1. Find the vector equation of the line $2x + 3y = 1$ in \mathbb{R}^2.

 Point on line: $(-1, 1)$
 Direction of line: $(-3, 2)$

 \Rightarrow The vector eqn is $\mathbf{r}(t) = (-1, 1) + t(-3, 2)$.

2. Find the vector equation of the line of intersection of the planes in \mathbb{R}^3 given by

 $x+y-z=-1$ and $x+2y-2z=1$

 Solving the system:
 \[
 \begin{pmatrix}
 1 & 1 & -1 \\
 1 & z & -2 \\
 \end{pmatrix}
 \begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 \end{pmatrix}
 =
 \begin{pmatrix}
 -1 \\
 1 \\
 \end{pmatrix}
 \]

 Subtracting the second row from the first row,

 \[
 x = -3, \quad z = 1 \text{ (Free), } \quad y = t + z
 \]

 \Rightarrow
 \[
 \begin{pmatrix}
 x \\
 y \\
 z \\
 \end{pmatrix}
 =
 \begin{pmatrix}
 -3 + 0t \\
 t + 1 \\
 t \\
 \end{pmatrix}
 \]

 So the vector equation is

 $\mathbf{r}(t) = (-3, 1, 0) + t(0, 1, 1)$

3. Show that every point (x, y, z) on the line in \mathbb{R}^3 with vector equation $\mathbf{r}(t) = \mathbf{b} + t\mathbf{a}$ satisfies

 $\frac{x-b_1}{a_1} = \frac{x-b_2}{a_2} = \frac{x-b_3}{a_3}$

 as long as $a_1, a_2, a_3 \neq 0$. This is called the symmetric form of the line.

 $(x, y, z) = (b_1 + ta_1, b_2 + ta_2, b_3 + ta_3)$

 Solving for t in each coordinate gives:

 $t = \frac{x-b_1}{a_1} = \frac{y-b_2}{a_2} = \frac{z-b_3}{a_3}$
4. Sketch the curve in \mathbb{R}^2 parametrised by $r(t) = (\cos(t), \sin(t))$.

5. Sketch the curve in \mathbb{R}^2 parametrised by $r(t) = (t \cos t, t \sin t)$ for $t \geq 0$.

6. Sketch the curve in \mathbb{R}^3 parametrised by $r(t) = (\cos t, \sin t, t)$.