Math 290-3 Midterm Exam 2 Solutions

Spring Quarter 2014
Thursday, May 22, 2014

1. Determine whether each of the following statements is TRUE or FALSE. Justify your answer.
(a) If the force field $\mathbf{F}(x, y, z)=\left(x y,-3 y z, y^{2}\right)$ acts on an object, moving it from $(0,0,0)$ to $(1,1,-1)$ along the path $\left(t^{2}, t,-t^{3}\right)$, then the work done by the force field is

$$
\int_{0}^{1}\left(t^{3}, 3 t^{4}, t^{2}\right) \cdot\left(t^{2}, t,-t^{3}\right) d t .
$$

FALSE: The correct vector line integral is

$$
\int_{0}^{1} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}^{\prime}(t) d t=\int_{0}^{1}\left(t^{3}, 3 t^{4}, t^{2}\right) \cdot\left(2 t, 1,-3 t^{2}\right) d t=\int_{0}^{1} 2 t^{4} d t=\frac{2}{5}
$$

The given integral is $\int_{0}^{1} 3 t^{5} d t=\frac{1}{2}$.
(b) If C is the oriented path parametrized by $\mathbf{x}(t)=(4 \cos t, 4 \sin t)$, for $\pi \leq t \leq 3 \pi$, and $\mathbf{F}(x, y)=\left(e^{x^{2}}+2 y, 3 x-\sin (\cos y)\right)$, then

$$
\oint_{C} F \cdot d \mathbf{s}=16 \pi
$$

TRUE: The path \mathbf{x} parametrizes the circle of radius 4 centered at the origin, oriented counterclockwise, so if we let D be the disk enclosed by this curve, then by Green's theorem,

$$
\begin{aligned}
\oint_{C} F \cdot d \mathbf{s} & =\iint_{D}\left(\frac{\partial}{\partial x}(3 x-\sin (\cos y))-\frac{\partial}{\partial y}\left(e^{x^{2}}+2 y\right)\right) d A=\iint_{D}(3-2) d A \\
& =\text { Area } D=\pi(4)^{2}=16 \pi
\end{aligned}
$$

(c) If \mathbf{F} is a continuous vector field on \mathbb{R}^{2} such that $\mathbf{F}(x, y)$ is orthogonal to the vector $x \mathbf{i}+y \mathbf{j}$ for each (x, y) and C is parametrized by $\mathbf{x}(t)=(t, t)$, for $1 \leq t \leq 4$, then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{s}=0
$$

TRUE: By assumption $\mathbf{F}(t, t)$ is orthogonal to (t, t) and therefore also orthogonal to $(1,1)=\mathbf{x}^{\prime}(t)$ for each $1 \leq t \leq 4$, so

$$
\int_{C} \mathbf{F} \cdot d \mathbf{s}=\int_{1}^{4} \mathbf{F}(t, t) \cdot(1,1) d t=\int_{1}^{4} 0 d t=0
$$

2. Determine whether each of the following statements is ALWAYS true, SOMETIMES true, or NEVER true. Justify your answer
(a) Given an integer $n>0$, the vector field

$$
\mathbf{F}(x, y, z)=\left(9 e^{\cos (n x+z)}, y^{n} z^{n+1}, y^{n+1} z^{n}+n e^{\cos (n x+z)}\right)
$$

has path-independent line integrals.
SOMETIMES: We have

$$
\begin{aligned}
\operatorname{Curl} \mathbf{F} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
9 e^{\cos (n x+z)} & y^{n} z^{n+1} & y^{n+1} z^{n}+n e^{\cos (n x+z)}
\end{array}\right|=\left((n+1) y^{n} z^{n}-(n+1) y^{n} z^{n}\right) \mathbf{i} \\
& -\left(n^{2}(-\sin (n x+z)) e^{\cos (n x+z)}-9(-\sin (n x+z)) e^{\cos (n x+z)}\right) \mathbf{j}+(0-0) \mathbf{k}
\end{aligned}
$$

The first and third components are zero for any n, but for the second to be constantly zero we need $n^{2}-9=0$. So it's true when $n=3$, false otherwise.
(b) Given a continuous vector field \mathbf{F} on \mathbb{R}^{2} and a C^{1} oriented curve C such that $\int_{C} \mathbf{F} \cdot d \mathbf{s}>0, \mathbf{F}$ has the property that at every point along C, \mathbf{F} points in the same direction as the tangent vector to C at that point.
SOMETIMES: Let $\mathbf{F}(x, y)=(x, 0)$ and let $\mathbf{x}(t)=(t, 0)$. Then if $1 \leq t \leq 3$,

$$
\mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}^{\prime}(t)=(t, 0) \cdot(1,0)=t>0
$$

for all $1 \leq t \leq 3$ and we have $\int_{C} \mathbf{F} \cdot d \mathbf{s}=\int_{1}^{3} t d t>0$. So this is an example where the statement is true. If we use the exact same vector field and the same $\mathbf{x}(t)$ but let t range over $[-1,3]$, then at, for example, $t=-1, \mathbf{F}(\mathbf{x}(t))=(-1,0)$ which forms an angle of 180° with $(1,0)=\mathbf{x}^{\prime}(t)$, and yet

$$
\int_{C} \mathbf{F} \cdot d \mathbf{s}=\int_{-1}^{3} t d t=9 / 2-1 / 2=4>0
$$

So this provides an example where the statement is false.
(c) Given two simple and closed C^{1} paths C_{1} and C_{2} in \mathbb{R}^{2} that do not pass through the origin and are both oriented clockwise, we have

$$
2 \oint_{C_{2}} \mathbf{F} \cdot d \mathbf{s}<\oint_{C_{1}} \mathbf{F} \cdot d \mathbf{s}<3 \oint_{C_{2}} \mathbf{F} \cdot d \mathbf{s}
$$

where $\mathbf{F}(x, y)=\left(\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right)$.
NEVER: There are two possibilities for each curve C as above: It either encloses the origin or does not. If it does not, then \mathbf{F} is C^{1} on the region enclosed by C, so by Green's theorem

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{s}= \pm \iint_{D} \operatorname{curl} \mathbf{F} d A
$$

where D is the region enclosed by C. But

$$
\operatorname{curl} \mathbf{F}=\frac{\left(x^{2}+y^{2}\right)-2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}}-\frac{-\left(x^{2}+y^{2}\right)+2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}=0
$$

so $\oint_{C} \mathbf{F} \cdot d \mathbf{s}=0$. If C does enclose the origin, then applying Green's Theorem implies that $\oint_{C} \mathbf{F} \cdot d \mathbf{s}=\oint_{C^{\prime}} \mathbf{F} \cdot d \mathbf{s}$, where C^{\prime} is the clockwise path around the unit circle, which is parametrized by $(\cos (-t), \sin (-t)), 0 \leq t \leq 2 \pi$. But

$$
\oint_{C^{\prime}} \mathbf{F} \cdot d \mathbf{s}=\int_{0}^{2 \pi}(-\sin (-t), \cos (-t)) \cdot(\sin (-t),-\cos (-t)) d t=\int_{0}^{2 \pi}-1 d t=-2 \pi
$$

Thus, each of the above integrals is either -2π or 0 . Since $0 \leq 2(0),-2 \pi \geq 3(-2 \pi)$, $0 \geq 3(-2 \pi)$, and $-2 \pi \leq 2(0)$, the inequality is never satisfied.
3. Compute the scalar line integral of $f(x, y)=x y^{2}-2 x$ over the piece of the circle $x^{2}+y^{2}=9$ that lies in the first quadrant.

ANSWER: We can parametrize this curve with $\mathbf{x}(t)=(3 \cos t, 3 \sin t)$ for $0 \leq t \leq \pi / 2$. By definition the scalar line integral is then

$$
\begin{aligned}
\int_{0}^{\pi / 2} f(3 \cos t, 3 \sin t)\left\|\mathbf{x}^{\prime}(t)\right\| d t & =\int_{0}^{\pi / 2}\left[27(\cos t)\left(\sin ^{2} t\right)-6 \cos t\right] \sqrt{9 \cos ^{2} t+9 \sin ^{2} t} d t \\
& =3 \int_{0}^{\pi / 2} 27(\cos t)\left(\sin ^{2} t\right)-6 \cos t d t=3\left[9 \sin ^{3} t-6 \sin t\right]_{0}^{\pi / 2} \\
& =3(9-6)-0=9
\end{aligned}
$$

4. Xerxon the alien is in a spaceship when it suddenly begins to malfunction. At that moment, the ship is at position $(0,0,0)$, moving at a speed of $5 \mathrm{~km} / \mathrm{s}$ in the direction of the vector $(0,0,-1)$. (Here, distances are in kilometers and time is in seconds.) Its malfunctioning boosters then provide the erratic acceleration

$$
\mathbf{a}(t)=\left(\pi \sin (\pi t), \pi^{2} \cos (\pi t), 2\right)\left(\text { in } k m / s^{2}\right)
$$

(a) There is a small piece of space junk at the position $(3,2,-6)$. When will Xerxon's spaceship collide with it?

ANSWER: We antidifferentiate to find Xerxon's position function. First, we have $\mathbf{v}(t)=\left(-\cos (\pi t)+c_{1}, \pi\left(\sin (\pi t)+c_{2}, 2 t+c_{3}\right)\right.$. The spaceship's initial velocity is $(0,0,-5)=\mathbf{v}(t)=\left(-1+c_{1}, 0+c_{2}, 0+c_{3}\right)$, so we have

$$
\mathbf{v}(t)=(-\cos (\pi t)+1, \pi(\sin (\pi t), 2 t-5)
$$

Antidifferentiating again we get $\mathbf{x}(t)=\left(\frac{-1}{\pi} \sin (\pi t)+t+k_{1},-\cos (\pi t)+k_{2}, t^{2}-5 t+k_{3}\right)$. And the initial position is $(0,0,0)=\mathbf{x}(0)=\left(k_{1},-1+k_{2}, k_{3}\right)$, so

$$
\mathbf{x}(t)=\left(\frac{-1}{\pi} \sin (\pi t)+t,-\cos (\pi t)+1, t^{2}-5 t\right)
$$

To find when this is equal to $(3,2,-6)$ we solve $t^{2}-5 t=-6$, or $t^{2}-5 t+6=0$, which factors to $(t-2)(t-3)=0$. So there are only two possibilities. If $t=2$, then $x(2)=\frac{-1}{\pi} \sin (2 \pi)+2=2 \neq 3$, so the first coordinate is not correct. If $t=3$, then $x(3)=\frac{-1}{\pi} \sin (3 \pi)+3=3$ and $y(3)=-\cos (3 \pi)+1=1+1=2$, so $\mathbf{x}(t)=(3,2,-6)$. He hits the space junk after 3 seconds.
(b) If the spaceship hits the junk while moving faster than $2 \mathrm{~km} / \mathrm{s}$, it will damage the ship. Will Xerxon's spaceship be damaged?

ANSWER: His speed at the time of impact is

$$
\|\mathbf{v}(3)\|=\sqrt{2^{2}+0^{2}+1^{2}}=\sqrt{5}>\sqrt{4}=2
$$

so Xerxon's ship will be damaged.
5. Consider the conservative vector field

$$
\mathbf{F}=\left(y z^{2}+e^{x-y} \cos z\right) \mathbf{i}+\left(x z^{2}-e^{x-y} \cos z\right) \mathbf{j}+\left(2 x y z-e^{x-y} \sin z+1\right) \mathbf{k}
$$

(a) Find a potential function for \mathbf{F}.

ANSWER: We must have $f_{x}=y z^{2}+e^{x-y} \cos z$, so $f=\int f_{x} d x=x y z^{2}+e^{x-y} \cos z+$ $g(y, z)$. Then

$$
x z^{2}-e^{x-y} \cos z=f_{y}=x z^{2}-e^{x-y} \cos z+g_{y}
$$

so $g(y, z)=h(z)$. Also,

$$
2 x y z-e^{x-y} \sin z+1=f_{z}=2 x y z-e^{x-y} \sin z+h^{\prime}(z)
$$

so $h(z)=z+c$, so $f(x, y, z)=x y z^{2}+e^{x-y} \cos z+z$ is a potential function.
(b) Compute the vector line integral of \mathbf{F} over the curve consisting of the helix with parametric equations $\mathbf{x}(t)=(\cos t, \sin t, t), 0 \leq t \leq 2 \pi$ followed by the line segment from ($1,0,2 \pi$) to $(0,0,0)$.

ANSWER: The path begins at the point $(1,0,0)$ and ends at the point $(0,0,0)$, so since $\mathbf{F}=\nabla f$, the integral is

$$
f(0,0,0)-f(1,0,0)=(0+1+0)-(0+e+0)=1-e .
$$

6. Let $\mathbf{F}(t)=\left(e^{e^{x}}+x y^{2}+y, e^{y}+x^{2} y\right)$ and let C be the part of the parabola $x=1-y^{2}$ to the right of the y-axis, oriented counterclockwise. Find $\int_{C} \mathbf{F} \cdot d \mathbf{s}$.
ANSWER: The curl of \mathbf{F} is much simpler than \mathbf{F} itself, so we would like to apply Green's Theorem. The given curve is not closed so we have to "close it off" with the line segment $\mathbf{x}(t)=(0,-t)$ for $-1 \leq t \leq 1$.

In the picture on the right, the blue curve is C, the red curve is the path \mathbf{x} we've added to "close it off," and the shaded region is the region enclosed by this new simple, closed, piecewise C^{1} curve. Since it is oriented so that D lies to our left as we traverse the curve, Green's Theorem implies

$$
\int_{C} \mathbf{F} \cdot d \mathbf{s}+\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s}=\iint_{D}(\operatorname{curl} \mathbf{F}) \cdot \mathbf{k} d A
$$

So to compute the given integral, we need only compute the vector line integral along \mathbf{x} and the integral of the curl over D.

$$
\begin{gathered}
\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s}=\int_{-1}^{1}\left(e^{e^{0}}+0-t, e^{-t}+0\right) \cdot(0,-1) d t=\int_{-1}^{1}-e^{-t} d t=\left[e^{-t}\right]_{-1}^{1}=1 / e-e \\
\begin{aligned}
\iint_{D}(\operatorname{curl} \mathbf{F}) \cdot \mathbf{k} d A & =\iint_{D}\left(\frac{\partial}{\partial x}\left(e^{y}+x^{2} y\right)-\frac{\partial}{\partial y}\left(e^{e^{x}}+x y^{2}+y\right)\right) d A=\iint_{D}(2 x y-2 x y-1) d A \\
& =\int_{-1}^{1} \int_{0}^{1-y^{2}}-1 d x d y=\int_{-1}^{1}\left(y^{2}-1\right) d y=\left[\frac{y^{3}}{3}-y\right]_{y=-1}^{1} \\
& =(1 / 3-1)-(-1 / 3+1)=2 / 3-2=-4 / 3
\end{aligned}
\end{gathered}
$$

Hence,

$$
\int_{C} \mathbf{F} \cdot d \mathbf{s}=\iint_{D}(\operatorname{curl} \mathbf{F}) \cdot \mathbf{k} d A-\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s}=-4 / 3-(1 / e-e)=e-1 / e-4 / 3 .
$$

