
Handout for recitation 12
21-127 sections A and F TA: Clive Newstead 25th February 2014

Computational complexity of the Euclidean algorithm

In Monday’s lecture you saw the Euclidean algorithm, a step-by-step process which, given a, b ∈ Z
with 0 < |a| 6 |b|, is guaranteed to output their greatest common divisor, denoted gcd(a, b).

The real question is: why did we bother? There’s a much more ‘straightforward’ näıve pro-
cedure finding the greatest common divisor of a and b, as follows: for each integer from 1 up to
|a|, check if it divides both a and b; if it does, write it down (otherwise forget it). The largest
number you wrote down is gcd(a, b).

The reason why we bothered to show you the Euclidean algorithm is: using the above straightfor-
ward näıve method is extremely inefficient. Calculating greatest common divisors of large numbers
is a common real-world task, especially in the computer security industry. (Read about the RSA
cryptosystem—it’s what makes your online bank transfers secure, amongst many other things.)
If we had to go through the process of checking every natural number 6 |a|, our computers would
burn out before they finished their task. We need a more time-efficient way.

The Euclidean algorithm is, in a very precise way, more efficient. Instead of requiring roughly1

|a| steps, as in the näıve approach, the Euclidean algorithm requires only roughly log(|a|) steps.
If you don’t know what logarithms are yet, don’t worry; all you need to know is that, as |a| gets
larger and larger, log(|a|) grows much more slowly than |a|.

The essence of the vague waffle written above follows immediately from the following precise
theorem:

Theorem 1. Let a, b ∈ Z with 0 < a 6 b. Let q1, q2, r1, r2 ∈ Z be such that 0 6 r1 < a,
0 6 r2 < b and

b = q1a + r1 and a = q2r1 + r2

Then r1 + r2 6 3
4(a + b).

Proof. We know that a 6 b, so either b > 2a or a 6 b < 2a. We consider these cases separately.

[Case 1.] Suppose b > 2a.

Since r1 < a and r2 < r1 we have r2 < a by transitivity. Since b > 2a, it follows that a 6 1
2b, and

1By ‘roughly’ I mean ‘to the order of’. There is a precise way of measuring the complexity of an algorithm,
which is not covered in 21-127, but leads to a very rich, interesting, useful, beautiful and applicable theory called
(computational) complexity theory. Study it if you ever want to be employed.

1

since r1 < a we have r1 <
1
2b. In summary

r1 + r2 <
1

2
b + a since r1 <

1

2
b and r2 < a

= (
3

4
− 1

4
)b + (

3

4
+

1

4
)a re-writing

=
3

4
(a + b)− 1

4
(b− a) distributing and factorising

6
3

4
(a + b) since b− a > 0

So by transitivity again, r1 + r2 6 3
4(a + b). So the result holds in Case 1.

[Case 2.] Suppose a 6 b < 2a.

First we prove that q1 = 1. We do this by deriving contradictions from q1 6 0 and q1 > 2.

� If q1 6 0 then q1a 6 0, so q1a + r1 6 r1. But b = q1a + r1, so b 6 r1. Since a 6 b, it follows
from transitivity that a 6 r1, contradicting the fact that r1 < a.

� If q1 > 2 then q1a > 2a, so q1a + r1 > 2a + r1. But b = q1a + r1, so b = 2a + r1. Since
b < 2a, b > b + r1, so 0 > r1, contradicting the fact that r1 > 0.

The only remaining possibility is that q1 = 1, and hence b = a + r1. So r1 = b− a. Since b < 2a
it follows that a > 1

2b, so

r1 = b− a < b− 1

2
b =

1

2
b

That is, r1 < 1
2b. Since also r2 < a, we now know that r1 + r2 < 1

2b + a. The same chain of
inequalities as in Case 1 thus applies, leading to the conclusion that r1 + r2 6 3

4(a + b). So the
result holds in Case 2.

Since all possible cases are covered, the theorem is proved.

This leads us to the conclusion that, every time we take two steps in the Euclidean algorithm,
the sum of the numbers that we’re dealing with decreases by a factor of 3

4 . Hence the Euclidean
algorithm certainly terminates in 2k steps, where k is the smallest natural number such that(

3

4

)k

(a + b) < 1

After some easy logarithm calculations (not expected from you in 21-127), it follows that the
Euclidean algorithm terminates in at most C log(|a|) steps, for some constant value C. This is,
in general, much quicker than |a| steps, especially when |a| grows very large.

You may have noticed that Theorem 1 only applies when a and b are positive. For the negative
case, the same result about complexity will follow once you’ve proved that, no matter what the
input (i.e. the values of a and b), after two iterations of the Euclidean algorithm, all the numbers
that appear in the rest of the algorithm are non-negative. I leave this bit to you. (Hint: by
definition of remainders, r1 > 0 and r2 > 0.)

2

