Math 300 Class 17
Monday 18th February 2019

Definition 1
Given \(n \in \mathbb{N} \), the set \([n]\) is defined by \([n] = \{ k \in \mathbb{N} \mid 1 \leq k \leq n \}\).

Definition 2 — Finite and infinite sets
A set \(X \) is **finite** if there exists a bijection \(f : [n] \rightarrow X \) for some \(n \in \mathbb{N} \); the function \(f \) is called an **enumeration** of \(X \). If \(X \) is not finite we say it is **infinite**.

Theorem 3 — Uniqueness of size
Let \(X \) be a finite set and let \(f : [m] \rightarrow X \) and \(g : [n] \rightarrow X \) be enumerations of \(X \). Then \(m = n \).

The proof of this ‘obvious’ fact is a surprisingly complicated induction argument—you can read all about it in §3.2 of the book.

Definition 4 — Size of a finite set
Let \(X \) be a finite set. The **size** of \(X \), written \(|X| \), is the unique natural number \(n \) for which there exists a bijection \([n] \rightarrow X\).

Example 5
Prove that \([n]\) is finite and \(|[n]| = n \) for all \(n \in \mathbb{N} \).
Example 6
Prove that every inhabited finite subset of \(\mathbb{N} \) has a greatest element.

Theorem 7
\(\mathbb{N} \) is infinite.

Proof
Suppose \(\mathbb{N} \) is finite. Then \(\mathbb{N} \) is an inhabited finite subset of \(\mathbb{N} \), so by Example 6, \(\mathbb{N} \) has a greatest element, say \(n \). But then \(n + 1 \in \mathbb{N} \) and \(n + 1 > n \), contradicting maximality of \(n \). So \(\mathbb{N} \) is infinite. \(\square \)
Theorem 8 — Some properties of size

(a) If Y is finite and there is an injection $X \to Y$, then X is finite and $|X| \leq |Y|$;

(b) If X is finite and there is a surjection $X \to Y$, then Y is finite and $|X| \geq |Y|$;

(c) If X and Y are finite, then $X \times Y$ is finite and $|X \times Y| = |X| \cdot |Y|$;

(d) If X and Y are finite and $X \cap Y = \emptyset$, then $X \cup Y$ is finite and $|X \cup Y| = |X| + |Y|$.

Example 9

Prove that if X is a finite set and $U \subseteq X$, then U is finite and $|U| \leq |X|$.

Example 10

Prove that if X is a finite set and $U \subseteq X$, then $X \setminus U$ is finite and $|X \setminus U| = |X| - |U|$.
Strategy (Bijective proof)
In order to prove that finite sets X and Y have the same size, it suffices to find a bijection $X \rightarrow Y$.

Example 11
Let X be a finite set. Prove that $|\mathcal{P}(X)| = |\{0, 1\}^X|$, where $\{0, 1\}^X$ is the set of functions $X \rightarrow \{0, 1\}$.