Math 290-2 Class 4
Monday 14th January 2019

Orthogonal transformations

A linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ is orthogonal if T preserves dot products—more precisely, if $T(\vec{x}) \cdot T(\vec{y}) = \vec{x} \cdot \vec{y}$ for all vectors \vec{x}, \vec{y} in \mathbb{R}^n. Some fun facts about orthogonal transformations:

- T is orthogonal \iff T preserves lengths—that is, $\|T(\vec{x})\| = \|\vec{x}\|$ for all vectors \vec{x} in \mathbb{R}^n.
- If T is orthogonal and \vec{x} and \vec{y} are perpendicular, then $T(\vec{x})$ and $T(\vec{y})$ are perpendicular.
- T is orthogonal $\iff T(\vec{e}_1), T(\vec{e}_2), \ldots, T(\vec{e}_n)$ are an orthonormal basis of \mathbb{R}^n.

Transposes and orthogonal matrices

Recall that the transpose of an $m \times n$ matrix A is the $n \times m$ matrix A^T, where the $(i, j)^{th}$ component of A^T is the $(j, i)^{th}$ component of A:

$$
\begin{pmatrix}
1 & 2 \\
3 & 4
\end{pmatrix}^T =
\begin{pmatrix}
1 & 3 \\
2 & 4
\end{pmatrix},
\begin{pmatrix}
1 & 2 & 3 \\
4 & 5 & 6
\end{pmatrix}^T =
\begin{pmatrix}
1 & 4 & 2 \\
2 & 5 & 0 \\
3 & 6 & 2
\end{pmatrix},
\begin{pmatrix}
1 & 2 & 3 \\
2 & 0 & 2 \\
3 & 2 & 1
\end{pmatrix}^T =
\begin{pmatrix}
1 & 2 & 3 \\
2 & 0 & 2 \\
3 & 2 & 1
\end{pmatrix}
$$

Transposes satisfy some nice properties, like $(AB)^T = B^T A^T$ and $(A^T)^{-1} = (A^{-1})^T$. Suppose the columns of A are $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$. Then

$$A^T A = \begin{pmatrix}
\cdots & v_1^T & \cdots \\
\cdots & v_2^T & \cdots \\
\vdots & \vdots & \vdots \\
\cdots & v_n^T & \cdots \\
\end{pmatrix} \begin{pmatrix}
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\end{pmatrix} = \begin{pmatrix}
\vec{v}_1 \cdot \vec{v}_1 & \vec{v}_1 \cdot \vec{v}_2 & \cdots & \vec{v}_1 \cdot \vec{v}_n \\
\vec{v}_2 \cdot \vec{v}_1 & \vec{v}_2 \cdot \vec{v}_2 & \cdots & \vec{v}_2 \cdot \vec{v}_n \\
\vdots & \vdots & \ddots & \vdots \\
\vec{v}_n \cdot \vec{v}_1 & \vec{v}_n \cdot \vec{v}_2 & \cdots & \vec{v}_n \cdot \vec{v}_n
\end{pmatrix}$$

A matrix A is orthogonal if the linear transformation $T(\vec{x}) = A\vec{x}$ is an orthogonal transformation. But T is orthogonal if and only if $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ are orthonormal, since $\vec{v}_i = T(\vec{e}_i)$ for each $1 \leq i \leq n$. Therefore

$$A \text{ is orthogonal } \iff A^T A = I_n$$

since $\vec{v}_i \cdot \vec{v}_j = 1$ if $i = j$ and 0 if $i \neq j$. In particular, all orthogonal matrices are invertible.

Orthogonal projections... again

If V has orthonormal basis $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_k$, then the matrix of orthogonal projection onto V is given by QQ^T (not $Q^T Q$!!), where Q is the $n \times k$ matrix whose columns are $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_k$.

Proofs

This section contains (relatively short) proofs of the results overleaf. You do not need to know these by heart, but you should be able to understand them.

- T is orthogonal $\iff T$ preserves lengths.

 Proof. This is because the dot product can be expressed in terms of the length and vice versa:

 $$\|\vec{a}\| = \sqrt{\vec{a} \cdot \vec{a}} \quad \text{and} \quad \vec{a} \cdot \vec{b} = \|\vec{a} + \vec{b}\|^2 - \|\vec{a}\|^2 - \|\vec{b}\|^2$$

 So if T preserves one, then T preserves the other.

- If T is orthogonal, then T preserves angles.

 Proof. If the angle between \vec{x} and \vec{y} is θ, then

 $$\theta = \arccos\left(\frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\| \|\vec{y}\|}\right) = \arccos\left(\frac{T(\vec{x}) \cdot T(\vec{y})}{\|T(\vec{x})\| \|T(\vec{y})\|}\right)$$

 so the angle between $T(\vec{x})$ and $T(\vec{y})$ is also θ.

- If T is orthogonal and \vec{x} and \vec{y} are perpendicular, then $T(\vec{x})$ and $T(\vec{y})$ are perpendicular.

 Proof. This follows from the fact that T preserves angles, with $\theta = \frac{\pi}{2}$.

- If T is orthogonal, then $T(\vec{e}_1), T(\vec{e}_2), \ldots, T(\vec{e}_n)$ are an orthonormal basis of \mathbb{R}^n.

 Proof.

 Since the vectors $\vec{e}_1, \vec{e}_2, \ldots, \vec{e}_n$ are orthonormal and T preserves lengths and angles, the vectors $T(\vec{e}_1), T(\vec{e}_2), \ldots, T(\vec{e}_n)$ are also orthonormal.

- If $T(\vec{e}_1), T(\vec{e}_2), \ldots, T(\vec{e}_n)$ are an orthonormal basis of \mathbb{R}^n, then T is orthogonal.

 Proof. Write $\vec{u}_i = T(\vec{e}_i)$ for each $1 \leq i \leq n$, so that $T(\vec{x}) = x_1 \vec{u}_1 + x_2 \vec{u}_2 + \cdots + x_n \vec{u}_n$ for each \vec{x} in \mathbb{R}^n. Then

 $$T(\vec{x}) \cdot T(\vec{y}) = \left(\sum_{i=1}^n x_i \vec{u}_i\right) \cdot \left(\sum_{j=1}^n y_j \vec{u}_j\right) = \sum_{i=1}^n \sum_{j=1}^n x_iy_j (\vec{u}_i \cdot \vec{u}_j)$$

 by definition of dot product

 $$= \sum_{i=1}^n \sum_{j=1}^n x_iy_j (\vec{u}_i \cdot \vec{u}_j)$$

 by linearity

 $$= \sum_{i=1}^n x_iy_i$$

 since $\vec{u}_i \cdot \vec{u}_j = 0$ if $i \neq j$ and 1 if $i = j$

 $$= \vec{x} \cdot \vec{y}$$

 by definition of dot product

 Hence T is orthogonal.

- If $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_k$ is an orthonormal basis of a subspace V of \mathbb{R}^n, then the matrix of proj_V is QQ^T, where Q is the $n \times k$ matrix with columns $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_k$.

 Proof. First notice that for all $1 \leq j \leq k$ we have $Q^T \vec{u}_j = \vec{e}_j$, and that if \vec{w} is perpendicular to V then $Q^T \vec{w} = \vec{0}$. Extend the orthonormal basis of V to an orthonormal basis $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_n$ of \mathbb{R}^n.

 If $j \leq k$ then $QQ^T \vec{u}_j = Q\vec{e}_j = \vec{u}_j = \text{proj}_V(\vec{u}_j)$, and if $j > k$ then $QQ^T \vec{u}_j = Q\vec{0} = \vec{0} = \text{proj}_V(\vec{u}_j)$.

 Since QQ^T and proj_V agree on a basis, we have $QQ^T(\vec{x}) = \text{proj}_V(\vec{x})$ for all \vec{x} in \mathbb{R}^n.

1. (a) Show that the matrix \[
\begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{pmatrix}
\] is orthogonal.

(b) Suppose that \(a^2 + b^2 = 1\). Show that the matrix \[
\begin{pmatrix}
a & b \\
b & -a
\end{pmatrix}
\] is orthogonal.

(c) (Try at home:) Show that all orthogonal 2 \times 2 matrices are of the form (a) or (b). Hence all orthogonal transformations \(\mathbb{R}^2 \rightarrow \mathbb{R}^2\) are rotations and reflections.
2. For each of the following statements, determine whether it is always, sometimes or never true.

(a) Let A be an orthogonal matrix. Then $\det(A) = \pm 1$.

(b) Let A be a 2×3 matrix. Then $A^T A$ is orthogonal.

(c) Let $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ be a linear transformation. If the angle between vectors \vec{x} and \vec{y} is θ, then the angle between $T(\vec{x})$ and $T(\vec{y})$ is θ.

Continued on next page...
(d) Suppose $\det(A) = 1$. Then A is orthogonal.

(e) Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that

\[
T \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} \quad \text{and} \quad T \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}
\]

Then T is orthogonal.
3. (a) Find an orthonormal basis of the plane V in \mathbb{R}^3 described by the equation $2x + y - 3z = 0$.

(b) Find the matrix of orthogonal projection onto V.