Math 290-2: Midterm 1

Winter Quarter 2015
Monday, February 2, 2015

Put a check mark next to your section:

Davis		Canez	
Alongi		Peterson	

Question	Possible points	Score
1	20	
2	20	
3	10	
4	20	
5	10	
6	20	
TOTAL	100	

Instructions:

- Read each problem carefully.
- Write legibly.
- Show all your work on these sheets.
- This exam has 11 pages, and 6 questions. Please make sure that all pages are included.
- You may not use books, notes or calculators.
- You have one hour to complete this exam.

Good luck!

1. Determine whether each of the following statements is TRUE or FALSE. Justify your answer. (This problem has four parts.)
(a) If A is any square matrix and $q(\mathbf{x})=\mathbf{x} \cdot A \mathbf{x}$ is a quadratic form, then A must be diagonalizable.

Answer:
(b) If A is a symmetric matrix and \mathbf{v} and \mathbf{w} and vectors with \mathbf{v} in the kernel of A and \mathbf{w} in the image of A, then $\mathbf{v} \cdot \mathbf{w}=0$.

Answer:
(c) If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are any nonzero vectors in \mathbb{R}^{3}, then $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}=(\mathbf{c} \times \mathbf{b}) \cdot \mathbf{a}$.

Answer:
(d) If V is a nonzero subspace of \mathbb{R}^{n}, then V has an orthonormal basis.

Answer:
2. Determine whether each of the following statements is ALWAYS true, SOMETIMES true, or NEVER true. Justify your answer. (This problem has four parts.)
(a) Suppose that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is an orthonormal set of vectors in \mathbb{R}^{n}. Then

$$
\left\{\mathbf{u}_{1}-\mathbf{u}_{2}, \mathbf{u}_{2}-\mathbf{u}_{3}, \mathbf{u}_{1}-\mathbf{u}_{3}\right\}
$$

is also an orthonormal set.
Answer:
(b) For a square matrix Q whose columns are perpendicular to one another, $Q^{T} Q=I$.

[^0](c) For an $n \times m$ matrix A and a vector \mathbf{b} in \mathbb{R}^{n}, there is a vector \mathbf{x} in \mathbb{R}^{m} such that $A \mathbf{x}=\operatorname{proj}_{\text {im } A} \mathbf{b}$.

Answer:
(d) For a number k, the line with parametric equations

$$
x=4-2 t, y=k+t, z=2 k-1
$$

intersects the surface described by the equation $(x-4)^{2}+(y-k)^{2}+(z+1)^{2}=1$.
Answer:
3. At O'Hare airport, the average low temperature (in degrees Celsius) t months into the year is listed below:

t	${ }^{\circ} \mathbf{C}$
0	-8
3	5
6	20
9	8

Find the function of the form $f(t)=c_{0}+c_{1} \sin \left(\frac{\pi t}{6}\right)+c_{2} \cos \left(\frac{\pi t}{6}\right)$ which best fits the data above, using least squares.
4. (This problem has three parts.) Define the quadratic form $q: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
q(x, y)=4 x^{2}+4 x y+7 y^{2} .
$$

(a) Determine whether q is positive definite, negative definite, or indefinite.
(b) Find a set of principal axes for q.
(c) Draw the curve whose equation is $4 x^{2}+4 x y+7 y^{2}=1$, labeling the principal axes and the intercepts of the curve with these axes. The intercepts should be labeled by their standard (x, y) coordinates.
5. Let P be the plane $x+2 y+4 z=0$ and let $\mathbf{x}=\left[\begin{array}{c}2 \\ -1 \\ 3\end{array}\right]$. Find the distance from \mathbf{x} to P.
6. (This problem has two parts.) Suppose that A is a 4×4 matrix with eigenvalues 2 and -1 , and associated eigenvectors

$$
\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
-2 \\
0 \\
0 \\
-2
\end{array}\right],\left[\begin{array}{l}
1 \\
4 \\
2 \\
1
\end{array}\right] \text { for } 2 \text { and }\left[\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right] \text { for }-1
$$

(a) Find a basis of \mathbb{R}^{4} consisting of orthonormal eigenvectors of A.
(b) Compute $A^{3}\left[\begin{array}{c}1 \\ 2 \\ -1 \\ 1\end{array}\right]$ explicitly.

[^0]: Answer:

