# Math 290-3: Midterm 1 <br> Spring Quarter 2015 <br> Thursday, April 30, 2015 

## Put a check mark next to your section:

| Davis (10am) |  | Canez |
| :--- | :--- | :--- |
|  |  |  |
| Peterson |  | Davis (12pm) |


| Question | Possible <br> points | Score |
| :---: | ---: | :--- |
| 1 | 20 |  |
| 2 | 20 |  |
| 3 | 15 |  |
| 4 | 15 |  |
| 5 | 15 |  |
| 6 | 15 |  |
| TOTAL | 100 |  |

## Instructions:

- Read each problem carefully.
- Write legibly.
- Show all your work on these sheets.
- This exam has 9 pages, and 6 questions. Please make sure that all pages are included.
- You may not use books, notes or calculators.
- You have one hour to complete this exam.


## Good luck!

1. Determine whether each of the following statements is TRUE or FALSE. Justify your answer. (This problem has four parts.)
(a) The following integrals are equal:

$$
\int_{0}^{2 \pi} \int_{0}^{R} \int_{r}^{R} \theta r d z d r d \theta \quad \text { and } \quad \int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{R / \cos \phi} \theta \rho^{2} \sin \phi d \rho d \phi d \theta
$$

## Answer:

(b) Suppose that $R$ is a rectangle in $\mathbb{R}^{2}$ and that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous. If $\iint_{R} f(x, y) d A=0$, then every Riemann sum of $f$ has the value zero.

Answer:
(c) The following equality holds:

$$
\int_{0}^{4} \int_{-1}^{1} \int_{0}^{2}\left(4-4 y+y^{101} e^{\cos \left(y^{2} z\right)+\sin x+z}\right) d z d y d x=\frac{8}{3}
$$

Answer:
(d) The following equality holds:

$$
\int_{0}^{1} \int_{0}^{x} d y d x+\int_{1}^{\sqrt{2}} \int_{0}^{\sqrt{2-x^{2}}} d y d x=\frac{\pi}{4}
$$

Answer:
2. Determine whether each of the following statements is ALWAYS true, SOMETIMES true, or NEVER true. Justify your answer. (This problem has four parts.)
(a) For a number $k$,

$$
\int_{10}^{20} \int_{0}^{e^{x}}\left[x^{2}+y^{2}+\left(k^{2}+1\right)^{3}\right] d y d x \geq 0
$$

## Answer:

(b) For a continuous function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$,

$$
\int_{0}^{1} \int_{-x}^{x} f(x, y) d y d x=\int_{-1}^{1} \int_{0}^{1} v f(v, u v) d v d u
$$

Answer:
(c) For $k>0$, if $E$ is the solid consisting of all points satisfying the inequalities $k \leq \sqrt{x^{2}+y^{2}+z^{2}} \leq 2 k$, then

$$
\iiint_{E} \frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} d V=4 \pi^{2} \ln (2)
$$

## Answer:

(d) For a number $k$,

$$
\int_{0}^{2} \int_{0}^{x} k e^{k x^{10}} d y d x=\int_{0}^{1} \int_{y}^{2-y} e^{k x^{10}} d x d y+\int_{1}^{2} \int_{2-x}^{x} e^{k x^{10}} d y d x
$$

Answer:
3. Determine the value of the following expression.

$$
\int_{-1}^{0} \int_{-x}^{1} e^{y^{2}} d y d x+\int_{0}^{1} \int_{x}^{1} e^{y^{2}} d y d x
$$

4. Suppose that $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is a continuous function. Rewrite the following triple integral with respect to the order $d y d x d z$.

$$
\int_{0}^{1} \int_{0}^{1-y} \int_{0}^{1-y} f(x, y, z) d x d z d y
$$

5. Find a change of variables $u=u(x, y)$ and $v=v(x, y)$ under which the double integral $\iint_{D}(6 y+3) d A$, where $D$ is the region in the $x y$-plane bounded by the curves

$$
y=-x, y=1-x, x=y^{2}, \text { and } x=y^{2}-1,
$$

becomes the double integral of a constant over a rectangle in the $u v$-plane. Setup the integral in terms of $u$ and $v$, but do NOT evaluate it.
6. Determine the value of

$$
\iiint_{E} \frac{1}{x^{2}+y^{2}+z^{2}} d V
$$

where $E$ is the region above the $x y$-plane which lies outside the sphere $x^{2}+y^{2}+z^{2}=2$ and inside the sphere $x^{2}+y^{2}+z^{2}=2 z$.

