Math 290-3 Class 1

Monday 1st April 2019

Double integrals

A bounded integra! [° £(x)dx tells us the area under the curve y = f(x) above the interval [a,b] =
{x:a < x < b}. Intuitively, the integral adds up the heights of the points (x, f(x}) fora < x < b.

Double integrals are the generalisation of (bounded) integrals to functions of two variables: the
double integral [/, f(x,y)dA tells us the volume under the surface z= f (x,y) above the region D of
the (x,y)-plane.
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When D is the square region [a,b] % [e,d] = {(x,y) :a<x< b, c <y < d} and f is sufficiently
well-behaved™ on D, there are two ways that we can compute [J,, f(x,y)dA:

o Find the areas under the curves z= f(x,y) for fixeda <x < b (by integrating with respect to
¥, holding x constant); then ‘add up’ these areas by integrating with respect to x:

f/[a_.b]x[c_d]f(x’y)dA = /ab (/Cdf(x,y)dy) dx

¢ Find the areas under the curves z = f(x,y) for fixed ¢ < ¥ < d (by integrating with respect to
x, holding y constant); then ‘add up’ these areas by integrating with respect to y:

/f[a.b]x[c.d]f(x’y)dA = -[j (/ﬂbf(x,y)dx) dy

Note that, in particular, the two iterated integrals are equal—this fact is called Fubini’s theorem.

[*Every function we will encounter is ‘sufficiently well-behaved’ for the purposes of applying Fubini’s theorem.]
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by first integrating with respect to y and then with respect to x.
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by first integrating with respect to x and then with respect to y.
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2. Use double integration to show that the volume of a cube of width a, length b and height c is
equal to abc.
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3. Find the volume of the solid bounded by the (x, y)-plane, the plane x = 1, the plane x = —1
the plane z=1+y and the plane z =2 — y.
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