-128</td>
<td>204</td>
<td>21</td>
</tr>
<tr>
<td>Dec 9, 2016</td>
<td>Finished teaching 21-128</td>
<td>348</td>
<td>144</td>
</tr>
<tr>
<td>Mar 1, 2018</td>
<td>Finshed writing (today)</td>
<td>394</td>
<td>46</td>
</tr>
<tr>
<td>????</td>
<td>Finished writing</td>
<td>< 500</td>
<td>???</td>
</tr>
</tbody>
</table>
1. What I learnt about learning

2. Why I wrote a textbook

3. Developing the book

4. Preview of the book

5. Concluding remarks
1. What I learnt about learning
2. Why I wrote a textbook
3. Developing the book
4. Preview of the book
5. Concluding remarks
Next steps

Remaining tasks

- Finish remaining chapters
- Add more examples, discussions & exercises
- Add more guidance for communication and proof-writing
- Add more diagrams and graphics
- Include chapter introductions, reflections and summaries
Reflection

What I have learnt

- Writing a textbook takes a lot of time and effort
- Writing a textbook does not contribute towards PhD requirements
- You can’t make everyone happy
- \LaTeX\ is full of surprises
- Having a project to work on is fun
- This book might never be finished
Thanks for listening!

Website
www.infinite-descent.xyz

These slides
math.cmu.edu/~cnewstea/talks/20180301.pdf