Math 290-3 Class 1

Monday 1st April 2019

Double integrals

A bounded integral $\int_a^b f(x) dx$ tells us the area under the curve y = f(x) above the interval $[a,b] = \{x : a \le x \le b\}$. Intuitively, the integral adds up the heights of the points (x, f(x)) for $a \le x \le b$.

Double integrals are the generalisation of (bounded) integrals to functions of two variables: the double integral $\iint_D f(x,y) dA$ tells us the *volume* under the *surface* z = f(x,y) above the region D of the (x,y)-plane.

When D is the square region $[a,b] \times [c,d] = \{(x,y) : a \le x \le b, \ c \le y \le d\}$ and f is sufficiently well-behaved* on D, there are two ways that we can compute $\iint_D f(x,y) dA$:

• Find the areas under the curves z = f(x, y) for fixed $a \le x \le b$ (by integrating with respect to y, holding x constant); then 'add up' these areas by integrating with respect to x:

$$\iint_{[a,b]\times[c,d]} f(x,y) dA = \int_a^b \left(\int_c^d f(x,y) dy \right) dx$$

• Find the areas under the curves z = f(x, y) for fixed $c \le y \le d$ (by integrating with respect to x, holding y constant); then 'add up' these areas by integrating with respect to y:

$$\int_{[a,b]\times[c,d]} f(x,y) dA = \int_c^d \left(\int_a^b f(x,y) dx \right) dy$$

Note that, in particular, the two iterated integrals are equal—this fact is called Fubini's theorem.

[*Every function we will encounter is 'sufficiently well-behaved' for the purposes of applying Fubini's theorem.]

- 1. Compute $\iint_{[1,2]\times[-1,1]} xe^{xy} dA...$
 - (a) ... by first integrating with respect to y and then with respect to x.

$$\int_{1}^{2} \int_{-1}^{1} x e^{xy} dy dx = \int_{1}^{2} \left[e^{xy} \right]_{y=-1}^{y=-1} dx$$

$$= \int_{1}^{2} \left(e^{x} - e^{-x} \right) dx$$

$$= \left[e^{x} + e^{-x} \right]_{1}^{2}$$

$$= e^{2} + e^{-2} - e^{-2} = e^{-1}$$

(b) ... by first integrating with respect to
$$x$$
 and then with respect to y .

$$u = x \Rightarrow du = dx$$

 $dv = e^{xy} \Rightarrow v = \frac{e^{xy}}{y}$

$$u = x \Rightarrow du = dx$$

$$dv = e^{xy} \Rightarrow v = e^{xy}$$

$$= \int_{-1}^{1} \left(\frac{xe^{xy}}{y} \right)^{2} - \int_{1}^{2} \frac{e^{xy}}{y} dx dy$$

$$= \int_{-1}^{1} \left(\frac{ze^{2y}}{y} - \frac{e^{y}}{y^{2}} - \left(\frac{e^{xy}}{y^{2}} \right)^{2} \right) dy$$

$$= \int_{-1}^{1} \left(\frac{ze^{2y}}{y} - \frac{e^{y}}{y^{2}} - \frac{e^{y}}{y^{2}} - \frac{e^{y}}{y^{2}} \right) dy$$

$$= \int_{-1}^{1} \left(\frac{ze^{2y}}{y} - \frac{e^{y}}{y^{2}} - \frac{e^{y}}{y^{2}} - \frac{e^{y}}{y^{2}} \right) dy$$

$$= \int_{-1}^{1} \left(\frac{ze^{2y}}{y} - \frac{e^{y}}{y^{2}} - \frac{e^{y}}{y^{2}} - \frac{e^{y}}{y^{2}} \right) dy$$

There is no closed form expression for
$$\int \frac{e^{y}}{y} dy$$
 for example.

2. Use double integration to show that the volume of a cube of width a, length b and height c is equal to abc.

Volume =
$$\int_0^a c dA$$

= $\int_0^a \int_0^b c dy dx$

= $\int_0^a \left[cy \right]_0^b dx$

= $\int_0^a bc dx$

= $\int_0^a bc dx$

= $\int_0^a bc dx$

3. Find the volume of the solid bounded by the (x, y)-plane, the plane x = 1, the plane x = -1, the plane z = 1 + y and the plane z = 2 - y.

at
$$0=1+y$$
 intersects the (x,y) -plane at $0=1+y$ $y=-1$
 $z=z-y$ intersects the (x,y) -plane at $z-y=0$ $y=z$

$$D = [-1,1] \times [-1,2]$$

The planes
$$z = 1 + y$$
 & $z = 2 - y$
 $1 + y = 2 - y$ $z = 1$

The planes
$$z = 1 + y$$
 & $z = 2 - y$ intosect when $1 + y = 2 - y$ $z > 2y = 1$ $z > y = \frac{1}{2}$

= = = /

$$S_{0} \text{ volume} = \iint_{0}^{\infty} z dA$$

$$= \iint_{0}^{\infty} (-1/1)^{2} (-1/2)^{2} dA + \iint_{0}^{\infty} (-1/1)^{2} (-1/2)^{2} dA$$

$$= \iint_{0}^{\infty} (1+y)^{2} dy dx + \iint_{0}^{\infty} (2-y)^{2} dy dx$$

$$= \iint_{0}^{\infty} (1+y)^{2} \int_{0}^{\infty} dx + \iint_{0}^{\infty} (2-y)^{2} dy dx$$

$$= \iint_{0}^{\infty} (1+y)^{2} \int_{0}^{\infty} dx + \iint_{0}^{\infty} (2-y)^{2} dy dx$$

$$= \iint_{0}^{\infty} (1+y)^{2} \int_{0}^{\infty} dx + \iint_{0}^{\infty} (2-y)^{2} dy dx$$

$$= \iint_{0}^{\infty} (1+y)^{2} \int_{0}^{\infty} dx + \iint_{0}^{\infty} (2-y)^{2} dy dx$$

$$= \iint_{0}^{\infty} (1+y)^{2} \int_{0}^{\infty} dx + \iint_{0}^{\infty} (2-y)^{2} dy dx$$

$$= \iint_{0}^{\infty} (1+y)^{2} \int_{0}^{\infty} dx + \iint_{0}^{\infty} (2-y)^{2} dy dx$$

$$= \iint_{0}^{\infty} (1+y)^{2} \int_{0}^{\infty} dx + \iint_{0}^{\infty} (2-y)^{2} dy dx$$

$$= \iint_{0}^{\infty} (1+y)^{2} \int_{0}^{\infty} dx + \iint_{0}^{\infty} (2-y)^{2} dy dx$$

$$= \iint_{0}^{\infty} (1+y)^{2} \int_{0}^{\infty} dx + \iint_{0}^{\infty} (2-y)^{2} dy dx$$

$$= \iint_{0}^{\infty} (1+y)^{2} \int_{0}^{\infty} dx + \iint_{0}^{\infty} (2-y)^{2} dy dx$$

$$= \iint_{0}^{\infty} (1+y)^{2} \int_{0}^{\infty} dx + \iint_{0}^{\infty} (2-y)^{2} dy dx$$

$$= \iint_{0}^{\infty} (1+y)^{2} \int_{0}^{\infty} dx + \iint_{0}^{\infty} (1+y)^{2} dy dx$$

$$= \iint_{0}^{\infty} (1+y)^{2} \int_{0}^{\infty} dx + \iint_{0}^{\infty} (1+y)^{2} dy dx$$

$$= \iint_{0}^{\infty} (1+y)^{2} \int_{0}^{\infty} dx + \iint_{0}^{\infty} (1+y)^{2} dy dx$$

$$= \iint_{0}^{\infty} (1+y)^{2} \int_{0}^{\infty} dx + \iint_{0}^{\infty} (1+y)^{2} dy dx$$

$$= \iint_{0}^{\infty} (1+y)^{2} \int_{0}^{\infty} dx + \iint_{0}^{\infty} (1+y)^{2} dy dx$$

$$= \iint_{0}^{\infty} (1+y)^{2} \int_{0}^{\infty} dx + \iint_{0}^{\infty} (1+y)^{2} dy dx$$

$$= \iint_{0}^{\infty} (1+y)^{2} \int_{0}^{\infty} dx + \iint_{0}^{\infty} (1+y)^{2} dy dx$$

$$= \iint_{0}^{\infty} (1+y)^{2} \int_{0}^{\infty} dx + \iint_{0}^{\infty} (1+y)^{2} dy dx$$

$$= \iint_{0}^{\infty} (1+y)^{2} \int_{0}^{\infty} dx + \iint_{0}^{\infty} (1+y)^{2} dx + \iint_{0}^{\infty} (1+y)^{2} dy dx$$

$$= \iint_{0}^{\infty} (1+y)^{2} dx + \iint_{0}^{\infty} (1+y)^{2} dy dx$$

$$= \iint_{0}^{\infty} (1+y)^{2} dy dx + \iint_{0}^{\infty} (1+y)^{2} dy dx$$

$$= \iint_{0}^{\infty} (1+y)^{2} dy dx + \iint_{0}^{\infty} (1+y)^{2} dy dx$$

$$= \iint_{0}^{\infty} (1+y)^{2} dy dx + \iint_{0}^{\infty} (1+y)^{2} dy dx$$

$$= \iint_{0}^{\infty} (1+y)^{2} dy dx + \iint_{0}^{\infty} (1+y)^{2} dy dx$$

$$= \iint_{0}^{\infty} (1+y)^{2} dy dx + \iint_{0}^{\infty} (1+y)^{2} dy dx$$

$$= \iint_{0}^{\infty} (1+y)^{2} dy dx + \iint_{0}^{\infty} (1+y)^{2} dy dx$$

$$= \iint_{0}^{\infty} (1+y)^{2} dy dx + \iint_{0}^{\infty} (1+y)^{2} dy dx$$

$$= \iint_{0}^{\infty} (1+y)^{2} dy$$