Ortho-more-mal

Recall that vectors \(\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_k \) in \(\mathbb{R}^n \) are orthonormal if and only if

\[
\vec{u}_i \cdot \vec{u}_j = \begin{cases}
1 & \text{if } i = j \\
0 & \text{if } i \neq j
\end{cases}
\]

and that the **orthogonal projection** of a vector \(\vec{x} \) onto a subspace \(V \) with orthonormal basis \(\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_k \) is given by

\[
\text{proj}_V(\vec{x}) = (\vec{u}_1 \cdot \vec{x})\vec{u}_1 + (\vec{u}_2 \cdot \vec{x})\vec{u}_2 + \cdots + (\vec{u}_k \cdot \vec{x})\vec{u}_k
\]

Consequently, if \(\mathcal{B} = \vec{u}_1, \vec{u}_2, \ldots, \vec{u}_n \) is an orthonormal basis of \(\mathbb{R}^n \), then \(\vec{x} = (\vec{u}_1 \cdot \vec{x})\vec{u}_1 + \cdots + (\vec{u}_n \cdot \vec{x})\vec{u}_n \).

This makes computing coordinate vectors with respect to orthonormal bases extremely easy:

\[
[x]_\mathcal{B} = \begin{pmatrix}
\vec{u}_1 \cdot \vec{x} \\
\vec{u}_2 \cdot \vec{x} \\
\vdots \\
\vec{u}_n \cdot \vec{x}
\end{pmatrix}
\]

The **orthogonal complement** of a subspace \(V \) of \(\mathbb{R}^n \) is the subspace \(V^\perp \) of \(\mathbb{R}^n \) consisting of all vectors perpendicular to those in \(V \):

\[
V^\perp = \{ \vec{x} \in \mathbb{R}^n : \vec{v} \cdot \vec{x} = 0 \text{ for all } \vec{v} \in V \} = \ker(\text{proj}_V)
\]

Note that \(\dim(V) + \dim(V^\perp) = n \) by the rank-nullity theorem, since \(V = \text{im}(\text{proj}_V) \).

Some geometry

Dot products, lengths and angles all neatly related by the following theorem: if \(\vec{x} \) and \(\vec{y} \) are any two vectors in \(\mathbb{R}^n \), such that the angle between \(\vec{x} \) and \(\vec{y} \) is \(\theta \) (where \(0 \leq \theta \leq \pi \)), then

\[
\vec{x} \cdot \vec{y} = ||\vec{x}|| ||\vec{y}|| \cos \theta
\]

Some more fun facts:

- \(||\vec{x}|| < ||\vec{x}|| ||\vec{y}|| \) — this is called the Cauchy–Schwarz inequality;
- \(||\vec{x} + \vec{y}||^2 = ||\vec{x}||^2 + ||\vec{y}||^2 \) if and only if \(\vec{x} \) and \(\vec{y} \) are orthogonal.
1. (a) Verify that \(\mathcal{B} = \begin{pmatrix} 1/2 \\ 0 \\ \sqrt{3}/2 \end{pmatrix}, \begin{pmatrix} -\sqrt{3}/2 \\ 0 \\ 1/2 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \) is an orthonormal basis of \(\mathbb{R}^3 \).

(b) Find the coordinates of \(\vec{a} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \) with respect to \(\mathcal{B} \).
2. Let V be the plane in \mathbb{R}^3 spanned by \[
\begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix} \text{ and } \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}.
\]

(a) Find the orthogonal projection of \[
\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}
\]
on V;

(b) Find the orthogonal complement of V.
3. Let \vec{a}, \vec{b} and \vec{c} be vectors in \mathbb{R}^3 defined by

$\vec{a} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$

(a) Show that \vec{c} is in the orthogonal complement of span\{\vec{a}, \vec{b}\}.

(b) Find the angle between \vec{a} and \vec{b}.
4. For each of the following (true) statements, explain why it is true.

(a) If $|\vec{x} \cdot \vec{y}| = \|\vec{x}\| \|\vec{y}\|$, then \vec{x} and \vec{y} are parallel.

(b) Let ℓ be a line in \mathbb{R}^n and let \vec{v} and \vec{w} be nonzero vectors in \mathbb{R}^n. If \vec{v} is parallel to ℓ, and the equation $\|\vec{v} + \vec{w}\|^2 = \|\vec{v}\|^2 + \|\vec{w}\|^2$ holds, then \vec{w} is in ℓ^\perp.

(c) Let V be a subspace of \mathbb{R}^n and let \vec{x} be a vector in \mathbb{R}^n. Then $\|\text{proj}_V(\vec{x})\| \leq \|\vec{x}\|$.