Definition 1
A function \(f : X \to Y \) is...

- \textbf{injective} if, for all \(a, b \in X \), if \(f(a) = f(b) \), then \(a = b \);
- \textbf{surjective} if, for all \(c \in Y \), there exists \(a \in X \) such that \(f(a) = c \);
- \textbf{bijective} if it is injective and surjective.

Example 2
For each of the following diagrams, determine whether the function it represents is: (B) bijective, (I) injective and not surjective, (S) surjective and not injective, or (N) neither injective nor surjective.

Example 3
Let \(a, b \in \mathbb{R} \) with \(a < b \). Find a bijection \((0, 1) \to (a, b) \).
Example 4
Let $f : X \to Y$ and $g : Y \to Z$ be functions. Prove that if f and g are injective, then $g \circ f$ is injective. [Note: the same is true with ‘injective’ replaced by ‘surjective’ or ‘bijective’.

Definition 5
An inverse for a function $f : X \to Y$ is a function $g : Y \to X$ such that $g \circ f = \text{id}_X$ and $f \circ g = \text{id}_Y$.

Example 6
Find an inverse for the function you defined in Example 3.
Theorem 7
A function $f : X \to Y$ is a bijection if and only if it has an inverse.

Proof
(\Rightarrow) Suppose $f : X \to Y$ is a bijection. Define $g : Y \to X$ as follows. Given $y \in Y$, there exists $x \in X$ such that $f(x) = y$ since f is surjective. Moreover this element x is unique, since f is injective. So define $g(y) = x$ for the unique $x \in X$ for which $f(x) = y$. Then

- Given $x \in X$, we have $g(f(x))$ is the unique $a \in X$ such that $f(a) = f(x)$, so $g(f(x)) = x$.
- Given $y \in Y$, let $x \in X$ be such that $y = f(x)$. Then we have $f(g(y)) = f(g(f(x))) = f(x) = y$.

So $g \circ f = \text{id}_X$ and $f \circ g = \text{id}_Y$, and so g is an inverse for f.

(\Leftarrow) Assume f has an inverse $g : Y \to X$. Then

- f is injective. Let $a, b \in X$ and assume that $f(a) = f(b)$. Then $a = g(f(a)) = g(f(b)) = b$.
- f is surjective. Let $c \in Y$ and define $a = g(c)$. Then $f(a) = f(g(c)) = c$.

So f is a bijection. □

Summary of proof strategies for *jections

Strategy (Proving a function is injective)
In order to prove that a function $f : X \to Y$ is injective, it suffices to fix $a, b \in X$, assume that $f(a) = f(b)$, and then derive $a = b$.

Strategy (Proving a function is surjective)
To prove that a function $f : X \to Y$ is surjective, it suffices to take an arbitrary element $y \in Y$ and, in terms of y, find an element $x \in X$ such that $f(x) = y$.

In order to find such a value of x, it is often useful to start from the equation $f(x) = y$ and derive some possible values of x. But be careful—in order to complete the proof, it is necessary to verify that the equation $f(x) = y$ is true for the chosen value of x.

Strategy (Proving a function is bijective)
To prove that a function $f : X \to Y$ is bijective, it suffices to either:

- Prove that f is injective, and that f is surjective; or
- Find an inverse $g : Y \to X$ for f, and verify that $g(f(x)) = x$ for all $x \in X$ and that $f(g(y)) = y$ for all $y \in Y$. □