

# Math 290-1: Midterm 2 Fall Quarter 2014

## Monday, November 17, 2014

#### Put a check mark next to your section:

| Davis (10am) | Canez        |
|--------------|--------------|
| Alongi       | Peterson     |
| Graham       | Davis (12pm) |

| Question | Possible | Score |
|----------|----------|-------|
|          | points   |       |
| 1        | 20       |       |
| 2        | 20       |       |
| 3        | 10       |       |
| 4        | 15       |       |
| 5        | 15       |       |
| 6        | 20       |       |
| TOTAL    | 100      |       |

#### **Instructions:**

- Read each problem carefully.
- Write legibly.
- Show all your work on these sheets.
- This exam has 10 pages, and 6 questions. Please make sure that all pages are included.
- You may not use books, notes or calculators.
- You have one hour to complete this exam.

### Good luck!

- 1. Determine whether each of the following statements is **TRUE** or **FALSE**. Justify your answer. (This problem has **four** parts.)
  - (a) Let A and B be two  $n \times n$  matrices. If ker(A) = ker(B), then A and B are both invertible.

Answer:

(b) There exists a  $6 \times 7$  matrix A with dim ker A = 1 and whose image is spanned by five linearly independent vectors.

Answer:

(c) If *A* is the 2 × 2 matrix of the reflection across a line through the origin in  $\mathbb{R}^2$ , then for any 2 × 2 matrix *B* we have

$$\det(AB^3AB) = \det(B^4).$$

Answer:

(d) Let  $\mathfrak{B} = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$  be a basis of  $\mathbb{R}^3$  and suppose that  $\vec{x}$  and  $\vec{y}$  are vectors in  $\mathbb{R}^3$  for which  $[\vec{x}]_{\mathfrak{B}} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$  and  $[\vec{y}]_{\mathfrak{B}} = \begin{bmatrix} -2\\0\\1 \end{bmatrix}$ . Then  $[\vec{x} + \vec{y}]_{\mathfrak{B}} = \begin{bmatrix} -1\\1\\2 \end{bmatrix}$ . Answer:

- 2. Determine whether each of the following statements is **ALWAYS** true, **SOMETIMES** true, or **NEVER** true. Justify your answer. (This problem has **four** parts.)
  - (a) Let *P* be a plane in  $\mathbb{R}^3$ . Then *P* is a subspace of  $\mathbb{R}^3$ .

Answer:

(b) If A is an  $n \times n$  matrix and if B is obtained from A by replacing the second row of A with

(first row of A) – 2(second row of A),

then  $\det A = \det B$ .

Answer:

(c) If  $T : \mathbb{R}^m \to \mathbb{R}^n$  is a linear transformation and  $\{\vec{v}_1, \dots, \vec{v}_p\}$  is a linearly **dependent** set of vectors in  $\mathbb{R}^m$ , then  $\{T(\vec{v}_1), \dots, T(\vec{v}_p)\}$  is a linearly **independent** set of vectors in  $\mathbb{R}^n$ .

Answer:

(d) For a basis  $\mathfrak{B}$  of  $\mathbb{R}^n$ , the expansion factor of a linear transformation  $T : \mathbb{R}^n \to \mathbb{R}^n$  in standard coordinates is equal to the expansion factor of the same linear transformation in  $\mathfrak{B}$ -coordinates (i.e. coordinates relative to  $\mathfrak{B}$ ).

Answer:

3. Determine the values of a and b for which the vectors

| 1  |   | 0  |   | [1] |     | [-1] |
|----|---|----|---|-----|-----|------|
| 2  |   | 3  |   | а   | 1   | 2    |
| -2 | , | -1 | , | 1   | and | b    |
| 4  |   | 2  |   | -2  |     | 0    |

are linearly independent.

4. Let *V* be the subspace of  $\mathbb{R}^4$  consisting of all  $\vec{x} = \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$  satisfying both x + 2y + 2z = 0 and 3x + 6y + 7z - 3w = 0.

(a) Find the dimension of *V*.

(b) Find a  $4 \times 4$  matrix A whose image is V.

5. Let  $T : \mathbb{R}^2 \to \mathbb{R}^2$  be the reflection across the line y = 3x.

(a) Find a basis  $\mathfrak{B}$  of  $\mathbb{R}^2$  such that the  $\mathfrak{B}$ -matrix *B* of *T* is diagonal, and compute *B* in this case.

(b) Using your answer to (a), compute the standard matrix (i.e. the matrix relative to the standard basis) A of T.

6. (This problem has **two** parts.) Let  $\vec{v}_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ ,  $\vec{v}_2 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ , and let *W* be the shaded region in the diagram below.



(a) Calculate the area of *W*.

(b) Let  $T : \mathbb{R}^2 \to \mathbb{R}^2$  be the linear transformation that is represented by the matrix  $A = \begin{bmatrix} 1 & 1 \\ 1 & -2 \end{bmatrix}$ . Calculate the area of  $T^3(W)$ , the image of W under  $T^3$ , where  $T^3$  denotes the composition of T with itself three times. Note that W denotes the same region as in part (a).