

Math 290-1: Final Exam Fall Quarter 2014

Wednesday, December 10, 2014

Put a check mark next to your section:

Davis (10am)	Canez
Alongi	Peterson
Graham	Davis (12pm)

Question	Possible	Score
	points	
1	18	
2	24	
3	10	
4	8	
5	10	
6	10	
7	8	
8	12	
TOTAL	100	

Instructions:

- Read each problem carefully.
- Write legibly.
- Show all your work on these sheets.
- This exam has 15 pages, and 8 questions. Please make sure that all pages are included.
- You may not use books, notes or calculators.
- You have two hours to complete this exam.

Good luck!

- 1. Determine whether each of the following statements is **TRUE** or **FALSE**. Justify your answer. (This problem has **six** parts.)
 - (a) Let *V* be the subspace of \mathbb{R}^4 consisting of all vectors $\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$ simultaneously satisfying the following equations:

x - y + 3z = 0, 2x + y + 3z = 0, 7x - 3y + 5z + 2w = 0, 3x + 2y + 4z = 0. Then $V = {\vec{0}}$. Answer:

(b) For all 2×2 matrices A and B, $\operatorname{rref}(AB) = \operatorname{rref}(A) \operatorname{rref}(B)$.

(c) If a subspace V of \mathbb{R}^3 does not contain any of the standard basis vectors $\vec{e}_1, \vec{e}_2, \vec{e}_3$, then V is the zero subspace.

Answer:

(d) The set of real eigenvectors of an $n \times n$ matrix must span \mathbb{R}^n .

(e) The vector
$$\begin{bmatrix} 1\\2\\-1 \end{bmatrix}$$
 is an eigenvector of $\begin{bmatrix} 2 & 2 & -6\\1 & 1 & -21\\2 & -4 & 6 \end{bmatrix}$
Answer:

(f) Suppose that A_1 and A_2 are both diagonalizable and that they are both similar to the same diagonal matrix D. Then A_1 and A_2 must have the same eigenvectors.

- 2. Determine whether each of the following statements is **ALWAYS** true, **SOMETIMES** true, or **NEVER** true. Justify your answer. (This problem has **six** parts.)
 - (a) Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the orthogonal projection onto a plane in \mathbb{R}^3 through the origin. Then dim ker T = 1.

Answer:

(b) Let *A* be an $n \times n$ matrix such that the linear transformation $T(\vec{x}) = A\vec{x}$ has expansion factor 5. Then the columns of *A* are linearly independent.

(c) If $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is a linearly independent set of vectors in \mathbb{R}^4 , and if $T : \mathbb{R}^4 \to \mathbb{R}^4$ is given by

$$T(\vec{x}) = \begin{bmatrix} | & | & | & | \\ \vec{v}_1 & \vec{v}_2 & \vec{v}_3 & \vec{v}_1 \\ | & | & | & | \end{bmatrix} \vec{x},$$

then *T* is invertible.

Answer:

(d) If the standard basis vectors \vec{e}_1, \vec{e}_2 , and \vec{e}_3 of \mathbb{R}^3 are eigenvectors of a 3 × 3 matrix *A*, then *A* is a diagonal matrix.

(e) If A is a diagonalizable matrix, then A is invertible.

Answer:

(f) A diagonalizable 5×5 matrix with rank 2 has an eigenvalue with algebraic multiplicity 3.

- 3. (This problem has **two** parts.)
 - (a) Find the inverse of the following matrix.

$$A = \begin{bmatrix} -1 & 2 & -3 \\ -2 & 5 & -4 \\ 1 & 0 & 6 \end{bmatrix}$$

(b) Solve the following system of equations.

$$-x + 2y - 3z = 1$$
$$-2x + 5y - 4z = 1$$
$$x + 6z = 1$$

4. Find a 2 × 2 matrix A such that the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(\vec{x}) = A\vec{x}$ geometrically scales by a factor of 2 in the direction of the vector $\begin{bmatrix} 1\\2 \end{bmatrix}$ and scales by a factor of -3 in the direction of the vector $\begin{bmatrix} -1\\1 \end{bmatrix}$.

5. Determine the value(s) of k for which the following matrix is invertible.

$$A = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & k^2 & k & 1 \\ 1 & k & 2k+1 & -1 \\ 1 & k^2 & 0 & 1 \end{bmatrix}$$

6. Determine if the following matrix is diagonalizable.

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 2 \\ -1 & 1 & 2 & -1 \\ 1 & 2 & 0 & -1 \end{bmatrix}$$

7. Suppose that a 3×3 matrix A has eigenvalues -1, 0 and 2, with corresponding eigenvectors

$$\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \text{ and } \begin{bmatrix} 1\\0\\0 \end{bmatrix}$$

respectively. Compute $A\begin{bmatrix} 4\\0\\1 \end{bmatrix}$.

8. (This problem has **two** parts.) Throughout this problem let *A* be the following matrix, which has eigenvalues 2 and 3:

$$A = \begin{bmatrix} 0 & -2 & -2 \\ 2 & 4 & 2 \\ 1 & 1 & 3 \end{bmatrix}.$$

(a) Find a basis for each eigenspace of A.

(b) Find a diagonal matrix which is similar to A^{100} . Justify your answer.