Definition 1 — Countably infinite, countable and uncountable sets
A set X is countably infinite if there is a bijection $\mathbb{N} \rightarrow X$. A set is countable if it is finite or countably infinite, and is uncountable if it is not countable.

Exercise 2
Prove that $\mathcal{P}(\mathbb{N})$ is uncountable.
Theorem 3 — Some facts about countability

(i) If there is an injection $X \rightarrow \mathbb{N}$, then X is countable.

(ii) If there is a surjection $\mathbb{N} \rightarrow X$, then X is countable.

(iii) Properties (i) and (ii) remain true if \mathbb{N} is replaced by any countably infinite set.

(iv) If X and Y are countable, then $X \times Y$ is countable.

(v) The union of countably many countable sets is countable.

Example 4

Prove that \mathbb{Q} is countable by defining a surjection from a countable set to \mathbb{Q}.
Example 5
Prove that \(\mathbb{Q} \) is countable by expressing it as a union of countably many countable sets.
Example 6

Prove that $\binom{\mathbb{N}}{2}$, the set of all subsets of \mathbb{N} of size 2, is countably infinite.