

Math 290-1: Midterm 1 Fall Quarter 2014 Monday, October 20, 2014

Put a check mark next to your section:

Davis (10am)	Canez	
Alongi	Peterson	
Graham	Davis (12pm)	

Question	Possible	Score
	points	
1	20	
2	20	
3	10	
4	15	
5	15	
6	20	
TOTAL	100	

Instructions:

- Read each problem carefully.
- Write legibly.
- Show all your work on these sheets.
- This exam has 11 pages, and 6 questions. Please make sure that all pages are included.
- You may not use books, notes or calculators.
- You have one hour to complete this exam.

Good luck!

- 1. Determine whether each of the following statements is **TRUE** or **FALSE**. Justify your answer. (This problem has **four** parts.)
 - (a) Suppose that the system

$$ax_1 + bx_2 + cx_3 = d$$
$$ex_1 + fx_2 + gx_3 = h$$

is consistent. (The variables are x_1, x_2, x_3 .) If the system

$$ax_1 + bx_2 + cx_3 = d$$

 $ex_1 + fx_2 + gx_3 = h$
 $ix_1 + jx_2 + kx_3 = l$

has the same set of solutions as the first system, then the equation

$$ix_1 + jx_2 + kx_3 = l$$

is a multiple of one of the two equations in the first system.

(b) There is a scalar k which makes the function $T : \mathbb{R}^2 \to \mathbb{R}^4$ given by

$$T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y \cos((k^2 - 1)x) \\ 3x + (2k - 1)^2 y \\ 3 \\ (k + 1)x^2 - 4y \end{bmatrix}$$

a linear transformation.

Answer:

(c) If A and B are $n \times n$ invertible matrices, then AB has rank n.

(d) Applying the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined by the matrix product

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

transforms the smiley face on the left into the smiley face on the right:

- 2. Determine whether each of the following statements is **ALWAYS** true, **SOMETIMES** true, or **NEVER** true. Justify your answer. (This problem has **four** parts.)
 - (a) Let *k* be a real number. The matrix

$$\begin{bmatrix} 1 & 1+k^2 & 1+2k^2 \\ 0 & 1+k^2 & 1+2k^2 \\ 0 & 0 & 1+2k^2 \end{bmatrix}$$

has rank 3.

Answer:

(b) Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation. The equation $T(\vec{x}) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ has infinitely many solutions.

(c) Suppose that \vec{u} and \vec{v} are nonzero perpendicular vectors in \mathbb{R}^2 . Then any vector \vec{b} in \mathbb{R}^2 is a linear combination of \vec{u} and \vec{v} .

(d) Let
$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
 be an invertible matrix. Then the matrix $B = \begin{bmatrix} b & a & c \\ e & d & f \\ h & g & i \end{bmatrix}$ is also invertible.
Answer:

3. Let $\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$, and $\vec{v}_3 = \begin{bmatrix} -1 \\ -2 \\ 3 \end{bmatrix}$. Find conditions on the scalars b_1, b_2, b_3 so that $\vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ is **not** a linear combination of \vec{v}_1, \vec{v}_2 , and \vec{v}_3 .

4. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation which first rotates \mathbb{R}^2 by π radians, then applies the shear determined by $\begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$, then reflects across the line y = -x, and finally scales by a factor of 3. Find the matrix of *T*.

5. Let $A = \begin{bmatrix} 3 & -6 \\ -2 & 4 \end{bmatrix}$. Find a 2 × 2 matrix *B* such that *B* is not the zero matrix and *AB* is the zero matrix.

6. (This problem has **two** parts.) Let A be the following matrix.

$$A = \begin{bmatrix} -1 & 1 & 0\\ 0 & 1 & 1\\ 2 & 0 & 1 \end{bmatrix}$$

(a) Find the inverse of A.

(b) Find the matrix of the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ satisfying

	[-1]		[3]			$\begin{bmatrix} 1 \end{bmatrix}$		[2]				0		0	
Т	0	=	0	,	Т	1	=	1	,	and	Т	1	=	3	
	2		$\begin{bmatrix} 0 \end{bmatrix}$			0		0				1		0	

Hint: Notice that the given input vectors are precisely the columns of the matrix *A* defined previously. Try using the inverse you found in part (a).