Math 290-3: Final Exam

Spring Quarter 2015

Tuesday, June 9, 2015

Put a check mark next to your section:

Davis (10am)		Canez	
Peterson		Davis (12pm)	

Question	Possible points	Score
1	20	
2	20	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
TOTAL	100	

Instructions:

- Read each problem carefully.
- Write legibly.
- Show all your work on these sheets.
- This exam has 13 pages and 8 questions. Please make sure that all pages are included.
- You may not use books, notes or calculators.
- You have two hours to complete this exam.

Good luck!

1. Determine whether each of the following statements is TRUE or FALSE. Justify your answer. (This problem has five parts.)
(a) Let S be the surface $z=\sqrt{x^{2}+y^{2}}$ for $z \leq 4$ with upward orientation and let $\mathbf{F}=\left(-y e^{z}, x e^{z}, 0\right)$. Then $\iint_{S} \mathbf{F} \cdot d \mathbf{S}=0$.

Answer:
(b) Let D be the unit disk $x^{2}+y^{2} \leq 1$ in the $x y$-plane with upward orientation, and let S be the top half of the unit sphere $x^{2}+y^{2}+z^{2}=1$ with inward orientation. Then

$$
\iint_{D} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}
$$

for $\operatorname{curl} \mathbf{F}=(x,-y, 1)$.
Answer:
(c) The surface area of the "spherical cap" which is the part of the sphere of radius 2 centered at the origin that is above the plane $z=1$ is

$$
\int_{0}^{2 \pi} \int_{0}^{\pi / 2} 2 \sin \phi d \phi d \theta
$$

Answer:

(d) Let $\mathbf{F}=\left(y z+z e^{x z}, z^{2}+x z, 2 y z+x y+x e^{x z}\right)$, and let C be the part of the curve $\mathbf{x}(t)=\left(t^{3} \sin t, 2 t, 1-\cos ^{2} t\right)$ with $0 \leq t \leq \pi$. Then $\int_{C} \mathbf{F} \cdot d \mathbf{s}=0$.

Answer:
(e) Let C_{1}, C_{2}, and C_{3} be three circles in \mathbb{R}^{2} oriented counterclockwise such that $(0,0)$ does not lie on any of them, and let $\mathbf{F}=\frac{y \mathbf{i}-x \mathbf{j}}{x^{2}+y^{2}}$. If $\int_{C_{1}} \mathbf{F} \cdot d \mathbf{s}=\int_{C_{2}} \mathbf{F} \cdot d \mathbf{s}$, then $\int_{C_{1}} \mathbf{F} \cdot d \mathbf{s}=\int_{C_{3}} \mathbf{F} \cdot d \mathbf{s}$.

Answer:
2. Determine whether each of the following statements is ALWAYS true, SOMETIMES true, or NEVER true. Justify your answer. (This problem has five parts.)
(a) For a number k, the vector field $\mathbf{F}=\left(6 x^{2} y, 4 y^{2}+k x^{3}, z e^{z}\right)$ has path-independent line integrals in \mathbb{R}^{3}.

Answer:
(b) Let C be the unit circle $x^{2}+y^{2}=1$, oriented counterclockwise. For a number k,

$$
\oint_{C}\left(x^{2}+k^{2}+1\right) d x+d y>0 .
$$

Answer:
(c) For a number k, define $f(x, y, z)=e^{k x} \sin (k y)+k^{2} z$. Then there is a C^{1} vector field \mathbf{G} on \mathbb{R}^{3} such that $\nabla f=\operatorname{curl} \mathbf{G}$.

```
Answer:
```

(d) Suppose that S is the unit sphere $x^{2}+y^{2}+z^{2}=1$ with inward orientation. Then for a number k,

$$
\iint_{S}\left(3 x z^{4}, 2 y z^{4},\left(k^{2}-1\right) z^{5}+z^{3}\right) \cdot d \mathbf{S}>0 .
$$

Answer:
(e) Let S be the (outward oriented) portion of the sphere $x^{2}+y^{2}+z^{2}=5$ above the plane $z=-1$, and let C be the circle $x^{2}+y^{2}=4$ in the plane $z=-1$, oriented counterclockwise when viewed from above. For a C^{1} vector field \mathbf{F},

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\oint_{C}(\operatorname{curl} \mathbf{F}) \cdot d \mathbf{s} .
$$

Answer:
3. Determine the value of the vector line integral

$$
\int_{C}\left(e^{x}-\frac{4}{3} y^{3}\right) d x+\left(3 x^{3}-\sin (\cos y)\right) d y
$$

where C is the ellipse $9 x^{2}+4 y^{2}=36$ oriented clockwise.
4. Let $\mathbf{F}=\left(x e^{\sin x}, \sin (\cos y)+y, z+e^{z^{4}}\right)$. Determine the value of the vector line integral

$$
\int_{C} \mathbf{F} \cdot d \mathbf{s}
$$

where C is the curve which starts at $(0,0,0)$, follows the spiral with parametric equations $\mathbf{x}(t)=\left(t \cos t, t \sin t, t^{2}\right)$ for $0 \leq t \leq 5 \pi$, and then follows the line segment from $\left(-5 \pi, 0,25 \pi^{2}\right)$ to $(0,0,0)$.
5. Compute the surface area of the piece of the paraboloid $z=3-x^{2}-y^{2}$ where $z \geq 2$.
6. Let S be the portion of the plane $y+z=2$ which is enclosed by the cylinder $x^{2}+y^{2}=4$, oriented upward. Compute the vector line integral

$$
\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}
$$

where $\mathbf{F}=\left(e^{x^{2}+y^{2}}, e^{\sqrt{x^{2}+y^{2}+1}}, z+y\right)$.
7. Let $\mathbf{F}=\left(y-x \cos \left(x^{4}\right), z+x-\cos \left(e^{y}\right), e^{z^{3}+z}\right)$. Compute the vector surface integral

$$
\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}
$$

where S is the piece of the sphere $x^{2}+y^{2}+z^{2}=5$ where $x \geq 1$, oriented with normal vectors pointing in towards the x-axis.
8. Determine the value of the vector surface integral

$$
\iint_{S}\left(y \cos \left(e^{z}\right), y z+y^{2}, e^{x^{2}+x}\right) \cdot d \mathbf{S}
$$

where S is the portion of the cylinder $x^{2}+z^{2}=1$ with $1 \leq y \leq 4$, oriented with outward pointing normal vectors.

