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1. Determine whether each of the following statements is TRUE or FALSE. Justify your
answer.

(a) Let F(x, y, z) = (y + cos x, y2 cos(z2), ex2+1 + y2) and let S be the [boundary of the]
unit cube [0, 1] × [0, 1] × [0, 1], oriented with outward-facing normals. Then"

S
F · dS ≤ 3.

TRUE: By the divergence theorem, this integral is equal to$
[0,1]×[0,1]×[0,1]

div F dV.

But div F = − sin x + 2y cos(z2) + 0, so for all (x, y, z) in the unit cube we have
div F ≤ 1 + 2(1)(1) = 3, so"

S
F · dS ≤ 3 · vol(cube) = 3.

(b) The value of the double integral∫ 2

0

∫ √4−y2

−
√

4−y2
(y2 + 1) dx dy

is equal to the value of the triple integral∫ π

0

∫ 2

0

∫ r

−r
r sin(z9) dz dr dθ.

FALSE: On the one hand, the first integral is over a half disk of radius 2, so∫ 2

0

∫ √4−y2

−
√

4−y2
(y2 + 1) dx dy ≥

∫ 2

0

∫ √4−y2

−
√

4−y2
1 dx dy =

1
2
π(2)2 = 2π > 0.

On the other hand r sin(z9) is an odd function of z and for each r ≥ 0, [−r, r] is
symmetric around the origin, so∫ π

0

∫ 2

0

∫ r

−r
r sin(z9) dz dr dθ = 0.
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(c) If F is a C1 vector field on R3 and S is the top half of the ellipsoid z2 +
x2

4
+

y2

4
= 1,

oriented with normals pointing toward the origin, then"
S
(∇ × F) · dS =

∫ 2π

0
F(2 cos t, 2 sin t, 0) · (−2 sin t, 2 cos t, 0) dt.

FALSE:
In the picture on the right, the blue ellip-
soid is S , the green circle is the boundary of
S , and the red vector is a normal to S . If
this normal vector traverses the boundary in
the direction indicated, the surface will be to
its left, so Stokes’s theorem guarantees that!

S
(∇ × F) · dS =

∫
C

F · ds, where C is the
circle of radius 2 centered at the origin, ori-
ented clockwise. The given integral is that
same integral but with C oriented counter-
clockwise, so it is the negative of what we
want. If, for example, F(x, y, z) = (−y, x, 0),
then F(x(t)) · x′(t) = 4, so the integrals are nonzero and therefore different.

(d) There exists a C2 function f (x, y) such that ∇ f (x, y) · (−y, x) > 0 for all (x, y) on the unit
circle.

FALSE: If f is C2 then ∇ f is a conservative vector field so its integral around the unit
circle C (oriented, say, counterclockwise) must be zero (since the circle is closed). But
if ∇ f (x, y) · (−y, x) > 0, then∫

C
∇ f · ds =

∫ 2π

0
∇ f (cos t, sin t) · (− sin t, cos t) dt > 0.

So we have a contradiction.
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2. Determine whether each of the following statements is ALWAYS true, SOMETIMES
true, or NEVER true. Justify your answer

(a) For a nonzero C1 vector field F on R3,"
S

F · dS = 0

for every closed, smooth oriented surface S .

SOMETIMES: By the divergence theorem, if S is such a surface and F is such
a vector field, then "

S
F dS =

$
D

div F dV,

where D is a solid whose boundary is S and S is oriented with normals pointing
out of D. If F(x, y, z) = (y, 0, 0), then div F = 0, so the statement is true. If
F(x, y, z) = (x, 0, 0), then div F = 1, so if S is the unit sphere, we have"

S
F · dS = 1 ·

(
4
3
π

)
, 0.

(b) Given two simple, smooth parameterizations x(t) (a ≤ t ≤ b) and y(t) (c ≤ t ≤ d)
of the same curve C with ‖x′(t)‖ > 3 for all a ≤ t ≤ b and ‖y′(t)‖ < 2 for all
c ≤ t ≤ d, we have ∫ b

a
‖x′(t)‖ dt >

∫ d

c
‖y′(t)‖ dt.

NEVER: For any simple, smooth parametrization z(t) (t1 ≤ t ≤ t2) of C, the
integral

∫ t2
t1
‖z′(t)‖ dt gives the arc length of C, so the above two integrals must be

equal.
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(c) For a solid region E in R3 (with nonzero volume), we have$
E
(x2 + y2 + z2) dV = 3

$
E

y2 dV.

SOMETIMES: This is true if E is the unit ball by the symmetry of the ball. If,
however, E is the ball of radius 1 centered at (0, 0, 11), then$

E
(x2 + y2 + z2) dV ≥

$
E

z2 dV ≥
$

E
100 dV = 100

(
4
3
π

)
but

3
$

E
y2 dV ≤ 3

$
E

1 dV = 3
(
4
3
π

)
<

$
E
(x2 + y2 + z2) dV.

(d) For 0 < a < π/2, the flux of F(x, y, z) = (x, y, z) across S a is zero, where S a is the
part of the surface ϕ = a (in spherical coordinates) that lies below z = 5, oriented
with outward-facing normals.

ALWAYS: The surface ϕ = a is a (half-)cone so for some b ∈ R, it can be
parameterized by

X(s, t) = (s cos t, s sin t, bs),

where bs ≤ 5, so the parameters range over 0 ≤ t ≤ 2π and 0 ≤ s ≤ 5/b. We have

Ts = (cos t, sin t, b)
Tt = (−s sin t, s cos t, 0)
N = (−bs cos t, −bs sin t, s)

Hence, the flux is"
X

F · dS =

∫ 5/b

0

∫ 2π

0
(s cos t, s sin t, bs) · (−bs cos t,−bs sin t, s) dt ds

=

∫ 5/b

0

∫ 2π

0
(−bs2 cos2 t − bs2 sin2 t + bs2) dt ds

=

∫ 5/b

0

∫ 2π

0
0 dt ds = 0.



Math 290-3 Final Exam Solutions Spring Quarter 2014 Page 6 of 11

3. Let S be the part of the cylinder x2 + y2 = 4 that lies between z = 0 and z = 3, oriented
with outward-facing normals. Find

!
S

F · dS, where

F(x, y, z) = (x3 + ey2
z, y3 − ex2

z, zx2 + zy2).

ANSWER: Note that div F = 3x2 + 3y2 + x2 + y2 = 4(x2 + y2), which is much simpler
than F, so we’d like to use the divergence theorem, but our surface is not closed. So we
“close it off” with the disk S 1 of radius 2 at height 0, oriented with downward-facing
normals, and the disk S 2 of radius 2 at height 3, oriented with upward-facing normals.
Then "

S 1

F · dS +

"
S 2

F · dS +

"
S

F · dS =

$
D

4(x2 + y2) dV,

where D is the solid cylinder enclosed by our surfaces.

Changing to cylindrical coordinates, the right-hand side is∫ 3

0

∫ 2π

0

∫ 2

0
4r2r dr dθ dz = 3 · 2π · 24 = 96π.

To parameterize S 1, let X(s, t) = (s cos t, s sin t, 0), for 0 ≤ s ≤ 2 and 0 ≤ t ≤ 2π. Then

Ts = (cos t, sin t, 0)
Tt = (−s sin t, s cos t, 0)
N = (0, 0, s)

This normal points up, which is the wrong orientation,so"
S 1

F · ds = −

∫ 2

0

∫ 2π

0
( , , 0) · (0, 0, s) dt ds = 0.

For the other disk, let X(s, t) = (s cos t, s sin t, 3), for 0 ≤ s ≤ 2 and 0 ≤ t ≤ 2π. Then
we get the same tangent vectors and the same normal. This time ‘up’ is the correct
orientation, so"

S 2

F · ds =

∫ 2

0

∫ 2π

0
( , , 3s2) · (0, 0, s) dt =

∫ 2

0

∫ 2π

0
3s3 dt ds = 2π ·

3
4

24 = 24π.

Hence, "
S

F · dS = 96π − 0 − 24π = 72π.
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4. Evaluate
∫

C
F · ds, where

F(x, y, z) = (y2z3 − yz sin(xyz), 2xyz3 − xz sin(xyz), 3xy2z2 − xy sin(xyz) + x)

and C is the curve consisting of the line segment from (1, 1, 1) to (0, 1, 0) followed by
the line segment from (0, 1, 0) to (0, 0, 0).

ANSWER:
Our vector field looks like it is “almost” a gradient field. The x term in the third compo-
nent seems to be the “odd man out.” So we try to find a scalar potential for

(y2z3 − yz sin(xyz), 2xyz3 − xz sin(xyz), 3xy2z2 − xy sin(xyz))

Antidifferentiating with respect to x, we get

f =

∫
(y2z3 − yz sin(xyz) dx = xy2z3 + cos(xyz) + g(y, z).

So
2xyz3 − xz sin(xyz) = fy = 2xyz3 − xz sin(xyz) + gy,

so g = h(z). Finally,

3xy2z2 − xy sin(xyz) = fz = 3xy2z2 − xy sin(xyz) + h′(z),

so we may take f (x, y, z) = xy2z3 + cos(xyz). So parameterizing the two line segments
with x(t) = (1 − t, 1, 1 − t) (0 ≤ t ≤ 1) and y(t) = (0, 1 − t, 0) (0 ≤ t ≤ 1), we get∫

C
F · ds =

∫
C
∇ f · ds +

∫
C

(0, 0, x) · ds

= ( f (0, 0, 0) − f (1, 1, 1)) +

∫ 1

0
(0, 0, 1 − t) · (−1, 0,−1) dt +

∫ 1

0
(0, 0, 0) · (0,−1, 0) dt

= (0 + 1) − (1 + cos(1)) +

∫
0
(t − 1) dt + 0 = − cos(1) +

[
t2

2
− t

]1

t=0

= − cos(1) +
1
2
− 1 = −

1
2
− cos(1)
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5. Farmer Steve is replacing the roof on his silo. The new roof will be made of metal and
be in the shape of z = 9 − x2 − y2, for z ≥ 5 (with distances measured in meters). Find
the total amount of metal (in square meters) Steve will need to build the roof.

ANSWER: We can parameterize the paraboloid with X(s, t) = (s, t, 9− s2− t2). Since
we only want the part with z ≥ 5, the “shadow” of our surface is s2 + t2 ≤ 4, so letting
D be the disk in the st-plane with center (0, 0) and radius 2, the surface area is"

S
1 dS =

"
D
‖N(s, t)‖ ds dt,

where N is the standard normal of our parameterization. We have

Ts = (1, 0, −2s)
Tt = (0, 1, −2t)
N = (2s, 2t, 1)

Hence, switching to cylindrical coordinates, we have"
D
‖N(s, t)‖ ds dt =

"
D

√
4s2 + 4t2 + 1 ds dt =

∫ 2

0

∫ 2π

0

√
4r2 + 1r dθ dr

=
1
8

∫ 2

0

∫ 2π

0
8r
√

4r2 + 1 dθ dr =
π

4

∫ 2

0
8r
√

4r2 + 1 dr

=
π

4

[
2
3

(4r2 + 1)3/2
]2

r=0
=
π

6
(173/2 − 1)
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6. Find
∮

C
F · ds, where F(x, y, z) = (sin(ex2

) + yz, x cos y, xz2) and C is the rectangular
curve consisting of the line segment from (0, 0, 0) to (0, 2, 0), followed by the one from
(0, 2, 0) to (2, 2, 2), followed by the one from (2, 2, 2) to (2, 0, 2), followed by the one
from (2, 0, 2) to (0, 0, 0).

ANSWER: Integrating F itself seems difficult because of the sin(ex2
), so let’s use Stokes’s

Theorem to instead integrate curl F. We have

∇ × F =

∣∣∣∣∣∣∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂

∂z
sin(ex2

) + yz x cos y xz2

∣∣∣∣∣∣∣∣∣∣∣∣∣
= (0, y − z2, cos y − z).

According to Stokes’s, our original integral is equal to the integral of this vector field over the
rectangular chunk of a plane enclosed by C, which we will call S . To find the equation for the
plane, we first find a normal vector. The displacement vectors (0, 2, 0) − (0, 0, 0) = (0, 2, 0)
and (2, 0, 2) − (0, 0, 0) = (2, 0, 2) are both parallel to the plane, so we may take

n =

∣∣∣∣∣∣∣∣∣
i j k
0 2 0
2 0 2

∣∣∣∣∣∣∣∣∣ = (4, 0,−4).

Our plane is then 4x − 4z = d for some constant d, but (0, 0, 0) is on the plane, so d = 0 and
our equation is z = x.

In the image to the right, the purple rectangle
is S , the blue boundary is our original ori-
ented curve C, the grey square is “shadow”
[0, 2]× [0, 2] in the xy-plane, which gives the
ranges of s and t for our parameterization,
and the red vector is a normal vector giving
the right orientation to apply Stokes’s theo-
rem. So choose X(s, t) = (s, t, s), which has
standard normal N = (−1, 0, 1). This points
the wrong way for Stokes’s theorem, so we
get∮

C
F · ds = −

∫ 2

0

∫ 2

0
(∇ × F)(X(s, t)) · N(s, t) ds dt = −

∫ 2

0

∫ 2

0
(0, t − s2, cos t − s) · (−1, 0, 1) ds dt

= −

∫ 2

0

∫ 2

0
(cos t − s) ds dt = −

∫ 2

0
(2 cos t − 2) dt = − [2 sin t − 2t]2

t=0 = −(2 sin(2) − 4) = 4 − 2 sin(2)
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7. Find the volume of the solid enclosed by the paraboloid z = y2 +
x2

4
and the plane z = 4.

ANSWER: The solid enclosed by the two surfaces is most easily described in the
following change of variables, which is a slight variant of cylindrical coordinates:

x = 2r cos θ

y = r sin θ

z = z

Note that on the paraboloid we have z = r2 sin2 θ +
4r2 cos2 θ

4
= r2, so r =

√
z. So our

region is described by 0 ≤ θ ≤ 2π, 0 ≤ r ≤
√

z, 0 ≤ z ≤ 4. The volume element for this
change of variables is

∣∣∣∣∣∂(x, y, z)
∂r, θ, z

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
2 cos θ sin θ 0
−2r sin θ r cos θ 0

0 0 1

∣∣∣∣∣∣∣∣∣ = |2r cos2 θ + 2r sin2 θ| = 2r.

Hence, the volume is∫ 2π

0

∫ 4

0

∫ √
z

0
2r dr dz dθ = 2π

∫ 4

0

[
r2

]√z

r=0
dz = 2π

∫ 4

0
z dz =

[
πz2

]4

z=0
= 16π.
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8. Let F(x, y, z) = (yex2+y2−1,−x + sin(z2), x2y) and let S be the top half of the unit sphere,
oriented with outward-facing normals. Find

!
S
(∇ × F) · dS.

ANSWER: On the boundary of S , we have z = 0 and x2 + y2 = 1, which greatly
simplifies F. So let’s apply Stokes’s Theorem. The counterclockwise orientation of the
circle is consistent with the orientation of S (the picture is similar to the one in problem
1a, but with outward-facing normals). So we take x(t) = (cos t, sin t, 0), for 0 ≤ t ≤ 2π.
Then Stokes’s Theorem gives"

S
(∇ × F) · dS =

∫ 2π

0
((sin t)e0,− cos t + sin(0), cos2 t sin t) · (− sin t, cos t, 0) dt

=

∫ 2π

0
(− sin2 t − cos2 t) dt = −2π.


