# Math 290-1: Final Exam 

## Fall Quarter 2014

Wednesday, December 10, 2014
Put a check mark next to your section:

| Davis (10am) |  | Canez |  |
| :--- | :--- | :--- | :--- |
| Alongi |  | Peterson |  |
| Graham |  | Davis (12pm) |  |


| Question | Possible <br> points | Score |
| :---: | ---: | :--- |
| 1 | 18 |  |
| 2 | 24 |  |
| 3 | 10 |  |
| 4 | 8 |  |
| 5 | 10 |  |
| 6 | 10 |  |
| 7 | 8 |  |
| 8 | 12 |  |
| TOTAL | 100 |  |

## Instructions:

- Read each problem carefully.
- Write legibly.
- Show all your work on these sheets.
- This exam has 15 pages, and 8 questions. Please make sure that all pages are included.
- You may not use books, notes or calculators.
- You have two hours to complete this exam.


## Good luck!

1. Determine whether each of the following statements is TRUE or FALSE. Justify your answer. (This problem has six parts.)
(a) Let $V$ be the subspace of $\mathbb{R}^{4}$ consisting of all vectors $\left[\begin{array}{c}x \\ y \\ z \\ w\end{array}\right]$ simultaneously satisfying the following equations:

$$
x-y+3 z=0, \quad 2 x+y+3 z=0, \quad 7 x-3 y+5 z+2 w=0, \quad 3 x+2 y+4 z=0 .
$$

Then $V=\{\overrightarrow{0}\}$.

## Answer:

(b) For all $2 \times 2$ matrices $A$ and $B, \operatorname{rref}(A B)=\operatorname{rref}(A) \operatorname{rref}(B)$.

Answer:
(c) If a subspace $V$ of $\mathbb{R}^{3}$ does not contain any of the standard basis vectors $\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}$, then $V$ is the zero subspace.

## Answer:

(d) The set of real eigenvectors of an $n \times n$ matrix must span $\mathbb{R}^{n}$.

Answer:
(e) The vector $\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$ is an eigenvector of $\left[\begin{array}{ccc}2 & 2 & -6 \\ 1 & 1 & -21 \\ 2 & -4 & 6\end{array}\right]$.

Answer:
(f) Suppose that $A_{1}$ and $A_{2}$ are both diagonalizable and that they are both similar to the same diagonal matrix $D$. Then $A_{1}$ and $A_{2}$ must have the same eigenvectors.

Answer:
2. Determine whether each of the following statements is ALWAYS true, SOMETIMES true, or NEVER true. Justify your answer. (This problem has six parts.)
(a) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the orthogonal projection onto a plane in $\mathbb{R}^{3}$ through the origin. Then $\operatorname{dim} \operatorname{ker} T=1$.

Answer:
(b) Let $A$ be an $n \times n$ matrix such that the linear transformation $T(\vec{x})=A \vec{x}$ has expansion factor 5 . Then the columns of $A$ are linearly independent.

Answer:
(c) If $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is a linearly independent set of vectors in $\mathbb{R}^{4}$, and if $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ is given by

$$
T(\vec{x})=\left[\begin{array}{cccc}
\mid & \mid & \mid & \mid \\
\vec{v}_{1} & \overrightarrow{v_{2}} & \vec{v}_{3} & \overrightarrow{v_{1}} \\
\mid & \mid & \mid & \mid
\end{array}\right] \vec{x},
$$

then $T$ is invertible.
Answer:
(d) If the standard basis vectors $\vec{e}_{1}, \vec{e}_{2}$, and $\vec{e}_{3}$ of $\mathbb{R}^{3}$ are eigenvectors of a $3 \times 3$ matrix $A$, then $A$ is a diagonal matrix.

Answer:
(e) If $A$ is a diagonalizable matrix, then $A$ is invertible.

Answer:
(f) A diagonalizable $5 \times 5$ matrix with rank 2 has an eigenvalue with algebraic multiplicity 3.

Answer:
3. (This problem has two parts.)
(a) Find the inverse of the following matrix.

$$
A=\left[\begin{array}{ccc}
-1 & 2 & -3 \\
-2 & 5 & -4 \\
1 & 0 & 6
\end{array}\right]
$$

(b) Solve the following system of equations.

$$
\begin{aligned}
-x+2 y-3 z & =1 \\
-2 x+5 y-4 z & =1 \\
x+6 z & =1
\end{aligned}
$$

4. Find a $2 \times 2$ matrix $A$ such that the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(\vec{x})=A \vec{x}$ geometrically scales by a factor of 2 in the direction of the vector $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and scales by a factor of -3 in the direction of the vector $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.
5. Determine the value(s) of $k$ for which the following matrix is invertible.

$$
A=\left[\begin{array}{cccc}
1 & 1 & 0 & 1 \\
1 & k^{2} & k & 1 \\
1 & k & 2 k+1 & -1 \\
1 & k^{2} & 0 & 1
\end{array}\right]
$$

6. Determine if the following matrix is diagonalizable.

$$
A=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & -1 & 0 & 2 \\
-1 & 1 & 2 & -1 \\
1 & 2 & 0 & -1
\end{array}\right]
$$

7. Suppose that a $3 \times 3$ matrix $A$ has eigenvalues $-1,0$ and 2 , with corresponding eigenvectors

$$
\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right] \text { and }\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

respectively. Compute $A\left[\begin{array}{l}4 \\ 0 \\ 1\end{array}\right]$.
8. (This problem has two parts.) Throughout this problem let $A$ be the following matrix, which has eigenvalues 2 and 3:

$$
A=\left[\begin{array}{ccc}
0 & -2 & -2 \\
2 & 4 & 2 \\
1 & 1 & 3
\end{array}\right]
$$

(a) Find a basis for each eigenspace of $A$.
(b) Find a diagonal matrix which is similar to $A^{100}$. Justify your answer.

