Math 300 Class 19
Friday 22nd February 2019

Strategy (Addition principle)
Let X be a finite set. In order to compute $|X|$, it suffices to find a partition U_1, U_2, \ldots, U_n of X; it then follows that $|X| = \sum_{k=1}^{n} |X_k|$.

Strategy (Multiplication principle)
Let X be a finite set. In order to compute $|X|$, it suffices to find a step-by-step procedure for specifying elements of X, such that:

- Each element is specified by a unique sequence of choices;
- The number of choices at each step is constant, even if the choices themselves depend on choices made in previous steps.

If there are n steps and m_k possible choices in the k^{th} step, then $|X| = \prod_{k=1}^{n} m_k$.

Example 1
Let $m, n \in \mathbb{N}$. Prove that $|\mathcal{P}([n])| = 2^n$ and $|[n]^m| = n^m$, where Y^X is the set of functions $X \to Y$.

- Procedure for specifying an element $U \in \mathcal{P}([n])$ (i.e. $U \subseteq [n]$):
 - Step 1: Decide if $1 \in U$ or $1 \notin U \leftarrow 2$ choices
 - Step 2: Decide if $2 \in U$ or $2 \notin U \leftarrow 2$ choices
 - \vdots
 - Step n: Decide if $n \in U$ or $n \notin U \leftarrow 2$ choices

 By MP, $|\mathcal{P}([n])| = \frac{2 \times 2 \times \cdots \times 2}{n \text{ times}} = 2^n$

- Procedure for specifying an element $f \in [n]^m$ (i.e. $f : [m] \to [n]$):
 - m steps; at step k, choose the value of $f(k) \in [n]$;
 - There are n choices for each $k \in [m]$

 \(\Rightarrow \) by MP, $|[n]^m| = \frac{n \times n \times \cdots \times n}{m \text{ times}} = n^m$. \(\square \)
Definition 2 — Factorials (recursive definition)
Let \(n \in \mathbb{N} \). The factorial of \(n \) is defined by
\[
 n! = |\{ f : [n] \to [n] \mid f \text{ is a bijection} \}|
\]

\[\text{for all } x, y, \text{ where } \left| [x] \right| = \left| [y] \right| = n \]

Example 3
Prove that \(n! = \prod_{k=1}^{n} k \).

Procedure for specifying a bijection \(f : [n] \to [n] \):

\begin{align*}
\text{Step 1} & \quad \text{Choose } f(1) \in [n] \quad \leftarrow \ n \text{ choices} \\
\text{Step 2} & \quad \text{Choose } f(2) \in [n] \setminus \{f(1)\} \quad \leftarrow \ n-1 \text{ choices} \\
\vdots & \quad \text{Choose } f(k) \in [n] \setminus \{f(1), \ldots, f(k-1)\} \quad \leftarrow \ n-k \text{ choices} \\
\text{Step n} & \quad \text{Choose } f(n) \in [n] \setminus \{f(1), \ldots, f(n-1)\} \quad \leftarrow \ 1 \text{ choice} \\
\end{align*}

By MP, \(n! = n \times (n-1) \times \cdots \times 1 = \prod_{k=1}^{n} k \).

*Note: \(n! = |\{ f : X \to Y \mid f \text{ is a bijection} \}| \) for all \(X, Y \) with \(\left| X \right| = \left| Y \right| = n \).

Example 4
Let \(n, k \in \mathbb{N} \). Prove that the number of injections \([k] \to [n] \) is \(\binom{n}{k} \cdot k! \).

Procedure for specifying an injection \(f : [k] \to [n] \):

\begin{align*}
\text{Step 1} & \quad \text{Since } f \text{ will be injective, it will take exactly } k \text{ values in } [n] \quad \text{so choose } U \in \binom{[n]}{k} \text{ to be the set of values of } f \quad \leftarrow (\binom{n}{k}) \text{ choices} \\
\text{Step 2} & \quad \text{Choose a bijection } [k] \to U : \text{ this will then determine an injection } [k] \to [n] \text{ with image } U. \\
& \quad \text{Since } |U| = k \text{, there are } k! \text{ choices.} \\
\end{align*}

By MP, \((\text{# injections } [k] \to [n]) = \binom{n}{k} \cdot k! \).
Strategy (Double counting)

In order to prove that two expressions involving natural numbers are equal, it suffices to define a set \(\mathcal{X} \) and devise two counting arguments to show that \(|\mathcal{X}| \) is equal to both expressions.

Example 5

Let \(n, k, \ell \in \mathbb{N} \) with \(\ell \leq n \) and \(\ell \leq k \). Prove that \(\binom{n}{k} \binom{k}{\ell} = \binom{n}{\ell} \binom{n-\ell}{k-\ell} \).

Let \(\mathcal{X} = \{ (A, B) \mid B \subseteq A \subseteq \mathcal{N}, \quad |A| = k, \quad |B| = \ell \} \).

Procedure 1

* Step 1
 Choose \(A \in \binom{\mathcal{N}}{k} \) \(\leftarrow \binom{n}{k} \) choices

* Step 2
 Choose \(B \in \binom{A}{\ell} \) \(\leftarrow \binom{k}{\ell} \) choices \(\vdots |A| = k \)

Then \(B \subseteq A \subseteq \mathcal{N}, \quad |A| = k \) \& \(|B| = \ell \), so \(|\mathcal{X}| = \binom{n}{k} \binom{k}{\ell} \) by MP.

Procedure 2

* Step 1
 Choose \(B \in \binom{\mathcal{N}}{\ell} \) \(\leftarrow \binom{n}{\ell} \) choices

* Step 2
 Choose \(A' \in \binom{\mathcal{N} \setminus B}{k-\ell} \) \(\leftarrow \binom{n-\ell}{k-\ell} \) choices \(\vdots |\mathcal{N} \setminus B| = n-\ell \)

This determines \((A, B) \in \mathcal{X} \) by letting \(A = A' \cup B \) — then certainly \(B \subseteq A \subseteq \mathcal{N} \); we have \(|B| = \ell \) by construction, and since \(A' \subseteq \mathcal{N} \setminus B \), we have \(A' \cap B = \emptyset \), so

\[
|A| = |A'| + |B| = (k-\ell) + \ell = k
\]

as required.

So by MP, \(|\mathcal{X}| = \binom{n}{k} \binom{k}{\ell} \Rightarrow \binom{n}{\ell} \binom{\ell}{n-\ell} = \binom{n}{\ell} \binom{n-\ell}{k-\ell} \).
Strategy (Double counting)

In order to prove that two expressions involving natural numbers are equal, it suffices to define a set \(X \) and devise two counting arguments to show that \(|X| \) is equal to both expressions.

Example 5

Let \(n, k, \ell \in \mathbb{N} \) with \(\ell \leq n \) and \(\ell \leq k \). Prove that \(\binom{n}{k} \binom{k}{\ell} = \binom{n}{\ell} \binom{n-\ell}{k-\ell} \).

Let \(X \) be the set of all possible appointments of a \(k \)-person committee, with an \(\ell \)-person executive subcommittee, from a population of size \(n \).

Procedure 1

- **Step 1**: Choose \(k \) people from the population to serve on the committee \(\left\langle \binom{n}{k} \right\rangle \) choices

- **Step 2**: Choose \(\ell \) people from the committee to serve on the executive subcommittee \(\left\langle \binom{k}{\ell} \right\rangle \) choices

By MP, \(|X| = \binom{n}{k} \binom{k}{\ell} \).

Procedure 2

- **Step 1**: Choose \(\ell \) people from the population to serve on the executive subcommittee \(\left\langle \binom{n}{\ell} \right\rangle \) choices

- **Step 2**: Fill the remaining \(k-\ell \) committee positions from the remaining \(n-\ell \) people in the population \(\left\langle \binom{n-\ell}{k-\ell} \right\rangle \) choices

By MP, \(|X| = \binom{n}{\ell} \binom{n-\ell}{k-\ell} \).

By double counting, \(\binom{n}{k} \binom{k}{\ell} = \binom{n}{\ell} \binom{n-\ell}{k-\ell} \).
Example 6

Prove that \(\sum_{k=0}^{n} \binom{n}{k} = 2^n \) and that \(\sum_{k=0}^{n} k \binom{n}{k} = n \cdot 2^{n-1} \).

\[
\text{Let } X = \mathcal{P}([n])
\]

Procedure 1

Choose \(U \in X \) (i.e. \(U \subseteq [n] \)) \(\leftarrow \) \(2^n \) choices. Done!

So \(|X| = 2^n \).

Procedure 2

Let \(X_k = \{ U \subseteq [n] \mid |U| = k \} = \binom{[n]}{k} \), \(\text{for } 0 \leq k \leq n \).

The sets \(X_k \) partition \(X \) since if \(U \subseteq [n] \) then there is a unique \(0 \leq k \leq n \) s.t. \(|U| = k \).

By AP, \(|X| = \sum_{k=0}^{n} |X_k| = \sum_{k=0}^{n} \binom{n}{k} \), so \(\sum_{k=0}^{n} \binom{n}{k} = 2^n \).

\[
\text{Let } X = \{ (A, a) \mid A \subseteq [n], \ a \in A \}.
\]

Procedure 1

Split into cases based on \(k = |A| \) — note \(0 \leq k \leq n \).

So define \(X_k = \{ (A, a) \mid A \subseteq [n], \ a \in A \} \). The sets \(X_k \) partition \(X \) (as above) \(\Rightarrow |X| = \sum_{k=0}^{n} |X_k| \), by AP.

For fixed \(0 \leq k \leq n \), we can specify \((A, a) \in X_k \) by:

- Step 1 Choose \(A \subseteq [n] \) \(\leftarrow \binom{n}{k} \) choices
- Step 2 Choose \(a \in A \) \(\leftarrow k \) choices

So \(|X| = \sum_{k=0}^{n} k \binom{n}{k} \).

Procedure 2

- Step 1 Choose \(a \in [n] \) \(\leftarrow n \) choices
- Step 2 Choose \(A' \subseteq [n] \setminus \{a\} \) \(\leftarrow 2^{[n] \setminus \{a\}} = 2^{n-1} \) choices

Then let \(A = A' \cup \{a\} \). This determines \((A, a) \in X \)

\(\Rightarrow \ |X| = n \cdot 2^{n-1} \) by MP.

So \(\sum_{k=0}^{n} k \binom{n}{k} = n \cdot 2^{n-1} \). \(\square \)
Example 6
Prove that \(\sum_{k=0}^{n} \binom{n}{k} = 2^n \) and that \(\sum_{k=0}^{n} k \binom{n}{k} = n \cdot 2^{n-1} \).

- Let \(X \) be the set of all possible committees (of any size) from a population of size \(n \).

Procedure 1: Select a subset of the population to serve on the committee \(\leftarrow 2^n \) choices.

Procedure 2: For \(0 \leq k \leq n \), let \(X_k \) be the set of committees with exactly \(k \) members. These sets partition \(X \), since the size \(k \) of any committee is in the range \(0 \leq k \leq n \).

\[|X| = \sum_{k=0}^{n} |X_k| \quad \text{by AP} \]

To specify an element of \(X_k \) for fixed \(0 \leq k \leq n \), just choose \(k \) people from the population to serve on the committee \(\leftarrow \binom{n}{k} \) choices.

\[|X_k| = \binom{n}{k} \quad \text{for all } 0 \leq k \leq n \]

\[|X| = \sum_{k=0}^{n} |X_k| = \frac{2^n}{k=0} \binom{n}{k}. \quad \square \]

- Now let \(X \) be the set of committees from a population of size \(n \), with a distinguished chairperson.

Procedure 1: Step 1: Choose chair from population \(\leftarrow n \) choices

Step 2: Fill remaining positions from the remaining \(\frac{n}{n-1} \) people in the population \(\leftarrow 2^{n-2} \) choices

\[|X| = n \cdot 2^{n-2} \quad \text{by MP}. \]

Procedure 2: For \(0 \leq k \leq n \), let \(X_k \) be the set of possible committees, where there are \(k \) people on the committee. As argued above, the sets \(\{X_k\} \) \(0 \leq k \leq n \) partition \(X \).

To specify an element of \(X_k \): Step 1: Choose \(k \) people from the population \(\leftarrow \binom{n}{k} \) choices

4. Step 2: Choose chair from the \(k \) committee members \(\leftarrow k \) choices

\[|X_k| = \binom{n}{k} \cdot k \quad \text{by MP}, \text{ so by AP}, \quad n \cdot 2^{n-1} = |X| = \sum_{k=0}^{n} |X_k| = \sum_{k=0}^{n} \binom{n}{k} \cdot k. \quad \square \]
Example 7

Let \(n, k \in \mathbb{N} \). Prove that \(\binom{n}{k} = \frac{n!}{k!(n-k)!} \).

We prove \(n! = \binom{n}{k} \cdot k! \cdot (n-k)! \) by double counting.

Let \(X = \{ \text{ordered lists of the numbers } 1, 2, \ldots, n \} \) s.t. each number appears exactly once in the list.

\[|X| = n! \]

Procedure 1

Choose a bijection \(f: [n] \to [n] \). \((n! \text{ choices}) \)

This determines such a list — for \(1 \leq k \leq n \), the value \(f(k) \) is exactly the \(k \text{th} \) number on the list.

\[|X| = n! \]

Procedure 2

* Step 1 Choose which elements of \([n]\) will be the first \(k \) to appear in the list \(\leftarrow \binom{n}{k} \text{ choices} \)

* Step 2 Choose the order that the first \(k \) numbers in the list appear. This amounts to specifying a bijection \([k] \to \{ \text{first } k \text{ el'pts on list}\} \leftarrow k! \text{ choices} \)

* Step 3 Choose the order that the last \(n-k \) numbers in the list appear. This amounts to specifying a bijection \([n-k] \to \{ \text{last } k \text{ el'pts on list}\} \leftarrow (n-k)! \text{ choices} \)

This completely determines a list of the numbers \(1, 2, \ldots, n \) s.t. each el'pt appears exactly once.

By MP, \(|X| = \binom{n}{k} \cdot k! \cdot (n-k)! \)

\[n! = \binom{n}{k} \cdot k! \cdot (n-k)! \quad \Rightarrow \quad \binom{n}{k} = \frac{n!}{k!(n-k)!} \quad \Box \]