Math 290-3: Midterm 2
 Spring Quarter 2015
 Thursday, May 21, 2015

Put a check mark next to your section:

Davis (10am)		Canez	
Peterson		Davis (12pm)	

Question	Possible points	Score
1	20	
2	20	
3	15	
4	15	
5	15	
6	15	
TOTAL	100	

Instructions:

- Read each problem carefully.
- Write legibly.
- Show all your work on these sheets.
- This exam has 10 pages, and 6 questions. Please make sure that all pages are included.
- You may not use books, notes or calculators.
- You have one hour to complete this exam.

Good luck!

1. Determine whether each of the following statements is TRUE or FALSE. Justify your answer. (This problem has four parts.)
(a) Let $\mathbf{F}(x, y)=(0, x)$ and let C be the ellipse $x^{2}+y^{2} / 4=1$ oriented counterclockwise. Then $\int_{C} \mathbf{F} \cdot d \mathbf{s}>0$.

Answer:
(b) Let $\mathbf{F}(x, y)=\left(2 x y+\sin y, x^{2}+x \cos y\right)$ and let C be the curve with parametric equations $\mathbf{x}(t)=\left(\sin (\pi t), t^{2}\right)$ for $-1 \leq t \leq 1$. Then $\int_{C} \mathbf{F} \cdot d \mathbf{s}>0$.

Answer:

(c) Let D be the region in \mathbb{R}^{2} obtained by removing the origin. If \mathbf{F} is a C^{1} vector field on D such that $\operatorname{curl} \mathbf{F}=\mathbf{0}$ at each point of D, then $\oint_{C} \mathbf{F} \cdot d \mathbf{s}=0$ for every closed curve C in D.

Answer:
(d) Let $\mathbf{F}(x, y)=(P(x, y), Q(x, y))$, let D be the rectangle $[0,1] \times[0,2]$ and let C be the curve consisting of the line segment from $(0,0)$ to $(1,0)$, followed by the line segment from $(1,0)$ to $(1,2)$, followed by the line segment from $(1,2)$ to $(0,2)$. Assume that \mathbf{F} has continuous partial derivatives in D. Then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{s}=\int_{0}^{1} \int_{0}^{2}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d y d x+\int_{0}^{2} Q(0, t) d t
$$

Answer:
2. Determine whether each of the following statements is ALWAYS true, SOMETIMES true, or NEVER true. Justify your answer. (This problem has four parts.)
(a) For numbers $a<b$, let $\mathbf{x}(t)=(x(t), y(t))$ with $a \leq t \leq b$ be parametric equations for a smooth curve such that $\mathbf{x}(t)$ lies on the unit circle for all t. Then

$$
\int_{a}^{b}\left\|\mathbf{x}^{\prime}(t)\right\| d t=2 \pi
$$

Answer:
(b) Let C be the portion of the curve defined by $1=y e^{-x^{2}}$ which starts at $(-1, e)$ and ends at $(1, e)$. For a real number k,

$$
\int_{C}-2 x y e^{-x^{2}} d x+\left(e^{-x^{2}}+k^{2}\right) d y>0
$$

Answer:
(c) For a C^{1} vector field \mathbf{F} on \mathbb{R}^{2} such that $\operatorname{div}(\mathbf{F})=0$ everywhere, $(\operatorname{curl} \mathbf{F})(p) \neq \mathbf{0}$ for every point p in \mathbb{R}^{2}.

[^0](d) For a nonzero C^{2} vector field \mathbf{F} on \mathbb{R}^{3}, we have $\operatorname{curl} \mathbf{F}=\nabla(\operatorname{div} \mathbf{F})$.

Answer:
3. Determine the value of the scalar line integral

$$
\int_{C}(2 x y-y z) d s
$$

where C is the intersection of the cylinder $y^{2}+z^{2}=1$ and the plane $z=x$.
4. Compute the vector line integral

$$
\int_{C}\left(y+\sin y+e^{x^{4}}\right) d x+(y+(x-1) \cos y) d y
$$

where C is the left half of the circle $(x-1)^{2}+y^{2}=1$ oriented clockwise.
5. (This question has two parts.) Let \mathbf{F} be the vector field on \mathbb{R}^{2} defined by

$$
\mathbf{F}(x, y)=\left(y e^{y}+y^{2}-y \pi \sin (x y \pi)\right) \mathbf{i}+\left(x e^{y}+x y e^{y}+2 y x-x \pi \sin (x y \pi)\right) \mathbf{j} .
$$

(a) Show that \mathbf{F} is conservative on \mathbb{R}^{2}.
(b) Find the value of the vector line integral

$$
\int_{C}\left(y+y e^{y}+y^{2}-y \pi \sin (x y \pi)\right) d x+\left(-x+x e^{y}+x y e^{y}+2 y x-x \pi \sin (x y \pi)\right) d y
$$

where C is the piece of the parabola $x=y^{2}-1$ which starts at $(0,-1)$ and ends at $(0,1)$.
6. Compute the vector line integral

$$
\int_{C}\left(z+y \sin ^{2}(z+1)\right) d x-x \cos ^{2}(z+1) d y+z^{100} e^{x \cos y} d z
$$

where C is the square $[0,1] \times[0,1]$ in the $x y$-plane oriented counterclockwise when viewed from the positive z-direction.

[^0]: Answer:

