Math 290-1: Midterm 2

Fall Quarter 2014
Monday, November 17, 2014
Put a check mark next to your section:

Davis (10am)		Canez	
Alongi		Peterson	
Graham		Davis (12pm)	

Question	Possible points	Score
1	20	
2	20	
3	10	
4	15	
5	15	
6	20	
TOTAL	100	

Instructions:

- Read each problem carefully.
- Write legibly.
- Show all your work on these sheets.
- This exam has 10 pages, and 6 questions. Please make sure that all pages are included.
- You may not use books, notes or calculators.
- You have one hour to complete this exam.

Good luck!

1. Determine whether each of the following statements is TRUE or FALSE. Justify your answer. (This problem has four parts.)
(a) Let A and B be two $n \times n$ matrices. If $\operatorname{ker}(A)=\operatorname{ker}(B)$, then A and B are both invertible.

> Answer:
(b) There exists a 6×7 matrix A with $\operatorname{dim} \operatorname{ker} A=1$ and whose image is spanned by five linearly independent vectors.

Answer:
(c) If A is the 2×2 matrix of the reflection across a line through the origin in \mathbb{R}^{2}, then for any 2×2 matrix B we have

$$
\operatorname{det}\left(A B^{3} A B\right)=\operatorname{det}\left(B^{4}\right)
$$

Answer:

(d) Let $\mathfrak{B}=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ be a basis of \mathbb{R}^{3} and suppose that \vec{x} and \vec{y} are vectors in \mathbb{R}^{3} for which $[\vec{x}]_{\mathfrak{B}}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $[\vec{y}]_{\mathfrak{B}}=\left[\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right]$. Then $[\vec{x}+\vec{y}]_{\mathfrak{B}}=\left[\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right]$.

[^0]2. Determine whether each of the following statements is ALWAYS true, SOMETIMES true, or NEVER true. Justify your answer. (This problem has four parts.)
(a) Let P be a plane in \mathbb{R}^{3}. Then P is a subspace of \mathbb{R}^{3}.

Answer:
(b) If A is an $n \times n$ matrix and if B is obtained from A by replacing the second row of A with

$$
(\text { first row of } A)-2(\text { second row of } A),
$$

then $\operatorname{det} A=\operatorname{det} B$.
Answer:
(c) If $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is a linear transformation and $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ is a linearly dependent set of vectors in \mathbb{R}^{m}, then $\left\{T\left(\vec{v}_{1}\right), \ldots, T\left(\vec{v}_{p}\right)\right\}$ is a linearly independent set of vectors in \mathbb{R}^{n}.

Answer:
(d) For a basis \mathfrak{B} of \mathbb{R}^{n}, the expansion factor of a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ in standard coordinates is equal to the expansion factor of the same linear transformation in \mathfrak{B}-coordinates (i.e. coordinates relative to \mathfrak{B}).

Answer:
3. Determine the values of a and b for which the vectors
$\left[\begin{array}{c}1 \\ 2 \\ -2 \\ 4\end{array}\right],\left[\begin{array}{c}0 \\ 3 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{c}1 \\ a \\ 1 \\ -2\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 2 \\ b \\ 0\end{array}\right]$
are linearly independent.
4. Let V be the subspace of \mathbb{R}^{4} consisting of all $\vec{x}=\left[\begin{array}{c}x \\ y \\ z \\ w\end{array}\right]$ satisfying both

$$
x+2 y+2 z=0 \text { and } 3 x+6 y+7 z-3 w=0
$$

(a) Find the dimension of V.
(b) Find a 4×4 matrix A whose image is V.
5. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the reflection across the line $y=3 x$.
(a) Find a basis \mathfrak{B} of \mathbb{R}^{2} such that the \mathfrak{B}-matrix B of T is diagonal, and compute B in this case.
(b) Using your answer to (a), compute the standard matrix (i.e. the matrix relative to the standard basis) A of T.
6. (This problem has two parts.) Let $\vec{v}_{1}=\left[\begin{array}{l}3 \\ 2\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$, and let W be the shaded region in the diagram below.

(a) Calculate the area of W.
(b) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation that is represented by the matrix $A=\left[\begin{array}{cc}1 & 1 \\ 1 & -2\end{array}\right]$. Calculate the area of $T^{3}(W)$, the image of W under T^{3}, where T^{3} denotes the composition of T with itself three times. Note that W denotes the same region as in part (a).

[^0]: Answer:

