Global extrema

A **global maximum** of a function \(f : \mathbb{R}^n \to \mathbb{R} \) within a region \(D \) of \(\mathbb{R}^n \) is a point \(a \) in \(D \) such that \(f(a) \geq f(x) \) for all points \(x \) in \(D \). A **global minimum** is defined likewise, and a **global extremum** is a point that is either a global maximum or a global minimum.

In general, a function might attain no global maximum or minimum value. However, the extreme value theorem tells us that if \(D \) is a region of \(\mathbb{R}^n \) that is:

- **closed** (it contains all of its boundary points); and
- **bounded** (there is an upper bound on how far apart two points of \(D \) can be);

... then \(f \) attains both a maximum and minimum value in \(D \)—that is, there are points \(a_{\text{max}} \) and \(a_{\text{min}} \) in \(D \) such that

\[
f(a_{\text{min}}) \leq f(x) \leq f(a_{\text{max}})
\]

for all \(x \) in \(D \). (The fancy name for a closed and bounded region of \(\mathbb{R}^n \) is a **compact set**.)

In order to find the global extrema of \(f \) on a compact set \(D \):

- Find the critical points of \(f \) inside \(D \).
- Find the global extrema of \(f \) on the boundary of \(D \).

‘Officially’, what you need to do here is find a parametrisation \(x(t) \) of the boundary of \(D \)—this gives rise to a new function \(g(t) = f(x(t)) \), where \(t \) ranges over some suitable region of \(\mathbb{R}^{n-1} \), whose global extrema you can find by repeating this method.

This sounds scary, but it really isn’t—it is best illustrated by example.

- Amongst the points that you found, a point where the value of \(f \) is least is a global minimum of \(f \) on \(D \), and a point where the value of \(f \) is greatest is a global maximum.

If you want to find the global extrema of \(f \) on all of \(\mathbb{R}^n \), then you should find its local extrema and make sure that the function truly does attain a local minimum and local maximum value.
1. Find the global extrema of the function $f : \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x,y) = x^2 - 2xy - y^2$ on the closed circular disc of radius 1 centred at $(0,0)$.
2. Find the maximum and minimum values attained by the function \(f(x, y) = \frac{x^2 - y^2}{1 + x^2 + y^2} \) on the semicircular region of \(\mathbb{R}^2 \) defined in polar coordinates by \(0 \leq r \leq 1, \frac{\pi}{4} \leq \theta \leq \frac{5\pi}{4} \).
3. For each of the following statements, determine whether it is true or false.

(a) If a function \(f : \mathbb{R}^n \to \mathbb{R} \) has a unique critical point \(a \), and \(a \) is a local minimum of \(f \), then \(a \) is a global minimum of \(f \).

(b) If \(D \) is a bounded region of \(\mathbb{R}^n \), and \(f \) is a bounded function on \(X \) (that is, there are real numbers \(a \) and \(b \) such that \(a \leq f(x) \leq b \) for all \(x \) in \(D \)), then \(f \) has a global minimum and a global maximum on \(D \).

(c) If \(D \) is a closed region of \(\mathbb{R}^n \), and \(f \) is a function on \(X \) that is unbounded above (that is, for any \(a > 0 \), there is some \(x \) in \(D \) such that \(f(x) > a \)), then \(D \) is unbounded.