Math 290-1 Class 8

Monday 15th October 2018

Inverse functions: quick facts

A function $f: X \to Y$ is **invertible** if any of the following conditions hold:

- *f* has an **inverse**, which is a function $f^{-1}: Y \to X$ such that $f^{-1}(f(x)) = x$ and $f(f^{-1}(y)) = y$ for all $x \in X$ and $y \in Y$.
- For each $y \in Y$, the equation f(x) = y has a unique solution x (which is then equal to $f^{-1}(y)$).

Some nice properties hold, for example:

- If f is invertible, then so is f^{-1} , and $(f^{-1})^{-1} = f$.
- If $f: X \to Y$ and $g: Y \to Z$ are invertible, so is $g \circ f: X \to Z$, and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Inverse matrices

If $m \neq n$ then a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ cannot have an inverse. (Why?) So we only consider linear transformations $T : \mathbb{R}^n \to \mathbb{R}^n$ and square $(n \times n)$ matrices.

If $T(\vec{x}) = \vec{y}$ is to have an inverse, then we should be able to solve for \vec{x} and the solution should be *unique*. Writing $A = (a_{ij})$ for the matrix of T and $B = (b_{ij})$ for the matrix of T^{-1} , this corresponds to doing some sequence of algebraic manipulations involving equations to find $T^{-1}(\vec{y})$ as shown:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = y_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = y_2 \\ \vdots & \vdots & \vdots & \ddots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = y_n \end{cases} \xrightarrow{\sim} \begin{cases} x_1 = b_{11}y_1 + b_{12}y_2 + \dots + b_{1n}y_n \\ x_2 = b_{21}y_1 + b_{22}y_2 + \dots + b_{2n}y_n \\ \ddots & \vdots & \vdots & \vdots \\ x_n = b_{n1}y_1 + b_{n2}y_2 + \dots + b_{nn}y_n \end{cases}$$

These operations involving equations can be represented using elementary row operations of an $n \times n$ matrix augmented by another $n \times n$ matrix:

1	a_{11}	a_{12}	•••	a_{1n}	1	0	•••	0		(1)	0	•••	0	b_{11}	b_{12}	•••	b_{1n}
I	a_{21}	a_{22}	•••	a_{2n}	0	1	•••	0		0	1	•••	0	b_{21}	b_{22}	•••	b_{2n}
	÷	÷	·	÷	:	÷	·	:	\rightsquigarrow	:	÷	·	÷	÷	÷	·	:
	a_{n1}	a_{n2}		a _{nn}	0	0		1)		$\left(0 \right)$	0	•••	1	b_{n1}	b_{n2}		b_{nn}

The matrix B is called the **inverse** to A, and we write $B = A^{-1}$. Some consequences:

- *T* is invertible if and only if $rref(A) = I_n$, the $n \times n$ identity matrix.
- *T* is invertible if and only if rank(A) = n.
- If A is invertible, then A^{-1} can be computed via rref $(A \mid I_n) = (I_n \mid A^{-1})$
- $AA^{-1} = A^{-1}A = I_n$ and $(A^{-1})^{-1} = A$ and $(BA)^{-1} = A^{-1}B^{-1}$

1. For each of the following matrices, determine whether or not it is invertible and, if it is invertible, find its inverse matrix.

(a)
$$\begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 2 & 1 & 0 \\ 3 & 2 & -1 \end{pmatrix}$$

(c)
$$\begin{pmatrix} 4 & 1 & 2 \\ 3 & 1 & 2 \\ 1 & 0 & 0 \end{pmatrix}$$

(d)
$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

2. Find a 3×2 matrix *A* such that

$$A\begin{pmatrix}1 & -3\\-2 & 7\end{pmatrix} = \begin{pmatrix}1 & 0\\-2 & 1\\2 & -3\end{pmatrix}$$

3. For which values of *b* and *c* is the following matrix invertible?

$$\begin{pmatrix} 0 & 1 & b \\ -1 & 0 & c \\ -b & -c & 0 \end{pmatrix}$$

4. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be a 2 × 2 matrix.

Prove that A is invertible if and only if ad = bc, and that in this case A^{-1} is defined as follows.

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

5. Let *A* be an *upper-triangular* $n \times n$ matrix, i.e. such that $a_{ij} = 0$ if i > j. Prove that *A* is invertible if and only if $a_{11} \times a_{22} \times \cdots \times a_{nn} \neq 0$.