Math 290-2: Midterm 2

Winter Quarter 2015

Monday, March 2, 2015

Put a check mark next to your section:

Davis		Canez	
Alongi		Peterson	

Question	Possible points	Score
1	20	
2	20	
3	15	
4	10	
5	15	
6	20	
TOTAL	100	

Instructions:

- Read each problem carefully.
- Write legibly.
- Show all your work on these sheets.
- This exam has 10 pages, and 6 questions. Please make sure that all pages are included.
- You may not use books, notes or calculators.
- You have one hour to complete this exam.

Good luck!

1. Determine whether each of the following statements is TRUE or FALSE. Justify your answer. (This problem has four parts.)
(a) The graph of $\rho=1-\sin (\phi)$ describes a sphere.

Answer:
(b) There exist numbers k and ℓ such that level sets of the functions $f(x, y, z)=x+y+z$ and $g(x, y, z)=x+y+z+1$ at levels k and ℓ, respectively, are the same surface.

[^0](c) There is a C^{2} function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that
$$
\frac{\partial f}{\partial x}(x, y)=x y=\frac{\partial f}{\partial y}(x, y) .
$$

Answer:
(d) There is a differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that the directional derivative $D_{\mathbf{u}} f(\mathbf{0})>0$ for every unit vector $\mathbf{u} \in \mathbb{R}^{n}$.

Answer:

2. Determine whether each of the following statements is ALWAYS true, SOMETIMES true, or NEVER true. Justify your answer. (This problem has four parts.)
(a) For a function $f(\theta)$, the polar graphs of $r=f(\theta)$ and $r=f(-\theta)$ are different.

Answer:
(b) For $a \geq 0, \lim _{(x, y) \rightarrow(0,0)} \frac{|x|^{a} y^{3}+x^{2} y}{x^{2}+y^{2}}$ exists.

Answer:
(c) For a C^{2} function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ where $x=x(t)$ and $y=y(t)$ are each twicedifferentiable functions of a variable t,

$$
\frac{d^{2} f}{d t^{2}}=\frac{\partial^{2} f}{\partial x^{2}} \frac{d^{2} x}{d t^{2}}+\frac{\partial^{2} f}{\partial y^{2}} \frac{d^{2} y}{d t^{2}}
$$

Answer:

(d) For a point (a, b) in \mathbb{R}^{2}, the tangent plane to the sphere $x^{2}+y^{2}+z^{2}=1$ at $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ is parallel to the tangent plane to the graph of $f(x, y)=-x y^{2}-x+2 y$ at $(a, b, f(a, b))$.

Answer:
3. Consider the function $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $F(x, y, z)=x^{2}+y^{2}+2 \sqrt{2} x z$. For which numbers k does $F(x, y, z)=k$ describe a two-sheeted hyperboloid?
4. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be the function defined by

$$
f(x, y, z)= \begin{cases}\left(x^{2}+y^{2}+z^{2}\right) \sin \left(\frac{1}{x^{2}+y^{2}+z^{2}}\right) & (x, y, z) \neq(0,0,0) \\ k & (x, y, z)=(0,0,0)\end{cases}
$$

Find a value of k which makes f continuous at $(0,0,0)$.
5. Find a linear approximation to the function $\mathbf{g}(x, y, z)=\left(2^{x+y+z}, \sin (x+y-2 z)\right)$ at $(1,1,1)$ and use it to approximate $\mathbf{g}(1,0.9,1.1)$. (Recall that the derivative of $f(x)=2^{x}$ with respect to x is $2^{x} \ln 2$.)
6. (This problem has two parts.) The function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)=\frac{1}{69 \pi} \sin \left(\left(3 x^{2}+5 y^{2}\right) \pi\right)-7
$$

describes the air temperature in degrees Celsius on a patch of ice at position (x, y). Wally the Walrus is wallowing in some snow at position $(2,-1)$.
(a) In which direction should Wally waddle to warm up most quickly? Give your answer as a (not necessarily unit) vector.
(b) At some time, Wally waddles through the point $(3,2)$ following the curve with parametric equations

$$
(x(t), y(t))=\left(t+2,3 t^{2}-1\right)
$$

where t is measured in hours. What is the rate of change in air temperature with respect to time that Wally experiences as he waddles through the position $(3,2)$? The air temperature is described by the same function $f(x, y)=\frac{1}{69 \pi} \sin \left(\left(3 x^{2}+5 y^{2}\right) \pi\right)-7$ as before.

[^0]: Answer:

