Name:
Student ID:

Math 290-3 Final Exam Solutions
 Spring Quarter 2014

Tuesday, June 10, 2014

1. Determine whether each of the following statements is TRUE or FALSE. Justify your answer.
(a) Let $\mathbf{F}(x, y, z)=\left(y+\cos x, y^{2} \cos \left(z^{2}\right), e^{x^{2}+1}+y^{2}\right)$ and let S be the [boundary of the] unit cube $[0,1] \times[0,1] \times[0,1]$, oriented with outward-facing normals. Then

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S} \leq 3
$$

TRUE: By the divergence theorem, this integral is equal to

$$
\iiint_{[0,1] \times[0,1] \times[0,1]} \operatorname{div} \mathbf{F} d V .
$$

But $\operatorname{div} \mathbf{F}=-\sin x+2 y \cos \left(z^{2}\right)+0$, so for all (x, y, z) in the unit cube we have $\operatorname{div} \mathbf{F} \leq 1+2(1)(1)=3$, so

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S} \leq 3 \cdot \operatorname{vol}(\text { cube })=3 .
$$

(b) The value of the double integral

$$
\int_{0}^{2} \int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}}\left(y^{2}+1\right) d x d y
$$

is equal to the value of the triple integral

$$
\int_{0}^{\pi} \int_{0}^{2} \int_{-r}^{r} r \sin \left(z^{9}\right) d z d r d \theta
$$

FALSE: On the one hand, the first integral is over a half disk of radius 2, so

$$
\int_{0}^{2} \int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}}\left(y^{2}+1\right) d x d y \geq \int_{0}^{2} \int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}} 1 d x d y=\frac{1}{2} \pi(2)^{2}=2 \pi>0
$$

On the other hand $r \sin \left(z^{9}\right)$ is an odd function of z and for each $r \geq 0,[-r, r]$ is symmetric around the origin, so

$$
\int_{0}^{\pi} \int_{0}^{2} \int_{-r}^{r} r \sin \left(z^{9}\right) d z d r d \theta=0
$$

(c) If \mathbf{F} is a C^{1} vector field on \mathbb{R}^{3} and S is the top half of the ellipsoid $z^{2}+\frac{x^{2}}{4}+\frac{y^{2}}{4}=1$, oriented with normals pointing toward the origin, then

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}=\int_{0}^{2 \pi} \mathbf{F}(2 \cos t, 2 \sin t, 0) \cdot(-2 \sin t, 2 \cos t, 0) d t
$$

FALSE:

In the picture on the right, the blue ellipsoid is S, the green circle is the boundary of S, and the red vector is a normal to S. If this normal vector traverses the boundary in the direction indicated, the surface will be to its left, so Stokes's theorem guarantees that $\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}=\int_{C} \mathbf{F} \cdot d \mathbf{s}$, where C is the circle of radius 2 centered at the origin, oriented clockwise. The given integral is that same integral but with C oriented counterclockwise, so it is the negative of what we
 want. If, for example, $\mathbf{F}(x, y, z)=(-y, x, 0)$, then $\mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}^{\prime}(t)=4$, so the integrals are nonzero and therefore different.
(d) There exists a C^{2} function $f(x, y)$ such that $\nabla f(x, y) \cdot(-y, x)>0$ for all (x, y) on the unit circle.

FALSE: If f is C^{2} then ∇f is a conservative vector field so its integral around the unit circle C (oriented, say, counterclockwise) must be zero (since the circle is closed). But if $\nabla f(x, y) \cdot(-y, x)>0$, then

$$
\int_{C} \nabla f \cdot d \mathbf{s}=\int_{0}^{2 \pi} \nabla f(\cos t, \sin t) \cdot(-\sin t, \cos t) d t>0
$$

So we have a contradiction.
2. Determine whether each of the following statements is ALWAYS true, SOMETIMES true, or NEVER true. Justify your answer
(a) For a nonzero C^{1} vector field \mathbf{F} on \mathbb{R}^{3},

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=0
$$

for every closed, smooth oriented surface S.
SOMETIMES: By the divergence theorem, if S is such a surface and \mathbf{F} is such a vector field, then

$$
\iint_{S} \mathbf{F} d \mathbf{S}=\iiint_{D} \operatorname{div} \mathbf{F} d V
$$

where D is a solid whose boundary is S and S is oriented with normals pointing out of D. If $\mathbf{F}(x, y, z)=(y, 0,0)$, then $\operatorname{div} \mathbf{F}=0$, so the statement is true. If $\mathbf{F}(x, y, z)=(x, 0,0)$, then $\operatorname{div} \mathbf{F}=1$, so if S is the unit sphere, we have

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=1 \cdot\left(\frac{4}{3} \pi\right) \neq 0
$$

(b) Given two simple, smooth parameterizations $\mathbf{x}(t)(a \leq t \leq b)$ and $\mathbf{y}(t)(c \leq t \leq d)$ of the same curve C with $\left\|\mathbf{x}^{\prime}(t)\right\|>3$ for all $a \leq t \leq b$ and $\left\|\mathbf{y}^{\prime}(t)\right\|<2$ for all $c \leq t \leq d$, we have

$$
\int_{a}^{b}\left\|\mathbf{x}^{\prime}(t)\right\| d t>\int_{c}^{d}\left\|\mathbf{y}^{\prime}(t)\right\| d t
$$

NEVER: For any simple, smooth parametrization $\mathbf{z}(t)\left(t_{1} \leq t \leq t_{2}\right)$ of C, the integral $\int_{t_{1}}^{t_{2}}\left\|\mathbf{z}^{\prime}(t)\right\| d t$ gives the arc length of C, so the above two integrals must be equal.
(c) For a solid region E in \mathbb{R}^{3} (with nonzero volume), we have

$$
\iiint_{E}\left(x^{2}+y^{2}+z^{2}\right) d V=3 \iiint_{E} y^{2} d V
$$

SOMETIMES: This is true if E is the unit ball by the symmetry of the ball. If, however, E is the ball of radius 1 centered at $(0,0,11)$, then

$$
\iiint_{E}\left(x^{2}+y^{2}+z^{2}\right) d V \geq \iiint_{E} z^{2} d V \geq \iiint_{E} 100 d V=100\left(\frac{4}{3} \pi\right)
$$

but

$$
3 \iiint_{E} y^{2} d V \leq 3 \iiint_{E} 1 d V=3\left(\frac{4}{3} \pi\right)<\iiint_{E}\left(x^{2}+y^{2}+z^{2}\right) d V
$$

(d) For $0<a<\pi / 2$, the flux of $\mathbf{F}(x, y, z)=(x, y, z)$ across S_{a} is zero, where S_{a} is the part of the surface $\varphi=a$ (in spherical coordinates) that lies below $z=5$, oriented with outward-facing normals.

ALWAYS: The surface $\varphi=a$ is a (half-)cone so for some $b \in \mathbb{R}$, it can be parameterized by

$$
\mathbf{X}(s, t)=(s \cos t, s \sin t, b s)
$$

where $b s \leq 5$, so the parameters range over $0 \leq t \leq 2 \pi$ and $0 \leq s \leq 5 / b$. We have

$$
\left.\begin{array}{lll}
\mathbf{T}_{s}=(\cos t, & \sin t, & b
\end{array}\right)
$$

Hence, the flux is

$$
\begin{aligned}
\iint_{\mathbf{X}} \mathbf{F} \cdot d \mathbf{S} & =\int_{0}^{5 / b} \int_{0}^{2 \pi}(s \cos t, s \sin t, b s) \cdot(-b s \cos t,-b s \sin t, s) d t d s \\
& =\int_{0}^{5 / b} \int_{0}^{2 \pi}\left(-b s^{2} \cos ^{2} t-b s^{2} \sin ^{2} t+b s^{2}\right) d t d s \\
& =\int_{0}^{5 / b} \int_{0}^{2 \pi} 0 d t d s=0
\end{aligned}
$$

3. Let S be the part of the cylinder $x^{2}+y^{2}=4$ that lies between $z=0$ and $z=3$, oriented with outward-facing normals. Find $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where

$$
\mathbf{F}(x, y, z)=\left(x^{3}+e^{y^{2}} z, y^{3}-e^{x^{2}} z, z x^{2}+z y^{2}\right) .
$$

ANSWER: Note that $\operatorname{div} \mathbf{F}=3 x^{2}+3 y^{2}+x^{2}+y^{2}=4\left(x^{2}+y^{2}\right)$, which is much simpler than \mathbf{F}, so we'd like to use the divergence theorem, but our surface is not closed. So we "close it off" with the disk S_{1} of radius 2 at height 0 , oriented with downward-facing normals, and the disk S_{2} of radius 2 at height 3 , oriented with upward-facing normals. Then

$$
\iint_{S_{1}} \mathbf{F} \cdot d \mathbf{S}+\iint_{S_{2}} \mathbf{F} \cdot d \mathbf{S}+\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iiint_{D} 4\left(x^{2}+y^{2}\right) d V
$$

where D is the solid cylinder enclosed by our surfaces.
Changing to cylindrical coordinates, the right-hand side is

$$
\int_{0}^{3} \int_{0}^{2 \pi} \int_{0}^{2} 4 r^{2} r d r d \theta d z=3 \cdot 2 \pi \cdot 2^{4}=96 \pi
$$

To parameterize S_{1}, let $\mathbf{X}(s, t)=(s \cos t, s \sin t, 0)$, for $0 \leq s \leq 2$ and $0 \leq t \leq 2 \pi$. Then

$$
\left.\begin{array}{lll}
\mathbf{T}_{s}=(\cos t, & \sin t, & 0
\end{array}\right), ~\left(\begin{array}{lll}
\mathbf{T}_{t} & =(-s \sin t, & s \cos t,
\end{array}\right)
$$

This normal points up, which is the wrong orientation,so

$$
\iint_{S_{1}} \mathbf{F} \cdot d \mathbf{s}=-\int_{0}^{2} \int_{0}^{2 \pi}(\ldots,-0) \cdot(0,0, s) d t d s=0
$$

For the other disk, let $\mathbf{X}(s, t)=(s \cos t, s \sin t, 3)$, for $0 \leq s \leq 2$ and $0 \leq t \leq 2 \pi$. Then we get the same tangent vectors and the same normal. This time 'up' is the correct orientation, so

$$
\iint_{S_{2}} \mathbf{F} \cdot d \mathbf{s}=\int_{0}^{2} \int_{0}^{2 \pi}\left(\ldots,-, 3 s^{2}\right) \cdot(0,0, s) d t=\int_{0}^{2} \int_{0}^{2 \pi} 3 s^{3} d t d s=2 \pi \cdot \frac{3}{4} 2^{4}=24 \pi
$$

Hence,

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=96 \pi-0-24 \pi=72 \pi
$$

4. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{s}$, where

$$
\mathbf{F}(x, y, z)=\left(y^{2} z^{3}-y z \sin (x y z), 2 x y z^{3}-x z \sin (x y z), 3 x y^{2} z^{2}-x y \sin (x y z)+x\right)
$$

and C is the curve consisting of the line segment from $(1,1,1)$ to $(0,1,0)$ followed by the line segment from $(0,1,0)$ to $(0,0,0)$.

ANSWER:

Our vector field looks like it is "almost" a gradient field. The x term in the third component seems to be the "odd man out." So we try to find a scalar potential for

$$
\left(y^{2} z^{3}-y z \sin (x y z), 2 x y z^{3}-x z \sin (x y z), 3 x y^{2} z^{2}-x y \sin (x y z)\right)
$$

Antidifferentiating with respect to x, we get

$$
f=\int\left(y^{2} z^{3}-y z \sin (x y z) d x=x y^{2} z^{3}+\cos (x y z)+g(y, z)\right.
$$

So

$$
2 x y z^{3}-x z \sin (x y z)=f_{y}=2 x y z^{3}-x z \sin (x y z)+g_{y},
$$

so $g=h(z)$. Finally,

$$
3 x y^{2} z^{2}-x y \sin (x y z)=f_{z}=3 x y^{2} z^{2}-x y \sin (x y z)+h^{\prime}(z)
$$

so we may take $f(x, y, z)=x y^{2} z^{3}+\cos (x y z)$. So parameterizing the two line segments with $\mathbf{x}(t)=(1-t, 1,1-t)(0 \leq t \leq 1)$ and $\mathbf{y}(t)=(0,1-t, 0)(0 \leq t \leq 1)$, we get

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{s} & =\int_{C} \nabla f \cdot d \mathbf{s}+\int_{C}(0,0, x) \cdot d \mathbf{s} \\
& =(f(0,0,0)-f(1,1,1))+\int_{0}^{1}(0,0,1-t) \cdot(-1,0,-1) d t+\int_{0}^{1}(0,0,0) \cdot(0,-1,0) d t \\
& =(0+1)-(1+\cos (1))+\int_{0}(t-1) d t+0=-\cos (1)+\left[\frac{t^{2}}{2}-t\right]_{t=0}^{1} \\
& =-\cos (1)+\frac{1}{2}-1=-\frac{1}{2}-\cos (1)
\end{aligned}
$$

5. Farmer Steve is replacing the roof on his silo. The new roof will be made of metal and be in the shape of $z=9-x^{2}-y^{2}$, for $z \geq 5$ (with distances measured in meters). Find the total amount of metal (in square meters) Steve will need to build the roof.

ANSWER: We can parameterize the paraboloid with $\mathbf{X}(s, t)=\left(s, t, 9-s^{2}-t^{2}\right)$. Since we only want the part with $z \geq 5$, the "shadow" of our surface is $s^{2}+t^{2} \leq 4$, so letting D be the disk in the $s t$-plane with center $(0,0)$ and radius 2 , the surface area is

$$
\iint_{S} 1 d S=\iint_{D}\|\mathbf{N}(s, t)\| d s d t
$$

where \mathbf{N} is the standard normal of our parameterization. We have

$$
\begin{aligned}
& \mathbf{T}_{s}=\left(\begin{array}{lll}
1, & 0, & -2 s
\end{array}\right) \\
& \mathbf{T}_{t}=\left(\begin{array}{llc}
0, & 1, & -2 t
\end{array}\right) \\
& \mathbf{N}=\left(\begin{array}{ll}
2 s, & 2 t,
\end{array}\right)
\end{aligned}
$$

Hence, switching to cylindrical coordinates, we have

$$
\begin{aligned}
\iint_{D}\|\mathbf{N}(s, t)\| d s d t & =\iint_{D} \sqrt{4 s^{2}+4 t^{2}+1} d s d t=\int_{0}^{2} \int_{0}^{2 \pi} \sqrt{4 r^{2}+1} r d \theta d r \\
& =\frac{1}{8} \int_{0}^{2} \int_{0}^{2 \pi} 8 r \sqrt{4 r^{2}+1} d \theta d r=\frac{\pi}{4} \int_{0}^{2} 8 r \sqrt{4 r^{2}+1} d r \\
& =\frac{\pi}{4}\left[\frac{2}{3}\left(4 r^{2}+1\right)^{3 / 2}\right]_{r=0}^{2}=\frac{\pi}{6}\left(17^{3 / 2}-1\right)
\end{aligned}
$$

6. Find $\oint_{C} \mathbf{F} \cdot d \mathbf{s}$, where $\mathbf{F}(x, y, z)=\left(\sin \left(e^{x^{2}}\right)+y z, x \cos y, x z^{2}\right)$ and C is the rectangular curve consisting of the line segment from $(0,0,0)$ to $(0,2,0)$, followed by the one from $(0,2,0)$ to $(2,2,2)$, followed by the one from $(2,2,2)$ to $(2,0,2)$, followed by the one from $(2,0,2)$ to $(0,0,0)$.

ANSWER: Integrating \mathbf{F} itself seems difficult because of the $\sin \left(e^{x^{2}}\right)$, so let's use Stokes's Theorem to instead integrate curl \mathbf{F}. We have

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\sin \left(e^{x^{2}}\right)+y z & x \cos y & x z^{2}
\end{array}\right|=\left(0, y-z^{2}, \cos y-z\right) .
$$

According to Stokes's, our original integral is equal to the integral of this vector field over the rectangular chunk of a plane enclosed by C, which we will call S. To find the equation for the plane, we first find a normal vector. The displacement vectors $(0,2,0)-(0,0,0)=(0,2,0)$ and $(2,0,2)-(0,0,0)=(2,0,2)$ are both parallel to the plane, so we may take

$$
\mathbf{n}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
0 & 2 & 0 \\
2 & 0 & 2
\end{array}\right|=(4,0,-4)
$$

Our plane is then $4 x-4 z=d$ for some constant d, but $(0,0,0)$ is on the plane, so $d=0$ and our equation is $z=x$.

In the image to the right, the purple rectangle is S, the blue boundary is our original oriented curve C, the grey square is "shadow" $[0,2] \times[0,2]$ in the $x y$-plane, which gives the ranges of s and t for our parameterization, and the red vector is a normal vector giving the right orientation to apply Stokes's theorem. So choose $\mathbf{X}(s, t)=(s, t, s)$, which has standard normal $\mathbf{N}=(-1,0,1)$. This points the wrong way for Stokes's theorem, so we get

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot d \mathbf{s} & =-\int_{0}^{2} \int_{0}^{2}(\nabla \times \mathbf{F})(\mathbf{X}(s, t)) \cdot \mathbf{N}(s, t) d s d t=-\int_{0}^{2} \int_{0}^{2}\left(0, t-s^{2}, \cos t-s\right) \cdot(-1,0,1) d s d t \\
& =-\int_{0}^{2} \int_{0}^{2}(\cos t-s) d s d t=-\int_{0}^{2}(2 \cos t-2) d t=-[2 \sin t-2 t]_{t=0}^{2}=-(2 \sin (2)-4)=4-2 \sin (2)
\end{aligned}
$$

7. Find the volume of the solid enclosed by the paraboloid $z=y^{2}+\frac{x^{2}}{4}$ and the plane $z=4$.

ANSWER: The solid enclosed by the two surfaces is most easily described in the following change of variables, which is a slight variant of cylindrical coordinates:

$$
\begin{aligned}
& x=2 r \cos \theta \\
& y=r \sin \theta \\
& z=z
\end{aligned}
$$

Note that on the paraboloid we have $z=r^{2} \sin ^{2} \theta+\frac{4 r^{2} \cos ^{2} \theta}{4}=r^{2}$, so $r=\sqrt{z}$. So our region is described by $0 \leq \theta \leq 2 \pi, 0 \leq r \leq \sqrt{z}, 0 \leq z \leq 4$. The volume element for this change of variables is

$$
\left|\frac{\partial(x, y, z)}{\partial r, \theta, z}\right|=\left|\begin{array}{ccc}
2 \cos \theta & \sin \theta & 0 \\
-2 r \sin \theta & r \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right|=\left|2 r \cos ^{2} \theta+2 r \sin ^{2} \theta\right|=2 r
$$

Hence, the volume is

$$
\int_{0}^{2 \pi} \int_{0}^{4} \int_{0}^{\sqrt{z}} 2 r d r d z d \theta=2 \pi \int_{0}^{4}\left[r^{2}\right]_{r=0}^{\sqrt{z}} d z=2 \pi \int_{0}^{4} z d z=\left[\pi z^{2}\right]_{z=0}^{4}=16 \pi
$$

8. Let $\mathbf{F}(x, y, z)=\left(y e^{x^{2}+y^{2}-1},-x+\sin \left(z^{2}\right), x^{2} y\right)$ and let S be the top half of the unit sphere, oriented with outward-facing normals. Find $\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}$.
ANSWER: On the boundary of S, we have $z=0$ and $x^{2}+y^{2}=1$, which greatly simplifies F. So let's apply Stokes's Theorem. The counterclockwise orientation of the circle is consistent with the orientation of S (the picture is similar to the one in problem 1a, but with outward-facing normals). So we take $\mathbf{x}(t)=(\cos t, \sin t, 0)$, for $0 \leq t \leq 2 \pi$. Then Stokes's Theorem gives

$$
\begin{aligned}
\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S} & =\int_{0}^{2 \pi}\left((\sin t) e^{0},-\cos t+\sin (0), \cos ^{2} t \sin t\right) \cdot(-\sin t, \cos t, 0) d t \\
& =\int_{0}^{2 \pi}\left(-\sin ^{2} t-\cos ^{2} t\right) d t=-2 \pi
\end{aligned}
$$

