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Lecture 1: Introduction to Linear Systems

Today I gave a brief introduction to some concepts we’ll be looking at this quarter, such as matrices,
eigenvalues, and eigenvectors. I mentioned one or two ways in which such concepts show up in other
areas.

Example 1. The system of linear equations (also known as a linear system):

x+ 2y = 0

−3x− 2y = 8

has precisely one solution: x = −4, y = 2. Geometrically, both of these equations describe lines in
the xy-plane and the existence of only one solution means that these two lines intersect in exactly
one point.

Example 2. The system of linear equations:

x+ 2y = 0

−3x− 6y = −3

has no solutions. Geometrically, this happens because the corresponding lines are parallel and don’t
intersect.

Example 3. The system of equations:

x+ 2y = 0

−3x− 6y = 0

has infinitely many solutions, meaning that there are infinitely many pairs of numbers (x, y) which
satisfy both equations simultaneously. Geometrically, these two equations describe the same line
and so intersect everywhere.

Important. The same phenomena regarding number of solutions is true in any number of dimen-
sions. In other words, any system of linear equations no matter how many variables or equations
are involved will have exactly one solution, no solution, or infinitely many solutions.

Example 4. Consider the system:

x+ 2y + 3z = 0

−3x− 2y − 8z = 8

2x+ 12y + z = 2

Geometrically, each of these equations describe planes in 3-dimensional space (we’ll talk about
planes a lot more when we get to multivariable calculus) and by finding the solution(s) of this
system we are determining where these three planes intersect. We solve the system using what are
called “row operations”, and we’ll describe this method in detail next time.

For now, note that multiplying the first equation by 3 gives 3x+ 6y + 9z = 0, and adding this
entire equation to the second one gives 4y + z = 8. The point is that this resulting equation no
longer has an x in it, so we’ve “eliminated” a variable. Similarly, multiplying the first equation
by −2 gives −2x − 4y − 6z = 0 and adding this to the third gives 8y − 5z = 2, and again we’ve
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eliminated x. Now consider the system keeping the first equation the same but replacing the second
and third with the new ones obtained:

x+ 2y + 3z = 0

4y + z = 8

8y − 5z = 2

The point is that this new system has precisely the same solutions as the original one! In other
words, “row operations” do change the actual equations involved but do not change the set of
solutions.

We can keep going. Now we move down to the 4y terms and decide we want to get rid of the
8y below it. We multiply the second equation by −2 and add the result to the third equation to
give −7z = −14. Thus we get the new system

x+ 2y + 3z = 0

4y + z = 8

− 7z = −14

Now we’re in business: the third equation tells us that z = 2, substituting this into the second and
solving for y gives y = 3/2, and finally substituting these two values into the first equation and
solving for x gives x = −9. Thus this system has only solution:

x = −9, y = 3/2, z = 2.

Again, since this method does not change the solutions of the various systems of equations we use,
this is also the only solution of our original system.

Lecture 2: Gauss-Jordan Elimination

Today we started talking about Gauss-Jordan Elimination, which gives us a systematic way of
solving systems of linear equations. This technique is going to be the most useful computational
tool we’ll have the entire quarter, and it will be very beneficial to get to the point were you can
carry it out fairly quickly and without errors. Practice makes perfect! We’ll continue with examples
on Monday.

Warm-Up 1. Solve the system of equations:

2x+ 3y + z = 0

x− y + z = 2

We use the technique of “eliminating” variables. We first multiply the second row by −2 and add
the first row to it, giving 5y − z = −4. So now we have the system

2x+ 3y + z = 0

5y − z = −4

Now there are multiple ways we could proceed. First, we could add these two equations together
and use the result to replace the first equation, giving:

2x+ 8y = 0

5y − z = −4
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Compared to our original set of equations, these are simpler to work with. The question now
is: what do we do next? Do we keep trying to eliminate variables, or move on to trying to find
the solution(s)? Note that any further manipulations we do cannot possibly eliminate any more
variables, since such operations will introduce a variable we’ve already eliminated into one of the
equations. We’ll see later how we can precisely tell that this is the best we can do. So, let’s move
towards finding solutions.

For now, we actually go back to equations we had after our first manipulations, namely:

2x+ 3y + z = 0

5y − z = −4

We could instead try to eliminate the y term in the first equation instead of the z term as we did.
This illustrates a general point: there are often multiple ways of solving these systems, and it would
be good if we had a systematic way of doing so. This is what Gauss-Jordan elimination will do for
us. Here, let’s just stick with the above equations.

We will express the values of x and y in terms of z. The second equation gives

y =
z − 4

5
.

Plugging this in for y in the first equation and solving for x gives:

x =
−3y − z

2
=

−3
!
z−4
5

"
− z

2
=

12− 8z

10
.

These equations we’ve derived imply that our system in fact has infinitely many solutions: for any
value we assign to z, setting x equal to 12−8z

10 and y equal to z−4
5 gives a triple of numbers (x, y, z)

which form a solution of the original equation. Since z is “free” to take on any value, we call it a
“free” variable. Thus we can express the solution of our system as

x =
12− 8z

10
, y =

z − 4

5
, z free.

Warm-Up 2. Find the polynomial function of the form f(x) = a+bx+cx2 satisfying the condition
that its graph passes through (1, 1) and (2, 0) and such that

# 2
1 f(x) dx = −1.

The point of this problem is understanding what this has to do with linear algebra, and the
realization that systems of linear equations show up in many places. In particular, this problem boils
down to solving a system of three equations in terms of the three unknown “variables” a, b, and c.
The condition that the graph of f(x) pass through (1, 1) means that f(1) should equal 1 and the
condition that the graph pass through (2, 0) means that f(2) should equal 0. Writing out what
this means, we get:

f(1) = 1 means a+ b+ c = 1

and
f(2) = 0 means a+ 2b+ 4c = 0.

Finally, since $ 2

1
(a+ bx+ cx2) dx =

%
ax+

bx2

2
+

cx3

3

&''''
2

1

= a+
3

2
b+

7

3
c,

the condition that
# 2
1 f(x) dx = −1 gives

a+
3

2
b+

7

3
c = −1.
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In other words, the unknown coefficients a, b, c we are looking for must satisfy the system of equa-
tions:

a+ b+ c = 1

a+ 2b+ 4c = 0

a+ 3
2b+

7
3c = −1

Thus to find the function we want we must solve this system. We’ll leave this for now and come
back to it in a bit.

Augmented Matrices. From now on we will work with the “augmented matrix” of a system of
equations rather than the equations themselves. The augmented matrix encodes the coefficients of
all the variables as well as the numbers to the right of the equals sign. For instance, the augmented
matrix of the system in the first Warm-Up is

%
2 3 1 | 0
1 −1 1 | 2

&
.

The first column encodes the x coefficients, the second the y coefficients, and so on. The vertical
lines just separate the values which come from coefficients of variables from the values which come
from the right side of the equals sign.

Important. Gauss-Jordan elimination takes a matrix and puts it into a specialized form known as
“reduced echelon form”, using “row operations” such as multiplying a row by a nonzero number,
swapping rows, and adding rows together. The key point is to eliminate (i.e. turn into a 0) entries
above and below “pivots”.

Example 1. We consider the system

x+ 2y − z + 3w = 0

2x+ 4y − 2z = 3

−2x + 4z − 2w = 1

3x+ 2y + 5w = 1

with augmented matrix: (

))*

1 2 −1 3 | 0
2 4 −2 0 | 3
−2 0 4 −2 | 1
3 2 0 5 | 1

+

,,- .

The pivot (i.e. first nonzero entry) of the first row is in red. Our first goal is to turn every entry
below this pivot into a 0. We do this using the row operations:

−2I + II → II, 2I + III → III, and − 3I + IV → IV,

where the roman numerals denote row numbers and something like −3I+IV → IV means multiply
the first row by −3, add that to the fourth row, and put the result into the fourth row. These
operations produce (

))*

1 2 −1 3 | 0
0 0 0 −6 | 3
0 4 2 4 | 1
0 −4 3 −4 | 1

+

,,- ,
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where we have all zeros below the first pivot.
Now we move to the second row. Ideally we want the pivot in the second row to be diagonally

down from the pivot in the first row, but in this case it’s not—the −6 is further to the right.
So, here a row swap is appropriate in order to get the pivot of the second row where we want it.
Swapping the second and fourth rows gives

(

))*

1 2 −1 3 | 0
0 −4 3 −4 | 1
0 4 2 4 | 1
0 0 0 −6 | 3

+

,,- .

Our next goal is to get rid of the entries above and below the pivot −4 of the second row. For this
we use the row operations:

II + III → III and 2I + II → I.

This gives (

))*

2 0 1 2 | 1
0 −4 3 −4 | 1
0 0 5 0 | 2
0 0 0 −6 | 3

+

,,- .

Now onto the third row and getting rid of entries above and below its pivot 5. Note that the
point of swapping the second and fourth rows earlier as opposed to the second and third is that
now we already have a zero below the 5, so we only have to worry about the entries above the 5.
The next set of row operations (5II − 3III → II and −5I + III → I) give

(

))*

−10 0 0 −10 | −3
0 −20 0 −20 | −1
0 0 5 0 | 2
0 0 0 −6 | 3

+

,,- .

Finally, we move to the final pivot −6 in the last row and make all entries above it using the
operations

−3I + (5)IV → I and − 3II + (10)IV → II.

This gives (

))*

30 0 0 0 | 24
0 60 0 0 | 33
0 0 5 0 | 2
0 0 0 −6 | 3

+

,,- .

As we wanted, all entries above and below pivots are zero. The final step to get to so-called
“reduced echelon form” is to make all pivots one, by dividing each row by the appropriate value.
So, we divide the first row by 30, the second by 60, third by 5, and fourth by −6 to get:

(

))*

1 0 0 0 | 24/30
0 1 0 0 | 33/60
0 0 1 0 | 2/5
0 0 0 1 | −1/2

+

,,- .

This matrix is now in reduced echelon form. Looking at the corresponding system of equations,
the point is that we’ve now eliminated all variables but one in each equation. Right away, writing
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down this corresponding system we get that

x =
24

30
, y =

33

60
, z =

2

5
, 2 = −1

2

is the only solution to our original system of equations.

Important. The characteristic properties of a matrix in “reduced echelon form” are: all entries
above and below pivots are 0, each pivot occurs strictly to the right of any pivot above it, and all
pivots are 1. This is what we aim for when performing Gauss-Jordan elimination.

Back to Warm-Up 2. Let’s finish up the second Warm-Up problem. We are left with solving

a+ b+ c = 1

a+ 2b+ 4c = 0

a+ 3
2b+

7
3c = −1

for a, b, and c. We “row reduce” the augmented matrix:

(

*
1 1 1 | 1
1 2 4 | 0
1 3/2 7/3 | −1

+

- .

To avoid dealing with fractions, we first multiply the third row by 6. Performing various row
operations gives:

(

*
1 1 1 | 1
1 2 4 | 0
6 9 14 | −6

+

- →

(

*
1 1 1 | 1
0 −1 −3 | 1
0 3 8 | −12

+

- →

(

*
1 0 −2 | 2
0 −1 −3 | 1
0 0 −1 | −9

+

-

→

(

*
1 0 0 | 20
0 −1 0 | 28
0 0 −1 | −9

+

- →

(

*
1 0 0 | 20
0 1 0 | −28
0 0 1 | 9

+

- .

The corresponding system of equations is

a = 20, b = −28, c = 9

and have found our desired unknown value. The conclusion is that the function f(x) = 20−28x+9x2

is the one satisfying the properties asked for in the second Warm-Up.

Lecture 3: Solutions of Linear Systems

Today we continued talking about solving systems of linear equations, and started talking about
vectors and how they provide an alternate way to think about systems.

Warm-Up 1. We solve the following system of linear equations:

−2x1 − 4x2 − 2x3 − 3x4 − 3x5 = −5

x1 + 2x2 + x3 + 4x4 − x5 = 5

3x1 + 6x2 + 5x3 + 10x4 − 4x5 = 14

−x1 − 2x2 + x3 − 2x4 − 4x5 = 2
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using Gauss-Jordan elimination. First, we switch the first two rows in the augmented matrix in
order to have 1 in the uppermost position instead of −2—this will help with computations. The
augmented matrix is (

))*

1 2 1 4 −1 | 5
−2 −4 −2 −3 −3 | −5
3 6 5 10 −4 | 14
−1 −2 1 −2 −4 | 2

+

,,- .

Performing the row operations 2I + II → II,−3I + III → III, and I + IV → IV gives:

(

))*

1 2 1 4 −1 | 5
−2 −4 −2 −3 −3 | −5
3 6 5 10 −4 | 14
−1 −2 1 −2 −4 | 2

+

,,- →

(

))*

1 2 1 4 −1 | 5
0 0 0 5 −5 | 5
0 0 2 −2 −1 | −1
0 0 2 2 −5 | 7

+

,,- .

Now, there can be no pivot in the second column since the entries in the second, third, and
fourth rows are 0. The best place for the next pivot would be the third entry of the second row, so
to get a pivot here we switch the second and fourth rows:

(

))*

1 2 1 4 −1 | 5
0 0 2 2 −5 | 7
0 0 2 −2 −1 | −1
0 0 0 5 −5 | 5

+

,,- .

We perform the row operation II − III → III:

(

))*

1 2 1 4 −1 | 5
0 0 2 2 −5 | 7
0 0 2 −2 −1 | −1
0 0 0 5 −5 | 5

+

,,- →

(

))*

1 2 1 4 −1 | 5
0 0 2 2 −5 | 7
0 0 0 4 −4 | 8
0 0 0 5 −5 | 5

+

,,- .

In usual Gauss-Jordan elimination we would also want to eliminate the 1 above the pivot 2 in the
second row, but for now we skip this. To simplify some computations, we next divide the third row
by 4 to get (

))*

1 2 1 4 −1 | 5
0 0 2 2 −5 | 7
0 0 0 1 −1 | 2
0 0 0 5 −5 | 5

+

,,- .

We perform the row operation −5III + IV → IV :

(

))*

1 2 1 4 −1 | 5
0 0 2 2 −5 | 7
0 0 0 1 −1 | 2
0 0 0 5 −5 | 5

+

,,- →

(

))*

1 2 1 4 −1 | 5
0 0 2 2 −5 | 7
0 0 0 1 −1 | 2
0 0 0 0 0 | −5

+

,,- .

Since the last row corresponds to the impossible equation 0 = −5, the original system has no
solutions. Note that we did not have to do a full Gauss-Jordan elimination to determine this.

Important. If you are only interested in determining whether there is a solution, or how many
there are, a full Gauss-Jordan elimination is not needed. Only use a full elimination process when
trying to actually describe all solutions.
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Warm-Up 2. We consider the same system as before, only changing the 2 at the end of the last
equation to −2. If you follow through the same row operations as before, you end up with the
augmented matrix:

(

))*

1 2 1 4 −1 | 5
0 0 2 2 −5 | 3
0 0 0 1 −1 | 1
0 0 0 5 −5 | 5

+

,,- →

(

))*

1 2 1 4 −1 | 5
0 0 2 2 −5 | 3
0 0 0 1 −1 | 1
0 0 0 0 0 | 0

+

,,- .

We no longer have the issue we had before, so here we will have a solution, and in fact infinitely
many. We first do −2I + II → I to get rid of the 1 above the pivot 2, which we skipped in the first
Warm-Up: (

))*

1 2 1 4 −1 | 5
0 0 2 2 −5 | 3
0 0 0 1 −1 | 1
0 0 0 0 0 | 0

+

,,- →

(

))*

−2 −4 0 −6 −3 | −7
0 0 2 2 −5 | 3
0 0 0 1 −1 | 1
0 0 0 0 0 | 0

+

,,- .

Next we do 6III + I → I and −2III + II → II to get rid of the entries above the pivot 1:

(

))*

−2 −4 0 −6 −3 | −7
0 0 2 2 −5 | 3
0 0 0 1 −1 | 1
0 0 0 0 0 | 0

+

,,- →

(

))*

−2 −4 0 0 −9 | −1
0 0 2 0 −3 | 1
0 0 0 1 −1 | 1
0 0 0 0 0 | 0

+

,,- .

Finally we divide the first row by −2 and the second by 2 to get:

(

))*

1 2 0 0 9/2 | 1/2
0 0 1 0 −3/2 | 1/2
0 0 0 1 −1 | 1
0 0 0 0 0 | 0

+

,,- .

This matrix is now in what’s called row-reduced echelon form since all pivots are 1, all entries above
and below pivots are zero, and each pivot occurs strictly to the right of any pivot above it.

The variables which don’t correspond to pivots are the ones we call “free” variables, and when
writing down the general form of the solution we express all “pivot” variables in terms of the free
ones. The rank (i.e. # of pivots in the reduced echelon form) of this matrix, or of the original one
we started with, is 3. This final augmented matrix corresponds to the system:

x1 + 2x2 + 9
2x5 =

1
2

x3 − 3
2x5 =

1
2

x4 − x5 = 2

so we get

x1 = −2x2 −
9

2
x5 +

1

2
, x3 =

3

2
x5 +

1

2
, x4 = x5 + 1

with x2 and x5 free. In so-called “vector form”, the general solution is

(

))))*

x1
x2
x3
x4
x5

+

,,,,-
=

(

))))*

−2s− 9
2 t+

1
2

s
3
2 t+

1
2

t+ 1
t

+

,,,,-
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where s and t are arbitrary numbers.

Fact about reduced echelon form. It is possible to get from one matrix to another using a
sequence of row operations precisely when they have the same reduced echelon form. For instance,
since the reduced echelon form of

(

*
1 2 3
4 5 6
7 8 10

+

- and

(

*
1 4 3
9 1 −10
89 π 23838

+

-

both have (

*
1 0 0
0 1 0
0 0 1

+

-

as their reduced echelon form, it is possible to get from one to the other by some sequence of row
operations.

Relation between rank and number of solutions. Based on the form of the reduced echelon
form of a matrix, there is a strong relation between the rank of a matrix and the number of solutions
of a system having that matrix as its coefficients. For instance, any system where the rank is < the
number of variables cannot possibly have a unique solution. Also, any system where the rank equals
the number of variables cannot possibly have an infinite number of solutions. We will explore this
further later, but check the book for similar facts.

Vectors. A vector is a matrix with one column, and is said to be in Rn when it has n entries. (R
is a common notation for the set of real numbers.) For instance,

%
1
2

&
is in R2, and

(

*
1
2
3

+

- is in R3.

We draw vectors as arrows starting at the “origin” ( 00 ) and ending at the point determined by the
vector’s entries. We add vectors simply by adding the corresponding entries together, and multiple
vectors by scalars (i.e. numbers) simply by multiplying each entry of the vector by that scalar.

Relation between vectors and linear systems. Consider the system

2x+ 3y + z = 0

x− y + z = 2

from a previous example. If we imagine each row as the entry of a vector, we can write the entire
left-hand side as the vector sum:

x

%
2
1

&
+ y

%
3
−1

&
+ z

%
1
1

&
.

The right side is the vector ( 02 ), so the given system can be written as

x

%
2
1

&
+ y

%
3
−1

&
+ z

%
1
1

&
=

%
0
2

&
.

The upshot is that we have transformed the original system of equations into a single vector
equation. This will be a jumping off point into a wide range of new topics, and we will come back
to it Wednesday.
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Lecture 4: More on Solutions of Systems and Vectors

Today we continued talking about the relation between solutions of linear systems and vectors, and
the various ways of representing systems in terms of vectors and matrices.

Warm-Up. Is there a 3× 4 matrix A of rank 3 such that the system with augmented matrix

(

*
| 1

A | 2
| 3

+

-

has a unique solution? If you think about what the reduced echelon form of A looks like, we know
that it should have 3 pivots. However, with 4 columns this means that one column won’t have
a pivot and so will correspond to a free variable. This means that it is not possible for such a
system to have exactly one solution: either it will have no solutions or infinitely many depending
on whether the last row in the reduced echelon form corresponds to 0 = 0 or some impossible
equation. The key point is understanding the relation between number of pivots and number of
solutions.

As a contrast, we ask if there is a 4×3 matrix A of rank 3 such that the system with augmented
matrix !

A | "0
"
,

where "0 denotes the zero vector in R4, has a unique solution. In this case, in fact for any such
matrix this system will have a unique solution. Again the reduced form will have 3 pivots, but now
with A having only 3 columns there won’t be a column without a pivot and so no free variables.
Since we started with the “augmented” piece (i.e. the final column corresponding to the numbers
on the right side of equals signs in the corresponding system) consisting of all zeroes, any row
operations which transform the A part into reduced form will still result in the final column being
all zeroes. Thus there are no contradictions like “0 = 1” and so such a system will always have a
unique solution, namely the one where all variables equal 0.

Geometric meaning of vector addition and scalar multiplication. Given a vector "x and a
scalar r, the vector r"x points is parallel to "x but its length is scaled by a factor of r; for negative r
the direction is turned around:

Given vectors "x and "y, their sum "x+ "y is the vector which forms the diagonal of the parallelogram
with sides "x and "y:
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Linear combinations. Recall that previously we saw how to write the system

2x+ 3y + z = 0

x− y + z = 2

as the vector equation

x

%
2
1

&
+ y

%
3
−1

&
+ z

%
1
1

&
=

%
0
2

&
.

The expression on the left is what is called a linear combination of
%
2
1

&
,

%
3
−1

&
, and

%
1
1

&
.

So, asking whether or not ( 02 ) can be expressed as such a linear combination is the same as
asking whether or not the corresponding system has a solution. We already know from previous
examples that this system has infinitely many solutions, but let us now understand why this is true
geometrically.

Consider first the simpler vector equation given by

x

%
2
1

&
+ y

%
3
−1

&
=

%
0
2

&
. (1)

Using the geometric interpretations of vector addition and scalar multiplication, it makes sense
that this system has a unique solution since we can eyeball that there are specific scalars x and y
we can use to scale ( 21 ) and

!
3
−1

"
and have the results add up to ( 02 ).
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Similarly, the vector equation given by

y

%
3
−1

&
+ z

%
1
1

&
=

%
0
2

&
(2)

should also have a unique solution, based on the picture:

Now we go back to our original vector equation. The solution for x and y in equation 1 together
with z = 0 gives a solution of

x

%
2
1

&
+ y

%
3
−1

&
+ z

%
1
1

&
=

%
0
2

&
.

In the same manner the solution for y and z in equation 2 together with x = 0 gives another
solution of this same vector equation. Since this vector equation now has at least two solutions, it
in fact must have infinitely many since we know that any system has either no, one, or infinitely
many solutions. This agrees with what we found previously when solving this system algebraically.

The point is that now that we’ve rewritten systems in terms of vectors, we have new geometric
ideas and techniques available at our disposal when understanding what it means to solve a system
of linear equations.

Matrix forms of systems. Continuing on with the same example, the expression

x

%
2
1

&
+ y

%
3
−1

&
+ z

%
1
1

&

is also what we call the result of multiplying the matrix
!
2 3 1
1 −1 1

"
by the vector

.
x
y
z

/
:

%
2 3 1
1 −1 1

&(

*
x
y
z

+

- = x

%
2
1

&
+ y

%
3
−1

&
+ z

%
1
1

&
.

Thus the system we are considering can also be written in matrix form as

%
2 3 1
1 −1 1

&(

*
x
y
z

+

- =

%
0
2

&
.
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Solving this “matrix equation” for ( xy ) is the same as solving the original system of equations we
considered, which is also the same as solving the vector equation we had before. The idea we
will expand on in the coming weeks is that understanding more about matrices and such matrix
equations will give us yet another point of view on what it means to solve a system of linear
equations.

Important. Systems of linear equations, vector equations involving linear combinations, and
matrix equations are all different ways of looking at the same type of problem. These different
points of view allow the use of different techniques, and help to make systems more “geometric”.

Lecture 5: Linear Transformations

Today we started talking about what are called “linear transformations” and their relation to
matrices.

Warm-Up. Is the vector
.

4
0
2

/
a linear combination of the vectors

(

*
1
0
−1

+

- ,

(

*
3
2
−1

+

- , and

(

*
−1
−2
−1

+

-?

Recall that a linear combination of these three vectors is an expression of the form

a

(

*
1
0
−1

+

-+ b

(

*
3
2
−1

+

-+ c

(

*
−1
−2
−1

+

- ,

so we are asking whether there exist scalars a, b, c such that

a

(

*
1
0
−1

+

-+ b

(

*
3
2
−1

+

-+ c

(

*
−1
−2
−1

+

- =

(

*
4
0
2

+

- .

After adding together the entire left side this becomes

(

*
a+ 3b− c
2b− 2c

−a− b− c

+

- =

(

*
4
0
2

+

- ,

so our problem boils down to asking whether this system has a solution. Reducing the augmented
matrix gives

(

*
1 3 −1 | 4
0 2 −2 | 0
−1 −1 −1 | 2

+

- →

(

*
1 3 −1 | 4
0 2 −2 | 0
0 2 −2 | 6

+

- →

(

*
1 3 −1 | 4
0 2 −2 | 0
0 0 0 | 6

+

- ,

so we see that there is no solution. Hence the vector
.

4
0
2

/
is not a linear combination of the three

given vectors.

14



Instead we now ask if
.

4
2
−2

/
is a linear combination of the three given vectors. This is asking

whether

a

(

*
1
0
−1

+

-+ b

(

*
3
2
−1

+

-+ c

(

*
−1
−2
−1

+

- =

(

*
4
2
−2

+

-

has a solution, which is the same as asking whether the system

a+ 3b− c = 4

2b− 2c = 2

−a− b− c = −2

has a solution. Reducing the corresponding augmented matrix gives

(

*
1 3 −1 | 4
0 2 −2 | 2
−1 −1 −1 | −2

+

- →

(

*
1 3 −1 | 4
0 2 −2 | 2
0 2 −2 | 2

+

- →

(

*
1 3 −1 | 4
0 2 −2 | 2
0 0 0 | 0

+

- ,

at which point we know that there will be a solution. Thus
.

4
2
−2

/
is a linear combination of

the three given vectors. To be precise, continuing on and solving this system completely gives
a = −1, b = 2, c = 1 as one solution (there are infinitely many others), and you can check that

−

(

*
1
0
−1

+

-+ 2

(

*
3
2
−1

+

-+

(

*
−1
−2
−1

+

-

indeed equals
.

4
2
−2

/
.

Important. Questions about linear combinations often boil down to solving some system of linear
equations.

Example 1. Consider the function T from R2 to R2 defined by

T ("x) = A"x where A =

%
0 −1
1 0

&
.

To be clear, T is the function which takes a vector "x in R2 as an “input” and “outputs” the vector
resulting from multiplying A by "x. We also call T a “transformation” since it transforms vectors
in R2 somehow to produce other vectors.

To get a sense for what T is doing “geometrically”, consider what happens T is applied to ( 10 )
and ( 01 ). Inputing the first vector into T gives

T

%
1
0

&
=

%
0 −1
1 0

&%
1
0

&
=

%
0
1

&
,

so geometrically T has the effect of transforming ( 10 ) into ( 01 ). Similarly,

T

%
0
1

&
=

%
0 −1
1 0

&%
0
1

&
=

%
−1
0

&
,
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so T has the effect of transforming ( 01 ) into
!−1

0

"
. Note that in this case, ( 01 ) is nothing but what

you get when rotating ( 10 ) counterclockwise by 90◦ and

%
−1
0

&
is what you get when rotating ( 01 )

by the same amount. So we would say that geometrically applying T has the effect of rotating ( 10 )
and ( 01 ) by 90◦. In fact, as we will see, it turns out that this is the effect of T on any possible
input: given a vector "x in R2, the vector T ("x) obtained after applying T is the vector you get when
rotating "x (visualized as an arrow) by 90◦.

The above transformation T has the property that for any input vectors "x and "y we have

T ("x+ "y) = T ("x) + T ("y),

and for any scalar r we have
T (r"x) = rT ("x).

(This just says that A("x + "y) = A"x + A"y and A(r"x) = rA"x, which we will see later are general
properties of matrix multiplication.) The first equality says that when taking two inputs vectors,
it does matter whether we add them together first and then apply T to the result, or apply T to
the two inputs separately and then add, we will always get the same result. The second equality
says that scaling an input vector "x by r and then applying T is the same as applying T to "x first
and then scaling by r. Both of these properties should make sense geometrically since T after all is
nothing but a “rotation transformation”. These two properties together give us the first definition
of what it means to say a function is a “linear transformation”.

First definition of Linear Transformation. A function T from some space Rm to some space
Rn is a a linear transformation if it has the properties that

T ("x+ "y) = T ("x) + T ("y)

for any inputs "x and "y in Rm, and
T (r"x) = rT ("x)

for any input "x in Rm and any scalar r.

Example 2. Consider the transformation T from R2 to R2 defined by

T

%
x
y

&
=

%
2x+ 3y + 2
−3x− 4y

&
.

We claim that this is not linear. The first requirement says that given two input vectors, adding
them together and then applying T should give the same result as applying T to both inputs
separately and then adding. Take two arbitrary inputs ( xy ) and ( ab ). Then

T

%%
x
y

&
+ ( ab )

&
= T

%
x+ a
y + b

&
=

%
2(x+ a) + 3(y + b) + 2
−3(x+ a)− 4(y + b)

&
.

However, this is not the same result as

T

%
x
y

&
+ T

%
a
b

&
=

%
2x+ 3y + 2
−3x− 4y

&
+

%
2a+ 3b+ 2
−3a− 4b

&
=

%
2(x+ a) + 3(y + b) + 4
−3(x+ a)− 4(y + b)

&
.

The problem is that in this final expression we have a +4 in the first entry but in the one we
computed before we only have a +2. Thus this transformation does not satisfy

T ("x+ "y) = T ("x) + T ("y)
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so T is not a linear transformation.
Even though we already know T is not linear due to the fact that it fails the first requirement

in the definition of a linear transformation, for good measure let’s note that it also fails the second
requirement. Indeed, if r is any scalar we have

T

%
r

%
x
y

&&
= T

%
rx
ry

&
=

%
2rx+ 3ry + 2
−3rx− 4yr

&
,

which is not the same as

rT

%
x
y

&
= r

%
2x+ 3y + 2
−3x− 4y

&
=

%
2rx+ 3ry + 2r
−3rx+ 4ry

&

due to the 2r term as opposed to simply 2. Thus T (r"x) ∕= rT ("x) so T also fails the second
requirement in the definition of linear.

Important. In general it is possible for a function to satisfy neither property in the definition of
a linear transformation or to satisfy only one. To be a linear transformation it must satisfy both.

Example 3. Now consider the transformation S from R2 to R2 defined by

S

%
x
y

&
=

%
2x+ 3y
−3x− 4y

&
.

This is almost the same as T above only without the +2 term in the first entry. If you look back
to the computations we did above, without this +2 it turns out that

S("x+ "a) is the same as S("x) + S("a)

and
S(r"x) is the same as rS("x).

Thus S is a linear transformation. In general the formula for a linear transformation should only
involve “linear” (i.e. to the first power) terms in the input variables (so nothing like x2, xy, or sin y)
and should not have an extra constants added on.

Now, notice that the formula for S here can be rewritten in terms of matrix multiplication as

S

%
x
y

&
=

%
2x+ 3y
−3x− 4y

&
=

%
2 3
−3 −4

&%
x
y

&
.

So, S is actually a “matrix transformation”, just as the transformation in Example 1 was. It turns
out that this is true of any linear transformation, giving us our second way to define what it means
for a transformation to be linear.

Second definition of Linear Transformation. A function T from Rm to Rn is a linear trans-
formation if there is some n×m matrix A with the property that

T ("x) = A"x,

that is, applying T to an input vector is the same as multiplying that vector by A. We call A the
matrix of the transformation.
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Example 4. Consider the function L from R3 to R3 defined by

L

(

*
x
y
z

+

- =

(

*
y
z
x

+

- .

This is a linear transformation since the above formula is the same as

L

(

*
x
y
z

+

- =

(

*
0 1 0
0 0 1
1 0 0

+

-

(

*
x
y
z

+

- .

The matrix of the linear transformation L is thus
.

0 1 0
0 0 1
1 0 0

/
.

The two definitions of linear are the same. The second definition of linear transformation is
the one the book gives as the main definition, and then later on it talks about the first definition.
I think it is conceptually better to give the first definition as the main one, and to then realize that
such things are represented by matrices. Both definitions are equivalent in the sense that a function
satisfying one must satisfy the other. In particular, if T is a function from Rm to Rn satisfying the
first definition here is how we can see that it will also satisfy the second.

To keep notation simple we only focus on the case of a transformation T from R3 to R3. The

key point is that for any input vector
.

x
y
z

/
, we can express it as

(

*
x
y
z

+

- = x

(

*
1
0
0

+

-+ y

(

*
0
1
0

+

-+ z

(

*
0
0
1

+

- .

Then using the properties in the first definition of linear transformation we have:

T

(

*
x
y
z

+

- = T

(

*x

(

*
1
0
0

+

-+ y

(

*
0
1
0

+

-+ z

(

*
0
0
1

+

-

+

-

= T

(

*x

(

*
1
0
0

+

-

+

-+ T

(

*y

(

*
0
1
0

+

-

+

-+ T

(

*z

(

*
0
0
1

+

-

+

-

= xT

(

*
1
0
0

+

-+ yT

(

*
0
1
0

+

-+ zT

(

*
0
0
1

+

-

=

(

*T

(

*
1
0
0

+

- T

(

*
0
1
0

+

- T

(

*
0
0
1

+

-

+

-

(

*
x
y
z

+

- .

This shows that applying T to a vector is the same as multlying that vector by the matrix whose

first column is the result of applying T to
.

1
0
0

/
, second column the result of applying T to

.
0
1
0

/
,

and third column the result of applying T to
.

0
0
1

/
. Thus T is a linear transformation according to

the second definition with matrix given by
(

*T

(

*
1
0
0

+

- T

(

*
0
1
0

+

- T

(

*
0
0
1

+

-

+

- .
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A similar reasoning works for T from Rm to Rn in general, not just R3 to R3.

Important. For any linear transformation, the matrix which represents it is always found in the
same way: we determine what T does to input vectors with a single entry equal to 1 and other
entries equal to 0, and use these results of these computations as the columns of the matrix.

Lecture 6: Geometric Transformations

Today we looked at some “basic” types of geometric transformations and the matrices which rep-
resent them.

Warm-Up 1. Consider the linear transformation T from R2 to R2 defined by

T ("x) =

%
1 2
−2 −4

&
"x.

Find all vectors "x such that T ("x) = "0. Said another way, find all vectors which T sends to the zero
vector.

Setting "x = ( ab ), we want all values of a and b such that

T

%
a
b

&
=

%
1 2
−2 −4

&%
a
b

&
=

%
0
0

&
.

In other words, we are asked to solve the matrix equation
%

1 2
−2 −4

&%
a
b

&
=

%
0
0

&
,

which in turn means we have to solve the system

a+ 2b = 0

−2a− 4b = 0
.

This is straightforward, and the general solution turns out to be
%
a
b

&
=

%
−2t
t

&
,

but the point here is in realizing that the original question just boils down to solving some system.
Again, a common phenomenom we will see throughout the course. Writing the general solution
above once more by “factoring out t” as

%
a
b

&
= t

%
−2
1

&
,

we see that the collection of all such vectors are simply the scalar multiples of
!−2

1

"
, which geo-

metrically in R2 looks like the line passing through
!−2

1

"
. Thus all vectors "x such that T ("x) = "0

are precisely the vectors on this line.

Warm-Up 2. Suppose that T is a linear transformation from R2 to R2 such that

T

%
2
−1

&
=

%
0
1

&
and T

%
0
3

&
=

%
1
−1

&
.
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Find the matrix of T .
The point here is that we are only given two pieces of information about T , and yet we will be

able to completely determine what T does when applied to anything. As usual, the matrix of T
has first column equal to the result of applying T to ( 10 ) and second column equal to the result of
applying T to ( 01 ). We must determine these two resulting vectors, and it is the properties spelled
out in the first definition of linear transformations we gave last time which come to the rescue.
First, since ( 03 ) = 3 ( 01 ) we have

%
1
−1

&
= T

%
0
3

&
= T

%
3

%
0
1

&&
= 3T

%
0
1

&
,

so diving by 3 gives

T

%
0
1

&
=

%
1/3
−1/3

&
.

This is thus the second column of the matrix of T . To determine T ( 10 ), we start with the fact that
%

2
−1

&
= 2

%
1
0

&
−

%
0
1

&
.

Then rearranging terms we have
%
1
0

&
=

1

2

%%
2
−1

&
+

%
0
1

&&
.

Again using the properties in the first definition of linear transformation, we compute:

T

%
1
0

&
=

1

2

%
T

%
2
−1

&
+ T

%
0
1

&&
=

1

2

%%
0
1

&
+
!
1/3 −1/3

"&
=

%
1/6
1/3

&
,

which is the first column of the matrix of T . The matrix of T is thus
%
1/6 1/3
1/3 −1/3

&

and you can double check that multiplying this by each of the original input vectors given in the
setup indeed results in the corresponding output. The upshot is that now we can compute the
result of applying T to any vector simply by multiplying that vector by this matrix, even though
we were only given two pieces of information about T to begin with.

Geometric Transformations. Various geometric transformations in 2 and 3 dimensions are
linear and so can be represented by matrices. That these are linear follows from using the geometric
interpretations of vector addition and scalar multiplication to convince yourselves that

T ("x+ "y) = T ("x) + T ("y) and T (r"x) = rT ("x).

Without knowing that these geometric transformations satisfied these two properties we would have
a really hard time guessing that they were represented by matrices. However, now knowing that
this is the case, in order to find the corresponding matrices all we have to do is determine the result

of applying these transformations to the “standard” vectors

%
1
0

&
and

%
0
1

&
in two dimensions, and

their analogs in three dimensions.

Example 1. Let T be the transformation from R2 to R2 which rotates the xy-plane (counterclock-
wise) by an angle θ. Rotating the standard vectors gives
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The x and y-coordinates of the vector obtained by rotating ( 10 ) are cos θ and sin θ respectively, so

T

%
1
0

&
=

%
cos θ
sin θ

&
.

The x and y-coordinates of the vector obtained by rotating ( 01 ) are − sin θ (negative since the result
is in the negative x-direction) and cos θ respecitvely, so

T

%
0
1

&
=

%
− sin θ
cos θ

&
.

Thus the matrix of T (having these two as columns) is
%
cos θ − sin θ
sin θ cos θ

&
.

The point is that multiplying any vector by this matrix has the same effect as rotating that vector
by θ.

Example 2. Say S is the transformation from R3 to R3 which rotates by θ around the x-axis
when viewed from the positive x-axis. So, if we draw the y and z-axes respectively horizontally
and vertically on this page with the positive x-axis coming out at us, this rotations just rotates

this page counterclockwise by θ. Under this rotations, the vector
.

1
0
0

/
is left unchanged so

S

(

*
1
0
0

+

- =

(

*
1
0
0

+

- .

Rotating
.

0
1
0

/
and

.
0
0
1

/
gives

S

(

*
0
1
0

+

- =

(

*
0

cos θ
sin θ

+

- and S

(

*
0
0
1

+

- =

(

*
0

− sin θ
cos θ

+

- ,

so the matrix of this three dimensional rotation is
(

*
1 0 0
0 cos θ − sin θ
0 sin θ cos θ

+

- .
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Example 3. The matrix of reflection across the line y = x in R2 is
%
0 1
1 0

&

since reflecting ( 10 ) across y = x gives ( 01 ) and reflecting ( 01 ) gives (
1
0 ). As a check:

%
0 1
1 0

&%
x
y

&
=

%
y
x

&

is indeed the result of reflecting the vector ( xy ) across y = x.

Example 4. Consider the linear transformation L from R2 to R2 which first applies the shear
determined by ( 1 1

0 1 ) and then scales the result by a factor of 2. (Check the book for a picture of
what a “shear” transformation does.) Starting with ( 10 ), the shear transformation gives

%
1 1
0 1

&%
1
0

&
=

%
1
0

&
,

and then scaling by 2 gives ( 20 ). Shearing ( 01 ) gives

%
1 1
0 1

&%
0
1

&
=

%
1
1

&

and then scaling by 2 gives ( 22 ). Thus the matrix of this combined transformation, which first
shears and then scales, is %

2 2
0 2

&
.

Important. You should be familiar with rotations, reflections, shears, and scalings this quarter.
Orthogonal projections have a somewhat more complicated formula, and is something we will come
back to next quarter. UPDATE: When these notes were first written, it was true that orthogonal
projections were not something we focused on in the fall quarter. However, subsequent years DID
cover orthogonal projections in the fall, so you should be familiar with these as well. Ask your
instructor if it’s unclear what exactly you should know.

Lecture 7: Matrix Multiplication

Today we spoke about what it means to multiply matrices, and how this relates to composing linear
transformations.

Warm-Up. Find the matrix of the linear transformation which first rotates R2 by π/4 and then
reflects across the line y = −x. As usual, we determine the result of applying this transformation
to ( 10 ) and then to ( 01 ). First, rotating ( 10 ) gives

%
1
0

&
→

%
1/

√
2

1/
√
2

&
.

Reflecting this across y = −x flips its direction so we get

%
1/

√
2

1/
√
2

&
→

%
−1/

√
2

−1/
√
2

&
.
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Thus overall the transformation in question sends ( 10 ) to
.

−1/
√
2

−1/
√
2

/
. Second, rotating ( 01 ) gives

%
0
1

&
→

%
−1/

√
2

1/
√
2

&

and then reflecting this across y = −x does nothing since this vector is on this line. Thus overall

( 01 ) it sent to
.

−1/
√
2

1/
√
2

/
. The matrix of this combined transformation is thus

%
−1/

√
2 −1/

√
2

−1/
√
2 1/

√
2

&
.

Example 1. Consider linear transformations T and S from R2 to itself represented respectively
by matrices %

a b
c d

&
and

%
m n
p q

&
.

We determine the matrix for the composed transformation TS which first applies S and then applies
T : (TS)("x) = T (S"x). We compute

(TS)

%
1
0

&
= T

%
S

%
1
0

&&

= T

%%
m n
p q

&%
1
0

&&

= T

%
m
p

&

=

%
a b
c d

&%
m
p

&

=

%
am+ bp
cm+ dp

&
.

Next we compute

(TS)

%
0
1

&
= T

%
S

%
0
1

&&

= T

%%
m n
p q

&%
0
1

&&

= T

%
n
q

&

=

%
a b
c d

&%
n
q

&

=

%
an+ bq
cn+ dq

&
.

Thus the matrix for the composition TS is

%
am+ bp an+ bq
cm+ dp cn+ dq

&
.
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This is what we define to be the product of
!
a b
c d

"
and (m n

p q ).

Matrix Multiplication. Given two matrices A and B where the number of columns of A is the
same as the number of rows of B (the condition needed in order for the product AB to be defined),
their product is the matrix AB defined by

AB = A
!
"v1 "v2 · · · "vt

"
=

!
A"v1 A"v2 · · · A"vt

"
,

where "v1,"v2, . . . ,"vt denote the columns of B. The columns A"vi of the final matrix are just the usual
expressions for matrix times vector we’ve seen before. The resulting matrix AB will have the same
number of rows as A does and the same number of columns as B does.

Important. Matrix multiplication is defined in this way precisely so that matrix multiplication
corresponds to composing linear transformations: if T is a linear transformation with matrix A and
S a linear transformation with matrix B, the matrix of the composed transformation TS is AB.
(The order of multiplication matters!)

Example 2. The result of multiplying

(

*
1 −1 0
3 2 1
−2 0 −1

+

- and

(

*
0 3 −2
−1 5 1
2 −1 1

+

-

is the 3× 3 matrix given by

(

*
1 −1 0
3 2 1
−2 0 −1

+

-

(

*
0 3 −2
−1 5 1
2 −1 1

+

- =

(

*
1 −2 −3
0 18 −3
−2 −5 4

+

- .

Again, the first column of the product is the result of multiplying the first matrix by
.

0
−1
2

/
, the

second column is the first matrix times
.

3
5
−1

/
, and the last column is the first matrix times

.−2
1
1

/
.

Example 3. Consider the matrices

A =

%
cos θ − sin θ
sin θ cos θ

&
and B =

%
cosβ − sinβ
sinβ cosβ

&
,

which geometrically are rotations by θ and β respectively. On the one hand, we can compute

AB =

%
cos θ − sin θ
sin θ cos θ

&%
cosβ − sinβ
sinβ cosβ

&
=

%
cos θ cosβ − sin θ sinβ − cos θ sinβ − sin θ cosβ
sin θ cosβ + cos θ sinβ − sin θ sinβ + cos θ cosβ

&
.

On the other hand, composing these two rotations is the same as rotating by θ + β, so the matrix
for this composition should also equal

%
cos(θ + β) − sin(θ + β)
sin(θ + β) cos(θ + β)

&
.

These two matrices we computed should be equal, so we must have

%
cos(θ + β) − sin(θ + β)
sin(θ + β) cos(θ + β)

&
=

%
cos θ cosβ − sin θ sinβ − cos θ sinβ − sin θ cosβ
sin θ cosβ + cos θ sinβ − sin θ sinβ + cos θ cosβ

&
.
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Comparing corresponding entries on both sides gives the well-known trig identities for cos(θ + β)
and sin(θ + β). Imagine trying to justify these trig identities without using linear algebra!

Back to Warm-Up. Here is another way to approach the Warm-Up. The rotation part of the
composed transformation has matrix

%
1/

√
2 −1/

√
2

1/
√
2 1/

√
2

&

and the reflection part has matrix %
0 −1
−1 0

&
.

(This second one is obtained by reflecting ( 10 ) across y = −x and then doing the same for ( 01 ).)
Thus, since matrix multiplication corresponds to composition of transformations, the combined
transformation of the Warm-Up has matrix equal to the product

%
0 −1
−1 0

&%
1/

√
2 −1/

√
2

1/
√
2 1/

√
2

&
=

%
−1/

√
2 −1/

√
2

−1/
√
2 1/

√
2

&
,

agreeing with the matrix we found in the Warm-Up. Again note the order of composition: our
combined transformation first applied the rotation and then the reflection, so the matrix for rotation
is on the right and reflection on the left. (We always read compositions from right to left.)

Example 3. Let A =
.

1/
√
2 −1/

√
2

1/
√
2 1/

√
2

/
. We want to compute A80, which means A multiplied by

itself 80 times. Of course, doing this multiplication by hand 80 times would be crazy. As well, if
you start multiplying A by itself a few times you might notice some pattern which would help, but
this is still not the most efficient way to approach this. Instead, recognize that A is the matrix for
rotation by π/4, so A80 is the matrix for composing this rotation with itself 80 times. The point is
that we know that rotating by π/4 eight times is the same as a rotation by 2π, which geometrically
puts a vector back where it started. Thus A8 should be the matrix for the transformatoin which
leaves a vector untouched; this is called the “identity” transformation and its matrix is the identity
matrix : %

1 0
0 1

&
.

Thus A8 = I2 (the subscript denotes the fact that we are looking at the 2× 2 identity matrix), and
every further eighth power will again result in I2. Since 80 is a multiple of 8, we have A80 = I2
without having to explicitly multiply A by itself 80 times.

Similarly, A40 = I2 so A43 − A40A3 = A3, which is the matrix for rotation by 3π/4, which is
the same as rotating by π/4 three times in a row. Thus

A43 =

%
−1/

√
2 −1/

√
2

1/
√
2 −1/

√
2

&
.

Properties and non-properties of matrix multiplication. Just like usual multiplication of
numbers, matrix multiplication is associative:

(AB)C = A(BC)

for any matrices A,B,C for which all products above make sense; it is distributive:

A(B + C) = AB +AC and (A+B)C = AC +BC,
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and it has an identity, namely the identity matrix I:

AI = A = IA for any A.

However, matrix multiplication is unlike multiplication of numbers in that it is not necessarily
commutative:

AB does not necessarily equal BA,

and it is possible to multiply nonzero matrices together to get the zero matrix:

AB = 0 does not necessarily mean A = 0 or B = 0.

Here, 0 denotes the zero matrix, which is the matrix with all entries equal to 0.

Example 4. For matrices A,B, it is not necessarily true that

(A+B)(A−B) = A2 −B2

as is true for numbers. Indeed, the left side expands as

A2 −AB +BA−B2

and so equals A2 −B2 only when AB = BA. We say that A and B commute in this case.
Also, there are solutions to A2 = I apart from A = ±I, as opposed to what happens for

numbers. Indeed, this equation can be rewritten as A2 − I = 0 which factors as

(A+ I)(A− I) = 0.

However, this does not mean that one of the factors has to be zero. For example, taking A =
!
1 0
0 −1

"

gives an example where A is neither ±I and yet A2 = I.

Important. Be careful when manipulating equations involving matrix multiplication: sometimes
things work like they do when multiplying numbers, but not always.

Lecture 8: Invertibility and Inverses

Today we spoke about the notion of a matrix being invertible, and finding the inverse of a matrix
which is invertible. We will continue looking at properties of invertible matrices next time.

Warm-Up 1. Let A be the matrix

A =

(

*
0 1 0
0 0 1
1 0 0

+

- .

We compute A100. The point is that we should not sit down and multiply A by itself 100 times,
but rather we should think about what the linear transformation T corresponding to A is actually
doing. We have

T

(

*
x
y
z

+

- =

(

*
0 1 0
0 0 1
1 0 0

+

-

(

*
x
y
z

+

- =

(

*
y
z
x

+

- ,

so we see that T has the effect of “shifting” the entries of an input vector up by one while moving
the first entry down to the end. Thus, T 2 has the effect of doing this twice in a row and T 3 the

26



effect of shifting three times in a row. However, with only three entries in an input vector, after
doing the shift three times in a row we’re back where we started so

T 3

(

*
x
y
z

+

- =

(

*
x
y
z

+

- .

In other words, T 3 is the “identity” transformation which does nothing to input vectors. Thus
A3, which is supposed to be the matrix for the composition T 3, equals the matrix for the identity
transformation, which is the identity matrix:

A3 =

(

*
1 0 0
0 1 0
0 0 1

+

- .

Then A6 = I, A9 = I, and so on everything time we take a power that’s a multiple of 3 we get the
identity, so

A100 = A99A = IA = A =

(

*
0 1 0
0 0 1
1 0 0

+

- .

Of course, you can multiply A by itself three times directly and see that A3 = I, but’s important
to see why this is so from the point of view of composing linear transformations.

Warm-Up 2. Find all matrices B commuting with
!
2 −1
7 5

"
; that is, find all B such that

B

%
2 −1
7 5

&
=

%
2 −1
7 5

&
B.

Note that in order for both of these products to be defined B must be 2 × 2. Writing down an
arbitrary expression for B:

B =

%
a b
c d

&
,

the problem is to find all values of a, b, c, d such that
%
a b
c d

&%
2 −1
7 5

&
=

%
2 −1
7 5

&%
a b
c d

&
.

Multiplying out both sides gives the requirement
%
2a+ 7b −a+ 5b
2c+ 7d −c+ 5d

&
=

%
2a− c 2b− d
7a+ 5c 7b+ 5d

&
.

Equating corresponding entries on both sides gives the requirements

2a+ 7b = 2a− c −a+ 5b = 2b− d

2c+ 7d = 7a+ 5c −c+ 5d = 7b+ 5d,

so after moving everything to one side of each of these we see that the values of a, b, c, d we are
looking for must satisfy the system

7b+ c = 0

−7a − 3c+ 7d = 0

−a+ 3b + d = 0

− 7b− c = 0

.
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Hence our question boils down to solving this system of equations. (Imagine that!)
Row-reducing the augmented matrix gives

(

))*

0 7 1 0 | 0
−7 0 −3 7 | 0
−1 3 0 1 | 0
0 −7 −1 0 | 0

+

,,- →

(

))*

1 0 3/7 −1 | 0
0 1 1/7 0 | 0
0 0 0 0 | 0
0 0 0 0 | 0

+

,,-

as the reduced echelon form. Thus we find the solution to be
(

))*

a
b
c
d

+

,,- =

(

))*

−3
7c+ d
−1

7c
c
d

+

,,- ,

so our conclusion is that the matrices B which commute with
!
2 −1
7 5

"
are those of the form

B =

%
−3

7c+ d −1
7c

c d

&
for any numbers c and d.

Note that taking c = 7 and d = 5 gives
!
2 −1
7 5

"
, which makes sense since any matrix indeed

commutes with itself.

Inverse Transformations. Say that A =
.

1/
√
2 −1/

√
2

1/
√
2 1/

√
2

/
is rotation by π/4. We call rotation by

−π/4 the inverse transformation since it “undoes” what the first one does. In other words, applying
the linear transformation determined by A and then following it with the inverse transformation
always gives you back what you started with. The matrix for this inverse transformation (rotation

by −π/4) is
.

1/
√
2 1/

√
2

−1/
√
2 1/

√
2

/
. Similarly, the inverse of the reflection transformation determined by

B = ( 0 1
1 0 ) is that same reflection since to “undo” what a reflection does you simply apply that

same reflection again. We say that a reflection is its own “inverse”.
In general, given a transformation T such that with input "x you get output "y:

T ("x) = "y,

the inverse transformation (if it exists) is the linear transformation with the property that inputting
"y gives as output "x.

Invertible Matrices. A (square) matrix A is invertible if there is another (square) matrix B (it
will necessarily be of the same size as A) with the property that AB = I and BA = I. We call
this matrix B the inverse of A and denote it by A−1. (It turns out that for square matrices the
requirement that AB = I automatically implies BA = I, but this is not at all obvious.) If A is the
matrix for a linear transformations T , then A−1 is the matrix for the inverse transformation of T .

Back to previous geometric examples. The geometric examples we just looked at say that

%
1/

√
2 −1/

√
2

1/
√
2 1/

√
2

&−1

=

%
1/

√
2 1/

√
2

−1/
√
2 1/

√
2

&

and %
0 1
1 0

&−1

=

%
0 1
1 0

&
.
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You can verify this by checking that

%
1/

√
2 −1/

√
2

1/
√
2 1/

√
2

&%
1/

√
2 1/

√
2

−1/
√
2 1/

√
2

&
=

%
1 0
0 1

&

and %
0 1
1 0

&%
0 1
1 0

&
=

%
1 0
0 1

&
.

Inverses of 2× 2 matrices. In general, a 2× 2 matrix
!
a b
c d

"
is invertible only when ad− bc ∕= 0,

in which case its inverse is given by

%
a b
c d

&−1

=
1

ad− bc

%
d −b
−c a

&
.

KNOW THIS FORMULA BY HEART. The denominator of the fraction involved is called the
determinant of

!
a b
c d

"
; we will come back to determinants later. You can verify that this formula

for the inverse of a 2× 2 matrix is correct by checking that

%
a b
c d

&
times

1

ad− bc

%
d −b
−c a

&
equals

%
1 0
0 1

&
.

Also, note that applying this formula to the geometric 2× 2 examples above indeed gives what we
claimed were the inverses.

Inverses in general. As in the 2 × 2 case, there is an explicit formula for the inverse of any
invertible n × n matrix. However, this formula gets a lot more complicated even in the 3 × 3
case and is NOT worth memorizing. Instead, we compute inverses in general using the following
method, which will most often be much, much quicker.

To find the inverse of an invertible matrix A, set up a big augmented matrix

!
A | I

"

with A on the left and the appropriately-sized identity on the right, then start doing row operations
to reduce that “A” part to the identity while at the same time doing the same operations to the
identity part: !

A | I
"
→

!
I | A−1

"
.

The matrix you end up with on the right side is the inverse of A. Check the book for an explanation
of why this works.

Note that this process only works if it is indeed possible to reduce A to the identity matrix,
giving us our first way to check whether a given matrix is invertible.

Important. A is invertible if and only if the reduced echelon form of A is the identity matrix,
which can happen if and only if A has “full” rank, meaning rank equal to the numbers of rows and
columns.

Example 1. Let A be the matrix

A =

(

*
1 −1 0
3 2 1
−2 0 −1

+

- .
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Reducing
!
A | I

"
gives:

(

*
1 −1 0 | 1 0 0
3 2 1 | 0 1 0
−2 0 −1 | 0 0 1

+

- →

(

*
1 −1 0 | 1 0 0
0 5 1 | −3 1 0
0 −2 −1 | 2 0 1

+

- →

(

*
1 −1 0 | 1 0 0
0 5 1 | −3 1 0
0 0 −3 | 4 2 5

+

- .

Note that at this point we know that A is invertible since we can already see that the reduced
echelon form of A will end up with three pivots and will be the 3× 3 identity matrix. Continuing
on yields

(

*
1 −1 0 | 1 0 0
0 5 1 | −3 1 0
0 0 −3 | 4 2 5

+

- →

(

*
5 0 1 | 2 1 0
0 5 1 | −3 1 0
0 0 −3 | 4 2 5

+

- →

(

*
15 0 0 | 10 5 5
0 15 0 | −5 5 5
0 0 −3 | 4 2 5

+

- ,

Dividing by the appropriate scalars turns the right side into

A−1 =

(

*
2/3 1/3 1/3
−1/3 1/3 1/3
−4/3 −2/3 −5/3

+

- ,

which is the inverse of A. You can check that
(

*
1 −1 0
3 2 1
−2 0 −1

+

-

(

*
2/3 1/3 1/3
−1/3 1/3 1/3
−4/3 −2/3 −5/3

+

- =

(

*
1 0 0
0 1 0
0 0 1

+

-

as required of the inverse of A.

Example 2. For the matrix

B =

(

*
1 2 3
4 5 6
7 8 9

+

- ,

we have
(

*
1 2 3 | 1 0 0
4 5 6 | 0 1 0
7 8 9 | 0 0 1

+

- →

(

*
1 2 3 | 1 0 0
0 −3 −6 | −4 1 0
0 −6 −12 | −7 0 1

+

- →

(

*
1 2 3 | 1 0 0
0 −3 −6 | −4 1 0
0 0 0 | 1 −2 1

+

- .

Since we can now see that the left part will not give us a reduced form with three pivots, we can
stop here: B is not invertible.

Lecture 9: More on Inverses, the Amazingly Awesome Theorem

Today we continued talking about invertible matrices, focusing on the various characterizations of
what it means for a matrix to be invertible. These various characterizations make up what I call
the “Amazingly Awesome Theorem” in order to emphasize how important they are.

Warm-Up 1. Suppose A is a square matrix such that A5 = I. We claim that A is invertible.
Recall that to be invertible means that there is a matrix B with the property that AB = I = BA.
If A5 = I, we have

AA4 = A5 = I and A4A = A5 = I,
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so B = A4 satisfies the requirement in the definition of what it means for A to be invertible. So A
is invertible with inverse A4.

Another approach might be to say that since A5 = I, rref(A5) = I and so rref(A) = I as well.
However, it is not immediately obvious that just because the reduced echelon form of A5 is the
identity means that same will be true of A. Indeed, note that in general

rref(AB) ∕= rref(A) rref(B),

so that whether we perform row operations before or after multiplying matrices matters. If A and B
are both invertible, then AB is also invertible (with inverse B−1A−1) so in this case rref(A), rref(B),
and rref(AB) are all the identity and here we do have

rref(AB) = rref(A) rref(B).

However, for A = ( 1 1
1 1 ) and B =

!
1 1
−1 −1

"
we have

rref(A) =

%
1 1
0 0

&
, rref(B) =

%
1 1
0 0

&
, and rref(AB) =

%
0 0
0 0

&
,

so
rref(AB) ∕= rref(A) rref(B)

in this case. That is, rref(AB) = rref(A) rref(B) is only sometimes true.

Warm-Up 2. Suppose that A and B are square matrices such that AB = I. We claim that both
A and B are then invertible. Comparing with the definition of what it means for either A or B to
be invertible, the point is that here we only know that multiplying A and B in one order gives the
identity, whereas the definition would require that BA = I as well. It is not at all obvious that just
because AB = I it must also be true that BA = I, and indeed this is only true for square matrices.

A first thought might be to multiply both sides of AB = I on the left by A−1 to give

B = A−1.

Then multiplying by A on the right gives BA = I, which is what we want. However, this assumes
that A−1 already exists! We can’t start multiplying by A−1 before we know A is actually invertible,
so this is no good. Instead, we use the fact that a matrix B is invertible if and only if the only
solution to B"x = "0 is "x = "0. Indeed, if this is true then the reduced echelon form of B has to be
the identity, so B will be invertible.

So, we want to show that only solution of B"x = "0 is the zero vector. Multiplying on the left by
A here gives

A(B"x) = A"0, so (AB)"x = "0.

But since AB = I this gives "x = "0 as we wanted. This means that B is invertible, and hence B−1

exists. Now we can multiply both sides of AB = I on the right by B−1 to give

A = B−1, so BA = I

after multiplying on the left by B. Thus AB = I and BA = I so A is invertible as well with inverse
B. Again, note that we said nothing about B−1 above until we already knew that B was invertible,
and we were able to show that B is invertible using another way of thinking about invertibility.
(More on this to come.)
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Remark. As said above, for non-square matrices A and B it is not necessarily true that AB = I
automatically implies BA = I. (In fact, it never does but to understand this we need to know a
bit more about what the rank of a matrix really means.) For example, for

A =

%
1 0 0
0 1 0

&
and B =

(

*
1 0
0 1
0 0

+

-

we have

AB =

%
1 0
0 1

&
but BA =

(

*
1 0 0
0 1 0
0 0 0

+

- ,

so AB = I does not always imply that BA = I.

The Amazingly Awesome Theorem. (The name was chosen to emphasize how important and
useful this can be.) The following are equivalent to a square matrix A being invertible:

• The row-reduced echelon form of A is the identity matrix.

• A has full rank, meaning rank equal to the number of rows or columns in A.

• For any vector "b, A"x = "b has a solution, which will in fact be unique.

• The only solution of A"x = "0 is "x = "0.

• The only way in which to express "0 as a linear combination of the columns "v1, . . . ,"vn of A is
to take all coefficients to be 0; i.e. the only solution of

c1"v1 + · · ·+ cn"vn = "0

is c1 = · · · = cn = 0. (Later we will see that this is what it means to say that the columns of
A are “linearly independent”.)

• Any vector "b can be written as a linear combination of the columns "v1, . . . ,"vn of A; i.e. for
any "b the equation

c1"v1 + · · ·+ cn"vn = "b

has a solution for c1, . . . , cn. (Later we will see that this is what it means to say that the
columns of A “span” all of Rn.)

Elementary Matrices (Optional). This topic is purely extra and will never be on an exam,
quiz, nor homework. It is only meant to introduce an idea which can be useful in certain contexts.

The idea behind elementary matrices is that any row operation can in fact be expressed as a
matrix multiplication. To get a feel for this let’s just focus on a 2 × 2 matrix

!
a b
c d

"
. First, note

that %
0 1
1 0

&%
a b
c d

&
=

%
c d
a b

&
,

so the operation of swapping the rows of a matrix can be obtained as a result of multiplying by
( 0 1
1 0 ). Second, scaling a row (say the first) by k is obtained via

%
k 0
0 1

&%
a b
c d

&
=

%
ka kb
c d

&
.
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Finally, adding a multiple of one row to another is obtained as

%
1 0
k 1

&%
a b
c d

&
=

%
a b

ka+ c kb+ d

&
.

The matrices %
0 1
1 0

&
,

%
k 0
1 0

&
, and

%
1 0
k 1

&

are examples of what are called elementary matrices because they induce elementary row operations.
There are analogues for matrices of any size.

As an application, we can fully justify why the process we use for computing inverses actually
works. Starting with an invertible A, we know there are row operations which will reduce A to
the identity I. Each of these row operations can be obtained via multiplication by an elementary
matrix, so there are elementary matrices E1, E2, . . . , Em such that

Em · · ·E2E1A = I.

But then this equation says that Em · · ·E2E1 satisfies the requirement of being the inverse of A,
so A−1 = Em · · ·E2E1. We can write this as

A−1 = Em · · ·E2E1I,

where the right side now means we take the operations which reduced A to I and instead perform
them on I; the result is A−1, which is precisely what our method for the finding inverses says.

Lecture 10: Images and Kernels

Today we spoke about the notions of the “kernel” of a matrix and the “image” of a matrix. This
is the start of a whole new perspective on what we’ve been doing so far.

Warm-Up 1. For A =
.

1 2 3
4 5 6
7 8 9

/
, we want to find a vector "b in R3 such that A"x = "b has no solution.

Rather than just taking some random "b and seeing whether A"x = "b has a solution, here is a more
systematic way of finding such a vector. Row-reducing A a few steps gives:

(

*
1 2 3
4 5 6
7 8 9

+

- →

(

*
1 2 3
0 −3 −6
0 −6 −12

+

- →

(

*
1 2 3
0 −3 −6
0 0 0

+

- . (3)

Given this final form, we know that if we had a vector "b such that the final “augmented” piece of

the corresponding reduced augmented matrix ended up being something like
.

1
1
1

/
:

(

*
1 2 3 |
4 5 6 | "b
7 8 9 |

+

- →

(

*
1 2 3 | 1
0 −3 −6 | 1
0 0 0 | 1

+

- ,

then A"x = "b would indeed have no solution. The point is that starting from this reduced form we
can work our way backwards to find such a "b.
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Going back to the row operations we did in (3), to “undo” the last one we multiply the second
row by 2 and add it to the last row:

(

*
1 2 3 | 1
0 −3 −6 | 1
0 0 0 | 1

+

- →

(

*
1 2 3 | 1
0 −3 −6 | 1
0 −6 −12 | 3

+

- .

To undo the first row operations we did in (3), we now do 4I + II → II and 7I + III → III:

(

*
1 2 3 | 1
0 −3 −6 | 1
0 −6 −12 | 3

+

- →

(

*
1 2 3 | 1
4 5 6 | 5
7 8 9 | 10

+

- .

Thus, "b =
.

1
5
10

/
is an example of a vector "b such that A"x = "b has no solution. We’ll reinterpret

this fact in terms of the image of A in a bit.

Warm-Up 2. The transpose of an n × n matrix B is the n × n matrix BT obtained by turning
the columns of B into the rows of BT . For instance,

(

*
a b c
d e f
g h i

+

-
T

=

(

*
a d g
b e h
c f i

+

- .

We claim that if B is invertible then so is BT , and the only fact we need is the following identity:

(AB)T = BTAT for any matrices A and B.

(We’ll come back to this identity and work with transposes more later on.) To show that BT

is invertible we use one of the equivalent characterizations of invertibility from the Amazingly
Awesome Theorem and verify that the only vector satisfying BT"x = "0 is "x = 0.

So, start with BT"x = "0. Since B is invertible B−1 exists and it has a transpose (B−1)T .
Multiplying both sides of our equation by this gives

(B−1)TBT"x = (B−1)T"0 = "0.

Using the identity for transposes stated above, this left-hand side equals (BB−1)T , which equals
the transpose of the identity matrix, which is the identity matrix itself. So the above equation
becomes

(BB−1)T"x = "0 =⇒ I"x = "0,

so the only vector satisfying BT"x = "0 is "x = "0. This means that BT is invertible.

The kernel of a matrix. The kernel of a matrix A, denoted by kerA, is the space of all solutions
to A"x = "0. In terms of the linear transformation T determined by A, this is the space of all input
vectors which are sent to "0 under T .

Example 1. Looking at the matrix A from Warm-Up 1, to find its kernel we must find all solution
of A"x = "0. Continuing the row operations started before, we have:

!
A | "0

"
→

(

*
1 2 3 | 0
0 −3 −6 | 0
0 0 0 | 0

+

- →

(

*
1 0 −1 | 0
0 1 2 | 0
0 0 0 | 0

+

- .
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Denoting "x =
.

x
y
z

/
, we have that z is free and x = z, y = −2z. Thus solutions of A"x = "0, i.e.

vectors "x in the kernel of A, look like:

(

*
x
y
z

+

- =

(

*
t

−2t
t

+

- = t

(

*
1
−2
1

+

- .

Thus, any vector in kerA is a multiple of
.

1
−2
1

/
. The collection of all such multiples is what we

call the span of
.

1
−2
1

/
, so we can say that

kerA = span

0
1

2

(

*
1
−2
1

+

-

3
4

5 .

In words we would also say that
.

1
−2
1

/
spans the kernel of A. Geometrically, this kernel is the line

containing
.

1
−2
1

/
, which is what the set of all multiples of this vector looks like.

Definition of Span. The span of vectors "v1,"v2, . . . ,"vk is the collection of all linear combinations
of "v1,"v2, . . . ,"vk; i.e. all vectors expressible in the form

c1"v1 + c2"v2 + · · ·+ ck"vk

for scalars c1, . . . , ck.

Example 2. We find vectors which span the kernel of

B =

(

*
1 2 −3
2 4 −6
3 6 −9

+

- .

First, row reducing B gives (

*
1 2 −3
2 4 −6
3 6 −9

+

- →

(

*
1 2 −3
0 0 0
0 0 0

+

- .

When solving B"x = "0 we would add on an extra “augmented” column of zeros, but from now on
when finding the kernel of a matrix we will skip this additional step. From the reduced echelon
form above, we can see that the solutions of B"x = "0 all look like

(

*
x
y
z

+

- =

(

*
−2s+ 3t

s
t

+

- .

To find vectors which span the collection of all vectors which look like this, we “factor out” each
free variable: (

*
−2s+ 3t

s
t

+

- = s

(

*
−2
1
0

+

-+ t

(

*
3
0
1

+

- .
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Thus, any solution of B"x = "0 is expressible as a linear combination of
.−2

1
0

/
and

.
3
0
1

/
, so these two

vectors span the kernel of B:

kerB = span

0
1

2

(

*
−2
1
0

+

- ,

(

*
3
0
1

+

-

3
4

5 .

Important. To find vectors spanning the kernel of any matrix A, find all solutions of A"x = "0 and
express all variables in terms of free variables. Then “factor out” each free variable to express the
solution as a linear combination of some vectors; these vectors span the kernel.

Example 3. We have

(

*
1 2 0 −2 3 1
−2 −4 4 3 −5 −1
3 6 4 −7 11 5

+

- →

(

*
1 2 0 −2 0 −2
0 0 1 −1/4 0 0
0 0 0 0 1 1

+

- .

Thus the kernel of the first matrix consists of things which look like

(

))))))*

x1
x2
x3
x4
x5
x6

+

,,,,,,-
=

(

))))))*

−2s+ 2t+ 2u
s
1
4 t
t
−u
u

+

,,,,,,-
= s

(

))))))*

−2
1
0
0
0
0

+

,,,,,,-
+ t

(

))))))*

2
0
1/4
1
0
0

+

,,,,,,-
+ u

(

))))))*

2
0
0
0
−1
1

+

,,,,,,-
,

and so

ker

(

*
1 2 0 −2 3 1
−2 −4 4 3 −5 −1
3 6 4 −7 11 5

+

- = span

0
6666661

6666662

(

))))))*

−2
1
0
0
0
0

+

,,,,,,-
,

(

))))))*

2
0
1/4
1
0
0

+

,,,,,,-
,

(

))))))*

2
0
0
0
−1
1

+

,,,,,,-

3
6666664

6666665

.

The image of a matrix. The image of a matrix A is the collection imA of all possible outputs
of the linear transformation determined by A. More concretely, any such output has the form A"x,
so the image of A consists of all vectors "b such that A"x = "b has a solution. Better yet, the product
A"x is expressible as a linear combination of the columns of A, so "b is in the image of A if "b is a
linear combination of the columns of A. Thus we can say that

imA = span {columns of A} .

Back to Example 1. The first Warm-Up shows that "b =
.

1
5
10

/
is not in the image of A =

.
1 2 3
4 5 6
7 8 9

/

since A"x = "b has no solution.

Back to Example 2. The image of B from Example 2 is the span of its columns, so

imB = span

0
1

2

(

*
1
2
3

+

- ,

(

*
2
4
6

+

- ,

(

*
−3
−6
−9

+

-

3
4

5 .
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However, we can simplify this description. Note that second and third vectors in this spanning set
are multiples of the first. This means that any vector which is expressible as a linear combination
of all three is in fact expressible as a linear combination (i.e. multiple) of the first alone. Thus, the
above span is the same as the span of the first column alone, so

im

(

*
1 2 −3
2 4 −6
3 6 −9

+

- = span

0
1

2

(

*
1
2
3

+

-

3
4

5 .

Geometrically, the span of one vector is the line containing that vector, so in this case the image
of B is a line.

Important. If "b is a linear combination of vectors "v1, . . . , vk, then

span
7
"v1, . . . ,"vk,"b

8
= span {"v1, . . . ,"vk} .

In other words, if one vector is itself in the span of other vectors, throwing that vector away from
our spanning set does not change the overall span.

Final Example. We want to find matrices A and B such that the plane x− 2y+3z = 0 is at the
same time the kernel of A and the image of B. First, the equation defining this plane is precisely
what it means to say that

(

*
x
y
z

+

- is in the kernel of
!
1 −2 3

"
,

so for the 1 × 3 matrix A =
!
1 −2 3

"
, the plane x − 2y + 3z = 0 is the kernel of A. There are

tons of other matrices which work; for instance, the kernel of
(

*
1 −2 3
1 −2 3
1 −2 3

+

-

is also the plane x− 2y + 3z = 0.
Now, note that we can find vectors which span the plane as follows. From the equation of the

plane we find that x = 2y − 3z, so vectors on the plane look like
(

*
x
y
z

+

- =

(

*
2y − 3z

y
z

+

- = y

(

*
2
1
0

+

-+ z

(

*
−3
0
1

+

- .

Hence the plane is equal to the span of
(

*
2
1
0

+

- and

(

*
−3
0
1

+

- ,

which is equal to the image of the matrix

B =

(

*
2 −3
1 0
0 1

+

- .

That is, imB is the plane x− 2y + 3z = 0.
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Lecture 11: Subspaces of Rn

Today we started talking about the notion of a subspace of Rn. The definition is kind of abstract,
but in the end subspaces are pretty simple to visualize geometrically.

Warm-Up 1. Suppose that A is an invertible n× n matrix. We determine kerA and imA. First,
kerA consists of the vectors "x satisfying A"x = "0. However, since A is invertible only "x = "0 satisfies
this, so

kerA = {"0}.
That is, kerA is the set only containing the zero vector. Note that conversely, if A is a square
matrix such that kerA = {0} then in fact A must be invertible! So, we can add this condition on to
our Amazingly Awesome Theorem characterizing the various things equivalent to a matrix being
invertible.

The image of A consists of all "b in Rn such that A"x = "b has a solution. But since A is invertible,
this equation always has the solution "x = A−1"b, so any vector in Rn is in the image of A. Thus

imA = Rn.

Conversely, an n × n matrix whose image is all of Rn must be invertible, again adding on to our
Amazingly Awesome Theorem.

Amazingly Awesome Theorem, continued. The following are also equivalent to a square n×n
matrix A being invertible:

• kerA = {"0}, i.e. the kernel of A consists of only the zero vector

• imA = Rn, i.e. the image of A consists of every vector in Rn

Warm-Up 2. Let A be the matrix
(

*
1 −1 2 1
1 −1 3 4
2 −2 2 −4

+

- .

We want to find vectors spanning kerA and imA, and in each case we want to use as few vectors
as possible. First we row reduce:

(

*
1 −1 2 1
1 −1 3 4
2 −2 2 −4

+

- →

(

*
1 −1 0 −5
0 0 1 3
0 0 0 0

+

- .

Thus solution of A"x = "0 are of the form
(

))*

x1
x2
x3
x4

+

,,- =

(

))*

s+ 5t
s

−3t
t

+

,,- = s

(

))*

1
1
0
0

+

,,-+ t

(

))*

5
0
−3
1

+

,,- ,

so

kerA = span

0
661

662

(

))*

1
1
0
0

+

,,- ,

(

))*

5
0
−3
1

+

,,-

3
664

665
.

38



Since neither of these vectors is a linear combination of the other (recall that a linear combination
of a single vector is simple a multiple of that vector), throwing one vector away won’t give us the
same span, so we need both of these in order to span the entire kernel.

Now, imA is spanned by the columns of A. However, note that the second column is a multiple
of the first so that throwing it away gives the same span as all four columns:

imA = span

0
1

2

(

*
1
1
2

+

- ,

(

*
2
3
2

+

- ,

(

*
1
4
−4

+

-

3
4

5 .

But we’re not done yet! The third vector here is actually a linear combination of the first two:

(

*
1
4
−4

+

- = −5

(

*
1
1
2

+

-+ 3

(

*
2
3
2

+

- ,

so that the first two vectors have the same span as all three. (Again, to be clear, we are using the
fact that if "v3 = a"v1 + b"v2, then

c1"v1 + c2"v2 + c3"v3 = c1"v1 + c2"v2 + c3(a"v1 + b"v2) = (c1 + c3a)"v1 + (c2 + c3b)"v2,

so a linear combination of "v1,"v2,"v3 can be rewritten as a linear combination of "v1 and "v2 alone.)
The first two vectors in the above span are not multiples of each other, so finally we conclude that

imA = span

0
1

2

(

*
1
1
2

+

- ,

(

*
2
3
2

+

-

3
4

5

and that we need both of these vectors to span the entire image.

Important properties of kernels and images. For any matrix A, its kernel and image both
have the following properties:

• Both contain the zero vector: "0 is in kerA since A"0 = "0 and "0 is in imA since A"x = "0 has a
solution,

• Adding two things in either one gives something still in that same space: if "x and "y are in
kerA then A("x + "y) = A"x + A"y = "0 + "0 = "0 so "x + "y is also in kerA, and if "b1 and "b2
are in imA, meaning that A"x = "b1 has a solution "x1 and A"x = "b2 has a solution "x2, then
A"x = "b1 +"b2 has solution "x1 + "x2, so "b1 +"b2 is still in imA, and

• Scaling something in either one gives something still in that same space: if "x is in kerA, then
A(c"x) = cA"x = c"0 = "0 so c"v is in kerA, and if A"x = "b has solution "x, then A(c"x) = cA"x = c"b
so c"b is still in imA.

Definition of a subspace. A collection V of vectors in Rn is a subspace of Rn if it has all of the
following properties:

• The zero vector "0 is in V ,

• V is closed under addition in the sense that if "u and "v are in V , then "u+ "v is also in V ,
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• V is closed under scalar multiplication in the sense that if "u is in V and c is any scalar, then
c"v is also in V .

Back to kernels and images. So, for an n×m matrix, kerA is a subspace of Rm and imA is a
subspace of Rn.

Example 1. Consider a line in R2 which passes through the origin, such as y = x. This line
consists of all vectors ( xy ) whose coordinates satisfy y = x. We claim that this is a subspace of R2.
Indeed, ( 00 ) satisfies y = x, so this line contains the zero vector. Given two vectors on this line,
say ( aa ) and

!
b
b

"
, their sum

!
a+b
a+b

"
is also on this line since its x and y coordinates satisfy y = x.

Finally, given a vector ( aa ) on this line, any multiple ( caca ) of it is still on this line. Thus the line
y = x is a subspace of R2.

Remark. For similar reasons, any line which passes through the origin is a subspace of R2.

Example 2. Consider a line in R2 which does not pass through the origin, such as y = x+ 1. To
be clear, this line consists of all vectors ( xy ) satisfying y = x + 1. This is not a subspace of R2.
First, it does not contain the zero vector ( 00 ) since these coordinates to do not satisfy y = x + 1.
Second, it is not closed under addition since ( 01 ) and ( 12 ) are both on this line but their sum ( 13 ) is
not. Third, it is not closed under scalar multiplication since ( 01 ) is on this line but 2 ( 01 ) = ( 02 ) is
not. Failing at least one of these conditions is enough to say that this line is not a subspace of R2,
this example just happens to fail all three.

Remark. For similar reasons, any line which does not pass through the origin won’t be a subspace
of R2 either. In particular, any such line does not contain the zero vector.

Example 3. Consider the parabola y = x2. This does contain the zero vector since ( 00 ) satisfies
the equation of the parabola. However, this is not closed under addition since ( 11 ) and ( 24 ) are both
on this parabola but their sum ( 35 ) is not. Thus this parabola is not a subspace of R2. It is also
not closed under scalar multiplication.

Similarly, any other curve which is not a line through the origin won’t be a subspace of R2

either.

Subspaces of R2 in general. The set consisting of only the zero vector {"0} is a subspace of R2,
as is the entire xy-plane, i.e. R2, itself. Apart from these, the only other subspaces of R2 as found
earlier are lines through the origin.

Subspaces of R3. The only subspaces of R3 are the origin {"0}, lines through the origin, planes
through the origin, and all of R3.

Important. Geometrically, subspaces of Rn are either the single point consisting of the origin
alone, lines through the origin, planes through the origin, higher-dimensional analogues of lines
and planes through the origin, and all of Rn itself. In particular, the kernel or image of any matrix
looks like one of these.

Lecture 12: Linear Dependence/Independence and Bases

Today we spoke about the notion of vectors being linearly “dependent” or “independent”, and the
idea of a “basis” of a subspace of Rn. Bases will give us a simple and efficient way to describe any
subspace.
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Warm-Up 1. Consider the following set of vectors in R2:

V =

9%
x
y

&
: x ≥ 0 and y ≥ 0

:
.

To be clear, this notation means we are looking at the vectors ( xy ) in R2 satisfying the condition
that x ≥ 0 and y ≥ 0. (Read the colon as “such that”.) In other words, V is the first quadrant
of the xy-plane including the nonnegative x and y-axes. We check whether V is a subspace of R2.
Based on what we said last time, this answer should be no since V is not {"0}, nor a line through
the origin, nor all of R2.

First, V does contain the zero vectors since ( 00 ) satisfies the requirement that its x and y
coordinates are ≥ 0. V is also closed under addition: if ( xy ) and ( ab ) are in V (meaning both
coordinates of each are ≥ 0), then so is

! x+a
y+b

"
since

x+ a ≥ 0 and y + b ≥ 0.

However, V is not closed under scalar multiplication: ( 11 ) is in V but −2 ( 11 ) is not. Thus V is not
a subspace of R2.

Warm-Up 2. We now ask whether the following set of vectors in R3 is a subspace of R3:

W =

0
1

2

(

*
x
y
z

+

- : x− y + z = 0 and 2x− y − 2z = 0

3
4

5 .

We can check the subspace conditions one at a time again. For instance, if
.

x
y
z

/
and

.
a
b
c

/
are in

W , then each satisfies the equations defining W , so
. x+a

y+b
z+c

/
satisfies

(x+ a)− (y + b) + (z + c) = (x− y + z) + (a− b+ c) = 0 + 0 = 0

and
2(x+ a)− (y + b)− 2(z + c) = (2x− y − 2z) + (2a− b− 2c) = 0 + 0 = 0.

Thus
.

x
y
z

/
+

.
a
b
c

/
also satisfies the equations defining W , so this is in W and hence W is closed

under addition.
However, there is a simpler way to see that W is a subspace of R3. The equations defining W

say precisely that
%
1 −1 1
2 −1 −2

&(

*
x
y
z

+

- =

%
0
0

&
,

so W is the same as the kernel of
!
1 −1 1
2 −1 −2

"
. Since kernels are always subspaces, W is indeed a

subspace of R3.

Definition of linearly dependent/independent. A collection of vectors "v1, . . . ,"vk in Rn is said
to be linearly dependent if one vector is a linear combination of the rest. We call such a vector a
“redundant” vector since eliminating that vector from the collection will not change the span of
the collection. If no vector is a linear combination of the others, we say that "v1, . . . ,"vk are linearly
independent.
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Intuitive idea behind independence. Vectors "v1, . . . ,"vk are linearly independent if each vector
adds a new “dimension” to their span. (We will give a precise meaning to dimension later.)

Example 1. We check whether the vectors

(

))*

1
2
−2
−3

+

,,- ,

(

))*

−1
0
4
5

+

,,- ,

(

))*

2
3
−7
−5

+

,,- , and

(

))*

0
3
4
1

+

,,-

in R4 are linearly dependent or independent. According to the definition, we must see if any vector
is a linear combination of the rest. For instance, to check if the first is a linear combination of the
other three we ask whether

a

(

))*

−1
0
4
5

+

,,-+ b

(

))*

2
3
−7
−5

+

,,-+ c

(

))*

0
3
4
1

+

,,- =

(

))*

1
2
−2
−3

+

,,-

has a solution for a, b, c. Reducing the corresponding augmented matrix gives

(

))*

−1 2 0 | 1
0 3 3 | 2
4 −7 4 | −2
5 −5 1 | −3

+

,,- →

(

))*

−1 2 0 | 1
0 3 3 | 2
0 1 4 | 2
0 5 1 | 2

+

,,- →

(

))*

−1 2 0 | 1
0 3 3 | 2
0 0 −9 | −4
0 0 0 | 4

+

,,- ,

from which we can see there is no solution. Thus the first vector in our collection is not a linear
combination of the others, so it is not redundant.

We move on and ask whether the second vector is a linear combination of the rest; that is, does

a

(

))*

1
2
−2
−3

+

,,-+ b

(

))*

2
3
−7
−5

+

,,-+ c

(

))*

0
3
4
1

+

,,- =

(

))*

−1
0
4
5

+

,,-

have a solution for a, b, c. As before, we can reduce the corresponding augmented matrix:

(

))*

1 2 0 | −1
2 3 3 | 0
−2 −7 4 | 4
−3 −5 1 | 5

+

,,-

until we see that this won’t have a solution either. So, the second vector in our collection is not
redundant either.

And so on, we can do the same for the third vector and then the fourth. However, note that this
gets pretty tedious, and you can imagine that if we had more vectors in our collection this process
would become way to much work. We will need a better way to check for dependence/independence.

Important. Vectors "v1, . . . ,"vk in Rn are linearly independent if and only if the only solution of

c1"v1 + · · ·+ ck"vk = "0
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is the zero solution c1 = · · · = ck = 0. So, to test whether some vectors are linearly independent we
set a linear combination of them equal to "0 and solve for the corresponding coefficients; if all the
coefficients must be 0 the vectors are independent, if at least one is nonzero they are dependent.

Remark. The idea behind this fact is simple: if one vector is a linear combination of the others,
say

"v1 = c2"v2 + · · ·+ ck"vk,

we can rewrite this as
−"v1 + c2"v2 + · · ·+ ck"vk = "0

with at least one coefficient, namely the one in front of "v1 equal to 0. Similarly, if we have

c1"v1 + · · ·+ ck"vk = "0

with at least one coefficient nonzero, say c1, we can use this equation to “solve” for "v1 in terms of
the other vectors by moving c1"v1 to one side and dividing by c1 (which is why we need a nonzero
coefficient).

Back to Example 1. Consider the equation

c1

(

))*

1
2
−2
−3

+

,,-+ c2

(

))*

−1
0
4
5

+

,,-+ c3

(

))*

2
3
−7
−5

+

,,-+ c4

(

))*

0
3
4
1

+

,,- =

(

))*

0
0
0
0

+

,,- .

Reducing the corresponding augmented matrix gives:

(

))*

1 −1 2 0 | 0
2 0 3 3 | 0
−2 4 −7 3 | 0
−3 5 −5 1 | 0

+

,,- →

(

))*

1 −1 2 0 | 0
0 2 −1 3 | 0
0 0 −2 1 | 0
0 0 0 −1 | 0

+

,,- ,

and we see that the only solution to our equation is the zero solution c1 = c2 = c3 = c4 = 0. Hence
the vectors in Example 1 are linearly independent.

Definition of basis. Suppose that V is a subspace of Rn. A collection of vectors "v1, . . . ,"vk in V
are said to be a basis of V if:

• "v1, . . . ,"vk span all of V , and

• "v1, . . . ,"vk are linearly independent.

The point is the following: the first condition says that the basis vectors are enough to be able
to describe any vector in V since anything in V can be written as a linear combination of the
basis vectors, and the second condition says that the basis vectors constitute the fewest number of
vectors for which this spanning condition is true.

Important. Intuitively, a basis of V is a “minimal” spanning set of V .

Standard basis of Rn. The vectors

"e1 =

%
1
0

&
and "e2 =

%
0
1

&
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form a basis of R2, called the standard basis of R2. In general, the standard basis of Rn is the
collection of vectors "e1, . . . ,"en where "ei is the vector with 1 in the i-th position and 0’s everywhere
else. Expressing an arbitrary vector in Rn as a linear combination of the standard basis of Rn is
easy: (

)))*

x1
x2
...
xn

+

,,,-
= x1"e1 + x2"e2 + · · ·+ xn"en.

Remark. Note that a space can (and will) have more than one possible basis. For example, the
vectors %

1
1

&
and

%
1
2

&

also form a basis of R2. Indeed, for any ( xy ) in R2 the equation

%
x
y

&
= c1

%
1
1

&
+ c2

%
1
2

&

has a solution, so these two vectors span all of R2, and these two vectors are linearly independent
since neither is a multiple of the other. So, although above we defined what we mean by the
“standard” basis of Rn, it is important to realize that Rn has many other bases. What is common
to them all however is that they will all consist of n vectors; this is related to the notion of
“dimension”, which we will come back to next time.

Example 2. We determine bases for the kernel and image of

A =

(

*
0 1 2 0 3
0 −2 −4 1 −2
0 3 6 −2 1

+

- .

There is a standard way of doing this, using the reduced echelon form of A, which is:

(

*
0 1 2 0 3
0 0 0 1 4
0 0 0 0 0

+

- .

We first use this to find vectors spanning the kernel of A. Anything in the kernel looks like

(

))))*

x1
x2
x3
x4
x5

+

,,,,-
=

(

))))*

s
−2t− 3u

t
−4u
u

+

,,,,-
= s

(

))))*

1
0
0
0
0

+

,,,,-
+ t

(

))))*

0
−2
1
0
0

+

,,,,-
+ u

(

))))*

0
−3
0
−4
1

+

,,,,-
,

so (

))))*

1
0
0
0
0

+

,,,,-
,

(

))))*

0
−2
1
0
0

+

,,,,-
, and

(

))))*

0
−3
0
−4
1

+

,,,,-
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span kerA. Now, note that these vectors are actually linearly independent! Indeed, the first is not
a linear combination of the other two since any combination of the other two will have a zero first
entry, the second is not a linear combination of the other two since any combination of the first
and third will have a zero third entry, and the third is not a linear combination of the first two
since any combination of the first two will have a zero fifth entry. (This will always happen when
using the procedure we’ve described before for finding vectors which span the kernel of a matrix.)
Thus the three vectors above form a basis of kerA.

To find a basis of imA, we also look at the reduced echelon form. In this reduced form, note
that the second and fourth columns are the “pivot columns”, meaning columns which contain a
pivot. It turns out that the corresponding columns of the original matrix form a basis of the image
of A! (We’ll see why next time.) In our case then, the second and fourth columns of A:

(

*
1
−2
3

+

- and

(

*
0
1
−2

+

-

form a basis of imA.

Important. To find a basis for the kernel or image of a matrix, find the reduced echelon form of
that matrix. Then:

• For the kernel, find vectors spanning the kernel as we have done before using the idea of
“factoring” out free variables. The resulting vectors will be a basis for the kernel.

• For the image, take the columns in the original matrix which correspond to the pivot columns
in the echelon form. These columns form a basis for the image.

Lecture 13: Bases and Dimension

Today we continued talking about the notion of a basis of a subspace of Rn, and introduced the
idea of the “dimension” of a subspace. The dimension of a subspace matches up with our usual
geometric intuition as to what “dimension” should mean: i.e. lines are 1-dimensional, planes are
2-dimensional, and so on.

Warm-Up 1. We find all numbers k such that

(

*
1
−2
−1

+

- ,

(

*
0
3
−2

+

- , and

(

*
−1
−4
k

+

-

are linearly independent. These are linearly independent when

c1

(

*
1
−2
−1

+

-+ c2

(

*
0
3
−2

+

-+ c3

(

*
−1
−4
k

+

- =

(

*
0
0
0

+

-

has only the zero solution. Reducing the augmented matrix of the corresponding system gives:

(

*
1 0 −1 | 0
−2 3 −4 | 0
−1 −2 k | 0

+

- →

(

*
1 0 −1 | 0
0 3 −6 | 0
0 −2 k − 1 | 0

+

- →

(

*
1 0 −1 | 0
0 3 −6 | 0
0 0 k − 5 | 0

+

- .
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Thus our equation has only the zero solution c1 = c2 = c3 = 0 whenever k ∕= 5, so the three given
vectors are linearly independent as long as k ∕= 5.

For k = 5 our vectors are then linearly dependent, and it should be possible to express one as
a linear combination of the rest. Indeed, when k = 5 we have

(

*
1
−2
−1

+

-+ 2

(

*
0
3
−2

+

-+

(

*
−1
−4
5

+

- =

(

*
0
0
0

+

- ,

and this can be used to express any vector in our original collection as a linear combination of the
other two.

Warm-Up 2. We find a basis for the span of
(

))*

1
−2
3
−1

+

,,- ,

(

))*

2
−4
6
−2

+

,,- ,

(

))*

1
−2
5
1

+

,,- ,

(

))*

4
−3
10
−2

+

,,- , and

(

))*

−1
−3
−4
−4

+

,,- .

Note that for sure the second vector is redundant since it is a multiple of the first, so removing
it from our collection won’t change the span. Instead of trying to see which other vectors are
redundant by inspection, we use a more systematic approach. First, note that the span of these
vectors is the same as the image of the matrix

A =

(

))*

1 2 1 4 −1
−2 −4 −2 −3 −3
3 6 5 10 −4
−1 −2 1 −2 −4

+

,,- .

So, we are really looking for a basis for this image, and we saw last time how to find one. Reducing
this matrix a bit gives:

(

))*

1 2 1 4 −1
−2 −4 −2 −3 −3
3 6 5 10 −4
−1 −2 1 −2 −4

+

,,- →

(

))*

1 2 1 4 −1
0 0 2 −2 −1
0 0 0 −4 4
0 0 0 0 0

+

,,- .

The claim was that the columns in the original matrix which correspond to pivot columns in the
reduced echelon form give a basis for the image. Our matrix so far is not yet in reduced echelon
form, but we can already tell that the first, third, and fourth columns will be the ones containing
pivots in the end. Thus (

))*

1
−2
3
−1

+

,,- ,

(

))*

1
−2
5
1

+

,,- ,

(

))*

4
−3
10
−2

+

,,-

forms a basis for the image of A, and hence a basis for the span of the original five vectors.
Let us justify a bit why these vectors indeed form a basis for imA. First, they are linearly

independent: the only solution of
(

))*

1 1 4
−2 −2 −3
3 5 10
−1 1 −2

+

,,- "x = "0
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is "x = "0 since row-reducing this matrix ends up giving
(

))*

1 1 4
0 2 −2
0 0 −4
0 0 0

+

,,- ,

which are the first, third and fourth columns from the reduced form of A we computed above.
Second, any other vector among our original list is a linear combination of these three: for instance
if we want to write the fifth vector as

(

))*

−1
−3
−4
−4

+

,,- = c1

(

))*

1
−2
3
−1

+

,,-+ c2

(

))*

1
−2
5
1

+

,,-+ c3

(

))*

4
−3
10
−2

+

,,- ,

the corresponding augmented matrix reduces to
(

))*

1 1 4 | −1
0 2 −2 | 1
0 0 −4 | 4
0 0 0 | 0

+

,,-

based on the reduced form of A we previously computed. From here we can that there are scalars
c1, c2, c3 which express the fifth vector in our original list as a linear combination of the three we
are claiming is a basis. These ideas carry over for any matrix, which is why our method for finding
a basis for the image of a matrix always works.

Number of linearly independent and spanning vectors. For a subspace V of Rn, any linearly
independent set of vectors in V always has fewer (or as many) vectors than any spanning set of
vectors in V :

# of any linearly independent vectors ≤ # of any spanning vectors.

For instance, say we have four vectors "v1,"v2,"v3,"v4 in R3. Since the standard basis of R3 is a
spanning set with three vectors, our four vectors cannot be linearly independent. So, as soon as we
have more than three vectors in R3 they must be linearly dependent. Similarly, anytime we have
fewer than three vectors in R3, they cannot possibly span all of R3 since the standard basis is a
linearly independent set with three vectors.

The dimension of a subspace. The above fact tells us the following. Say we have two bases
"v1, . . . ,"vk and "w1, . . . , "wℓ for a subspace V of Rn. Viewing the "v’s as the linearly independent set
and the "w’s as the spanning set we get that

k ≤ ℓ.

Switching roles and viewing "v’s as spanning and "w’s as linearly independent gives

ℓ ≤ k.

These two inequalities together imply that k = ℓ, so we come to the conclusion that any two bases
of V must have the same number of vectors! This common number is what we call the dimension
of V , and we denote it by dimV .
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Important. Any two bases of a subspace V of Rn have the same number of vectors, and dimV is
equal to the number of vectors in any basis of V .

Simplified basis check. Say dimV = n. Then any n linearly independent vectors must au-
tomatically span V . Indeed, if "v1, . . . ,"vn were linearly independent in V and did not span V it
would be possible to “extend” this to a basis of V , giving a basis of V with more than n = dimV
vectors. This is not possible, so "v1, . . . ,"vn being linearly independent is enough to guarantee that
they actually form a basis of V .

We can also see this computationally, say in the case V = Rn. If "v1, . . . ,"vn are linearly inde-
pendent vectors in Rn, the only solution of

(

*
| |
"v1 · · · "vn
| |

+

- "x = "0

is the zero vector "x = "0. (Here, the matrix is the one whose columns are "v1, . . . ,"vn.) But, the only
way in which this can be possible is for the reduced echelon form of this matrix to be the identity:

(

*
| |
"v1 · · · "vn
| |

+

- →

(

)))*

1 0
1

. . .

0 1

+

,,,-
.

But with this echelon form, it is true that

(

*
| |
"v1 · · · "vn
| |

+

- "x = "b

has a solution no matter what "b is, meaning that any "b in Rn is a linear combination of the columns
of this matrix. Thus "v1, . . . ,"vn span all of Rn and hence form a basis of Rn.

Similarly, any n vectors in Rn which span Rn must automatically be linearly independent and
hence form a basis of Rn.

Important. In an n-dimensional space V , any n linearly independent vectors automatically form
a basis, and any n spanning vectors automatically form a basis.

The dimensions of the kernel and image of a matrix. Let us compute the dimension of the
kernel and image of

A =

(

))*

1 2 1 4 −1
−2 −4 −2 −3 −3
3 6 5 10 −4
−1 −2 1 −2 −4

+

,,- .

We previously reduced this in the second Warm-Up to end up with

A →

(

))*

1 2 1 4 −1
0 0 2 −2 −1
0 0 0 −4 4
0 0 0 0 0

+

,,- .
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Each pivot column contributes one basis vector for the image, so dim imA = 3. Notice that this
is precisely the same as the rank of A, and we finally have our long-awaited meaning behind the
rank of a matrix: it is simply the dimension of its image! Based on the method we saw last time
for finding a basis for the kernel of a matrix, each free variable contributes one basis vector for the
kernel, so dimkerA equals the number of free variables. In this case, dimkerA = 2.

Important. For any matrix A,

• dim imA = rankA = # of pivots in the reduced echelon form of A, and

• dimkerA = # of free variables in the reduced echelon form of A

The rank-nullity theorem. For any matrix A, we now see that

rankA+ dim(kerA) = # of columns of A,

since any column of A either corresponds to a pivot in the echelon form (thus contributing to
rankA) or to a free variable in the echelon form (thus contributing to dimkerA). The dimension
of kerA is often called the nullity of A, so this theorem says that rank + nullity equals the number
of columns, which is where the name of the theorem comes from.

Back to rank. Now that we’ve seen the true meaning of the rank of a matrix as the dimension of
its image, we can justify some properties of rank you may have come across before. For instance,
for matrices A and B for which AB is defined, it is true that

rank(AB) ≤ rank(A).

Justifying this directly in terms of number of pivots is not easy, but now it is not so bad: a
homework problem showed that im(AB) was always contained inside im(A), so

dim im(AB) ≤ dim im(A)

since a subspace of a larger space always dimension ≤ to that of the larger space.
As an application of this, we can justify why the notion of “invertible” only makes sense for

square matrices: that is, if A and B aren’t square, it is impossible to have both AB = I and
BA = I. Consider a specific case of this, say A is 5× 7 and B is 7× 5. Then BA is 7× 7, so if this
were going to equal the 7× 7 identity matrix it would have to have rank 7. But

rank(BA) ≤ rankB ≤ 5,

so it is not possible to have BA = I. Note that it can happen that AB equals the 5 × 5 identity
matrix (try to find an example!), but not both AB = I and BA = I.

Lecture 14: Coordinates Relative to a Basis

Today we started talking about the idea of “changing your basis” and computing “coordinates” of
a vector of Rn relative to a non-standard basis. We’ll continue with this next time.

Warm-Up 1. We find the dimension of the subspace of R3 spanned by
(

*
1
−t
2

+

- ,

(

*
3

−2t− 2
t+ 4

+

- , and

(

*
4

2− 4t
t+ 10

+

- .
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(Note that these are not quite the vectors I used in the actual Warm-Up in class, which is what
led to my confusion. I think I dropped the −t in the first vector and just used t by mistake; these
vectors above better illustrate what I meant the Warm-Up to show.) We can view this subspace as
the image of the matrix (

*
1 3 4
−t −2t− 2 2− 4t
2 t+ 4 t+ 10

+

- ,

so we are really asking about finding the dimension of the image of this matrix, which is equal to
the rank of this matrix. We row-reduce:

(

*
1 3 4
−t −2t− 2 2− 4t
2 t+ 4 t+ 10

+

- →

(

*
1 3 4
0 t− 2 2
0 t− 2 t+ 2

+

- →

(

*
1 3 4
0 t− 2 2
0 0 t

+

- .

Now we can see that our answer will depend on what t is: when t = 0 or t = 2, our matrix has
rank 2 and so our original vectors span a 2-dimensional subspace of R3, while if t ∕= 0 and t ∕= 2
our matrix has rank 3 and the span of the original vectors is 3-dimensional.

Geometrically, when t = 0 or t = 2 our vectors span a plane, while for all other values of t our
vectors span all or R3. In this case, there are no values of t for which our vectors will span only a
line.

Geometric meaning of non-invertibility. Suppose that A is a non-invertible 2× 2 matrix and
consider the transformation T ("x) = A"x. Then rankA is either 0 or 1. When rankA = 0, the image
of T is zero dimensional and so consists of just the origin {"0}; thus in this case the transformation
T “collapses” all of R2 to a single point. When rankA = 1, the image of T is a 1-dimensional line,
so T in this case “collapses” all of R2 to this line. Thus, geometrically a transformation R2 → R2

is non-invertible precisely when it “collapses” 2-dimensional things down to a single point or a line.
Analogously, the transformation T corresponding to a non-invertible 3× 3 matrix will collapse

3-dimensional things down to a single point, a line, or a plane. A matrix is invertible precisely
when the corresponding transformation does not do any such “collapsing”.

Amazingly Awesome Theorem, continued. The following are equivalent to an n × n matrix
A being invertible:

• The columns of A are linearly independent

• The columns of A span all of Rn

• The columns of A form a basis of Rn

• The kernel of A is zero dimensional

• The image of A is n-dimensional

The first two conditions were actually included in the original version of the Amazingly Awesome
Theorem I gave, only we hadn’t defined “linearly independent” and “span” at that point. I’m
listing them here again for emphasis.

Geometric idea behind coordinates. The idea behind coordinates is the following. Usually
we represent vectors in terms of the usual x and y-axes, which geometrically are the span of ( 10 )
and of ( 01 ) respectively. Thus usually we are using the standard basis of R2 to represent vectors.
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However, there is nothing stopping us from using a different set of axes (i.e. a different basis) for
R2 to represent vectors. Doing so can help to clarify some properties of linear transformations;
in particular, we’ll see examples where picking the “right” set of axes can make the geometric
interpretation of some transformations easier to identify.

Definition of coordinates. Suppose that B = {"v1, . . . ,"vn} is a basis of Rn. We know that we
can then express any "x in Rn as a linear combination of the basis vectors in B:

"x = c1"v1 + · · ·+ cn"vn for some scalars c1, . . . , cn.

We call c1, . . . , cn the coordinates of "x relative to the basis B. The vector

["x]B =

(

)*
c1
...
cn

+

,-

is called the coordinate vector of "x relative to B. Thus, the coordinates of a vector relative to a
basis give us the coefficients we need in order to express that vector in terms of said basis.

Example 1. The coordinates of a vector "x relative to the standard basis of Rn are simply the
entries of "x, i.e. what we normally mean when we refer to the “coordinates” of "x:

(

)))*

x1
x2
...
xn

+

,,,-
= x1

(

)))*

1
0
...
0

+

,,,-
+ x2

(

)))*

0
1
...
0

+

,,,-
+ · · ·+ xn

(

)))*

0
0
...
1

+

,,,-
.

This is what I mean when I say that usually when we express vectors, we are doing so in terms of
the standard basis.

Example 2. Consider the basis B =
;
( 11 ) ,

!−1
1

"<
of R2. This is a basis because these vectors are

linearly independent, and any two linearly independent vectors in a 2-dimensional space automati-
cally span that space. We find the coordinates of any vector ( ab ) relative to this basis. We want c1
and c2 satisfying %

a
b

&
= c1

%
1
1

&
+ c2

%
−1
1

&
.

We can solve this equation using an augmented matrix as usual, or we can note the following: this
equation can be written as %

a
b

&
=

%
1 −1
1 1

&%
c1
c2

&
,

so we can solve for the coordinates we want by multiplying both sides by the inverse of this matrix!
This equation says that our “old” coordinates a and b are related to our “new” ones c1 and c2 via
multiplication by this matrix; because of this we call

%
1 −1
1 1

&

the change of basis matrix from the basis B to the standard basis. Since

%
c1
c2

&
=

%
1 −1
1 1

&−1%
a
b

&
,
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we would call %
1 −1
1 1

&−1

=
1

2

%
1 1
−1 1

&

the change of basis matrix from the standard basis to B; in other words, it is this inverse matrix
which tells us how to move from “old” (standard) coordinates to “new” coordinates.

Thus in our case, =%
a
b

&>

B
=

%
c1
c2

&
=

1

2

%
1 1
−1 1

&%
a
b

&
=

%
a+b
2

b−a
2

&
,

so to express ( ab ) in terms of the basis B we need to use a+b
2 as the coefficient of the first basis

vector and b−a
2 as the coefficient of the second basis vector:

%
a
b

&
=

a+ b

2

%
1
1

&
+

b− a

2

%
−1
1

&
.

Geometrically, span {( 11 )} and span
;!−1

1

"<
give us new axes for R2 formed by the lines y = x and

y = −x respectively. The coordinates we found tell us how “far along” each of these new axes we
have to go in order to reach ( ab ):

Important. Given a basis B = {"v1, . . . ,"vn} of Rn, the matrix S whose columns are the basis
vectors is called the change of basis matrix from B to the standard basis, and its inverse S−1 is
the change of basis matrix from the standard basis to B. (Note that S is invertible according to
the Amazingly Awesome Theorem since its columns form a basis of Rn.) These matrices have the
properties that:

["x]old = S["x]new and ["x]new = S−1["x]old,

where by “new” we mean relative to the basis B and by “old” we mean relative to the standard
basis. The book doesn’t use the term “change of basis” matrix, but I think it is a useful term since
it emphasizes the role the matrix S plays in moving between different coordinates.

Example 3. We find the coordinates of ( 35 ) relative to the basis B = {
!

3
−5

"
,
!−7

12

"
} of R2; that is,

we want c1 and c2 such that %
3
5

&
= c1

%
3
−5

&
+ c2

%
−7
12

&
.
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The change of basis matrix in this case is

S =

%
3 −7
−5 12

&
,

so the coordinates we want are given by

%
c1
c2

&
= S−1

%
3
5

&
=

%
12 7
5 3

&%
3
5

&
=

%
71
30

&
.

Geometrically, the “axes” determined by our basis vectors are non-perpendicular lines, and
these coordinates tells us how far along these axes we must go in order to reach ( 35 ):

Transformations relative to new coordinates. Let T be the linear transformation which
reflects R2 across the line y = x. The matrix of this transformation is

A =

%
0 1
1 0

&
.

We now describe the same transformation only now relative to “new” coordinates determined by
the basis B = {( 11 ) ,

!−1
1

"
}. Why would we want to do this? In this case the matrix of T is pretty

simple already, and changing coordinates really won’t help to simplify matters much. However,
we will see next time examples where we might have a messy-looking transformation and changing
coordinates will definitely help to simplify the description of what’s going on. Here we work this
out in a simple case only to see how the general process works.

Recall that previously found the matrix of T by applying the transformation ( 10 ) and ( 01 ), and
using these as the columns of the matrix. We now do exactly the same thing, only replacing the
standard basis with the basis B; that is, we apply T to the first basis vector and compute the
coordinates of the result relative to B, and then do the same for the second basis vector. The
resulting coordinate vectors form the columns of the matrix of T relative to B:

[T ]B =

%=
T

%
1
1

&>

B

=
T

%
−1
1

&>

B

&
.
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First, T does nothing to ( 11 ) since ( 11 ) is on the line we are reflecting across, so

T

%
1
1

&
=

%
1
1

&
.

The coordinates of this relative to B are ( 10 ) since to write ( 11 ) as a linear combination of the basis
vectors in B we take %

1
1

&
= 1

%
1
1

&
+ 0

%
−1
1

&
.

After all, ( 11 ) is the first basis vector already so we don’t even need the second basis vector if we
want to express the first as a linear combination of the two. The first column of the matrix of T
relative to B is then ( 10 ).

We have

T

%
−1
1

&
=

%
1
−1

&

since anything perpendicular to the line we reflect across just has its direction flipped around. The
coordinates of this relative to B are

=
T

%
−1
1

&>

B
=

=%
1
−1

&>

B
=

%
0
−1

&

since we don’t even need to use the first basis vector in order to express the second as a linear
combination of the two. The matrix of T relative to B is thus

[T ]B =

%=
T

%
1
1

&>

B

=
T

%
−1
1

&>

B

&
=

%
1 0
0 −1

&
.

The point of this matrix is the following: say we want to figure out what T does to some vector
"x. We can determine this by taking the coordinate vector of "x relative B and multiplying that by
[T ]B; the result will be the coordinate vector of T ("x) relative to B:

[T ("x)]B = [T ]B["x]B.

In this example, the matrix of T relative to B tells us that geometrically T leaves the span {( 11 )}-
coordinate of a vector alone (due to the first column being ( 10 )) but changes the sign of the
span

;!−1
1

"<
-coordinate (due to the second column being

!
0
−1

"
), which is precisely what reflec-

tion across y = x should do.
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The point is that by switching to a “better” set of axes, we have somewhat simplified the
geometric description of T . We’ll see more and better examples of this next time.

Lecture 15: More on Coordinates

Today we continued talking about coordinates and the matrix of a transformation relative to a
non-standard basis. We looked at examples which hopefully show why you would want to consider
such a thing.

Warm-Up 1. We compute the coordinates of ( 12 ) relative to the basis B =
;
( 21 ) ,

!−3
1

"<
of R2.

We want c1 and c2 satisfying %
1
2

&
= c1

%
2
1

&
+ c2

%
−3
1

&
.

One way to find these coefficients is by solving the corresponding system of equations, but instead
we use the change of basis matrix

!
2 −3
1 1

"
. We have

%
1
2

&
=

%
2 −3
1 1

&%
c1
c2

&
, so

%
c1
c2

&
=

%
2 −3
1 1

&−1%
1
2

&
=

1

5

%
1 3
−1 2

&%
1
2

&
=

%
7/5
3/5

&
.

Thus the coordinates of ( 12 ) relative to B are 7
5 and 3

5 . Viewing span {( 21 )} and span
;!−3

1

"<
as a

new set of axes for R2, these coordinates tell us how far along these new axes we must go in order
to reach ( 12 ):

Warm-Up 2. We find the matrix of the reflection across the line spanned by ( 43 ) relative to the
basis B =

;
( 43 ) ,

!−3
4

"<
of R2. Recall that this matrix is given by

[T ]B =

%=
T

%
4
3

&>

B

=
T

%
−3
4

&>

B

&
,

where we take the coordinate vectors of T ( 43 ) and T
!−3

4

"
relative to the basis B. Note that on a

previous homework assignment you computed the matrix of this reflection relative to the standard
basis, which ended up being %

7/25 24/25
24/25 −7/25

&
.
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The point is that the matrix of T relative to B is much simpler than this, because the basis B has
nice properties with respect to T .

First,

T

%
4
3

&
=

%
4
3

&

since ( 43 ) is on the line we are reflecting across. The coordinate vector of this relative to B is

=%
4
3

&>

B
=

%
1
0

&

since ( 43 ) is itself the first vector in our basis. Next,

T

%
−3
4

&
=

%
3
−4

&

since any vector perpendicular to the line of reflection simply has its direction changed by multi-
plying by −1. This has coordinate vector

=%
3
−4

&>

B
=

%
0
−1

&

since
!−3

4

"
is 0 times the first basis vector plus −1 times the second. The matrix of T relative to

B is then

[T ]B =

%
1 0
0 −1

&
.

As we know from the geometric description of T , this matrix suggests that T leaves the span {( 43 )}-
direction of a vector alone while flipping the span

;!−3
4

"<
-direction. Also, as we said earlier, this

matrix is much simpler than the matrix of T relative to the standard basis.
Similarly, we can consider the transformation R which is orthogonal projection of R2 onto the

line spanned by ( 43 ). Since this satisfies

R

%
4
3

&
=

%
4
3

&
and R

%
−3
4

&
=

%
0
0

&
,

which respectively have coordinate vectors

%
1
0

&
and

%
0
0

&

relative to B, the matrix of R relative to B is

[R]B =

%
1 0
0 0

&
.

This again is much simpler than the matrix of T relative to the standard basis, which is

%
31/25 24/25
24/25 31/25

&
.

Important. We emphasize that the matrix of T relative to B satisfies

[T ("x)]B = [T ]B["x]B,
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which says that to determine the result of applying T to a vector "x, we can take the coordinate
vector of "x relative B and multiply it by [T ]B; the result will be the coordinate vector of T ("x)
relative to B. You should view this equation as analogous to T ("x) = A"x, only now we are writing
everything in terms of a new basis.

Example 1. We want to come up with a geometric description of the transformation defined by
T ("x) =

!
13 −6
−1 12

"
"x. For a first attempt, we compute:

T

%
1
0

&
=

%
13
−1

&
and T

%
0
1

&
=

%
−6
12

&
.

If we draw these vectors it is not clear at all what kind of geometric properties T has: it doesn’t
appear to be a rotation nor a reflection, and it’s hard to guess whether it might be some kind of
shear or something else. The problem is that we’re using the standard basis of R2 to analyze T .

Instead, let us compute the matrix of T relative to the basis from the first Warm-Up: B =;
( 21 ) ,

!−3
1

"<
. We have

T

%
2
1

&
=

%
13 −6
−1 12

&%
2
1

&
=

%
20
10

&
,

which has coordinates 10 and 0 relative to B since it is just 10 times the first basis vector. Also,

T

%
−3
1

&
=

%
13 −6
−1 12

&%
−3
1

&
=

%
−45
15

&
,

which has coordinates 0 and 15 since it is 15 times the second basis vector. The matrix of T relative
to B is thus

[T ]B =

%
10 0
0 15

&
.

Now, what does this tell us? If we consider the axes corresponding to B, the form of this matrix
tells us that T acts by scaling the span {( 21 )}-direction by a factor of 10 and scales the span

;!−3
1

"<
-

direction by a factor of 15. Thus we do have a pretty nice description of what T does geometrically,
which would have been nearly impossible to determine given the original definition of T .

Now, in the first Warm-Up we computed that

=%
1
2

&>

B
=

%
7/5
3/5

&
.

Recall that the matrix of T relative to B satisfies:

[T ("x)]B = [T ]B["x]B,

which says that multiplying the coordinate vector of "x by [T ]B gives the coordinate vector of T ("x).
Thus we should have

=
T

%
1
2

&>

B
=

%
10 0
0 15

&%
7/5
3/5

&
=

%
70/5
45/5

&
=

%
14
9

&
.

Indeed, we can directly compute T ( 12 ) as

T

%
1
2

&
=

%
13 −6
−1 12

&%
1
2

&
=

%
1
23

&
,
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and you can check that the coordinates of this relative to B are indeed 14 and 9:
%
1
23

&
= 14

%
2
1

&
+ 9

%
−3
1

&
.

Geometrically, in terms of our new axes, scaling 7/5 by 10 and 3/5 by 15 does look like it should
give the coordinates of ( 1

23 ):

The point again is that T is much simpler to describe now that we’ve switched to a new basis.

Remark. A fair question to ask at this point is: how did I know that the basis consisting of ( 21 )
and

!−3
1

"
was the right one to use? We’ll come back to this later; the answer is related to what

are called “eigenvalues” and “eigenvectors”.

Example 2. We find the matrix of T ("x) =
.

4 2 2
2 4 2
2 2 4

/
"x relative to the basis

(

*
−1
0
1

+

- ,

(

*
0
−1
1

+

- ,

(

*
1
1
1

+

-

of R3. We have

T

(

*
−1
0
1

+

- =

(

*
−2
0
2

+

- , T

(

*
0
−1
1

+

- =

(

*
0
−2
2

+

- , and T

(

*
1
1
1

+

- =

(

*
8
8
8

+

- ,

which respectively have coordinate vectors
(

*
2
0
0

+

- ,

(

*
0
2
0

+

- , and

(

*
0
0
8

+

-

relative to our basis. Thus the matrix of T relative to this basis is
(

*
2 0 0
0 2 0
0 0 8

+

- .
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We can now see that, geometrically, T scales by a factor of 2 in the direction of
.−1

0
1

/
, it scales by

a factor of 2 in the direction of
.

0
−1
1

/
, and it scales by a factor of 8 in the direction of

.
1
1
1

/
.

Back to Example 1. Let A =
!

13 −6
−1 12

"
be the matrix of Example 1; we want to now compute

A100. It will be of no use to try to multiply A by itself 100 times, or to multiply it by itself enough
times until we notice some kind of pattern. We need a better way to do this.

The key comes from the following equation:

%
13 6
−1 12

&
=

%
2 −3
1 1

&%
10 0
0 15

&%
2 −3
1 1

&−1

.

You can certainly multiply out the right hand side to see why this is true, but I claim that we know
it has to be true without doing any further computation by thinking about each of these matrices
are supposed to represent. Recall that

S =

%
2 −3
1 1

&

is the change of basis matrix from the basis B =
;
( 21 ) ,

!−3
1

"<
of R2 to the standard basis and that

B =

%
10 0
0 15

&

is the matrix of the transformation T ("x) = A"x relative to B. Take a vector "x and consider

SBS−1"x.

First, S−1 is the change of basis matrix from the standard basis to B, so

S−1"x

gives the coordinate vector of "x relative to B. Now, since B tells us what T does relative to our
new basis, multiplying S−1"x by B gives us the coordinate vector of T ("x) relative to B. Finally,
multiplying by S takes this coordinate vector and expresses it back in terms of coordinates relative
to the standard basis. The end result is that

SBS−1"x

gives T ("x) expressed in terms of the standard basis, but this is precisely what A"x is supposed to
be! In other words, the transformation corresponding to the product SBS−1 does the same thing
to "x as does A, so

A = SBS−1

as claimed.

Definition of similar matrices. Two matrices A and B are said to be similar if there is an
invertible matrix S satisfying A = SBS−1.

Important. Similar matrices represent the “same” linear transformation only with respect to
different bases. In particular, for an n×n matrix A and a basis B of Rn, A is similar to the matrix
B of the transformation T ("x) = A"x relative to B; i.e.

A = SBS−1
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where S is the change of basis matrix from B to the standard basis.

Finishing up our last computation. Going back to where we previously left off, we now know
that

A = SBS−1.

Note that this gives
A2 = AA = (SBS−1)(SBS−1) = SB2S−1

since the S−1S in the middle is the identity. Similarly, A3 = SB3S−1 and in general

Ak = SBkS−1.

Thus, %
13 6
−1 12

&100

=

%
2 −3
1 1

&%
10 0
0 15

&100%
2 −3
1 1

&−1

,

which is simple to compute now since powers of a diagonal matrix are easy to compute:

%
10 0
0 15

&100

=

%
10100 0
0 15100

&
,

so

A100 =

%
2 −3
1 1

&%
10100 0
0 15100

&%
2 −3
1 1

&−1

=

%
2 · 10100 −3 · 15100
10100 15100

&
1

5

%
1 3
−1 2

&

=
1

5

%
2 · 10100 + 3 · 15100 6 · 10100 − 6 · 15100

10100 − 15100 3 · 10100 + 2 · 15100
&
.

as desired. Note how useful it was to compute the matrix of the transformation corresponding to
A in terms of another well-chosen basis!

Lecture 16: Determinants

Today we started talking about determinants, which we will continue with all this week. For now all
we are interested in is computing determinants; we will talk about just what exactly determinants
mean over the next few lectures.

Warm-Up 1. Suppose that A is the 2 × 2 matrix of a rotation by an angle 0 < θ < 180. We
claim that A is not similar to a diagonal matrix. If it was, there would be a basis B = {"v1,"v2} of
R2 relative to which the matrix of T ("x) = A"x had the form

[T ]B =

%
a 0
0 b

&
.

Now, let us think about what it would take to get a matrix of this form. This says that the
coordinate vectors of T ("v1) and T ("v2) relative to B would respectively be ( a0 ) and

!
0
b

"
. So, in order

to write T ("v1) as a linear combination of the basis vectors in B we would use

T ("v1) = a"v1 + 0"v2 = a"v1.
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Thus the first basis vector "v1 would need to have the property that applying T to it gave a multiple
of it; however, rotating a nonzero vector by an angle strictly between 0 and 180 can never produce
a multiple of that vector! Similarly, the second basis vector would need to satisfy

T ("v2) = b"v2,

and again such an equation cannot possibly hold for the type of rotation we are considering.
This shows that there will never be a basis of R2 relative to which the matrix of T has the form

%
a 0
0 b

&
,

so A is not similar to a diagonal matrix. Again, the key point is in realizing what having a diagonal
matrix as the matrix of T relative to a basis would mean about what happens when we apply T to
those basis vectors.

Warm-Up 2. We claim that any 2×2 reflection matrix A is similar to
!
1 0
0 −1

"
. This would require

a basis {"v1,"v2} of R2 relative to which the matrix of T ("x) = A"x is
!
1 0
0 −1

"
. Again by considering

the columns of this matrix as the coordinate vectors of T ("v1) and T ("v2), this means our basis must
satisfy

T ("v1) = "v1 and T ("v2) = −"v2.

In this case we can always find such a basis: take "v1 to be any nonzero vector on the line we are
reflecting across and "v2 to be any nonzero vector perpendicular to the line we are reflecting across.
Such vectors indeed satisfy T ("v1) = "v1 and T ("v2) = −"v2, so the matrix of T relative to the basis
{"v1,"v2} is

!
1 0
0 −1

"
as desired. The upshot is that all reflections “look similar” since they all “look”

like the matrix
!
1 0
0 −1

"
after picking the right basis. This justifies the use of the term “similar” to

describe such matrices.
We can also say that any 2×2 reflection matrix is also similar to

!
0 1
−1 0

"
. Indeed, take the basis

{"v1,"v2} from before but switch their order and consider the basis {"v2,"v1}. Doing so has the effect
of switching the columns in the corresponding matrix of T .

Warm-Up 3. Finally, we find the matrix A of the orthogonal projection T of R3 onto the line

span
7.

0
1
1

/8
relative to the standard basis. Using previous techniques we would have to compute

T

(

*
1
0
0

+

- , T

(

*
0
1
0

+

- , and T

(

*
0
0
1

+

- ,

which give the columns of the matrix we want. This is not so hard in this case, but could be more
complicated if we were projecting onto a different line. Here’s another way to answer this which is
other situations is much simpler.

We know that the matrix A we’re looking for will be similar to the matrix B of T relative to
any basis of R3:

A = SBS−1

where S is the change of basis matrix. Thus we can find A by computing SBS−1. In order to
make this worthwhile, we should find a basis of R3 relative to which B will be simpler; thinking
about orthogonal projections geometrically we can always find such a basis: take "v1 to be a nonzero
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vector on the line we’re projecting onto and "v2 and "v3 to be nonzero vectors perpendicular to that
line. For instance,

"v1 =

(

*
0
1
1

+

- , "v2 =

(

*
0
−1
1

+

- , and "v3 =

(

*
1
0
0

+

-

work. For these vectors, we have

T ("v1) = "v1, T ("v2) = "0, and T ("v3) = "0

since projecting a vector already on a line onto that line leaves that vector alone and projecting a
vector perpendicular to a line onto that line gives the zero vector. The coordinates of the above
vectors relative to the basis {"v1,"v2,"v3} of R3 are respectively

(

*
1
0
0

+

- ,

(

*
0
0
0

+

- , and

(

*
0
0
0

+

- .

With the change of basis matrix S given by

S =

(

*
0 0 1
1 −1 0
1 1 0

+

- ,

we then have

A =

(

*
0 0 1
1 −1 0
1 1 0

+

-

(

*
1 0 0
0 0 0
0 0 0

+

-

(

*
0 0 1
1 −1 0
1 1 0

+

-
−1

.

Using our technique for computing inverses we find that

(

*
0 0 1
1 −1 0
1 1 0

+

-
−1

=

(

*
0 1/2 1/2
0 −1/2 1/2
1 0 0

+

- .

Thus

A =

(

*
0 0 1
1 −1 0
1 1 0

+

-

(

*
1 0 0
0 0 0
0 0 0

+

-

(

*
0 0 1
1 −1 0
1 1 0

+

-
−1

=

(

*
0 0 1
1 −1 0
1 1 0

+

-

(

*
1 0 0
0 0 0
0 0 0

+

-

(

*
0 1/2 1/2
0 −1/2 1/2
1 0 0

+

-

=

(

*
0 0 1
1 −1 0
1 1 0

+

-

(

*
0 1/2 1/2
0 0 0
0 0 0

+

-

=

(

*
0 0 0
0 1/2 1/2
0 1/2 1/2

+

-
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is the matrix of T relative to the standard basis. Again, this would not have been hard to find
using earlier methods, but this new method might be easier to apply in other situations, say when

projecting on the line spanned by
.

1
2
3

/
for instance.

Determinants. The determinant of a (square) matrix is a certain number we compute from that
matrix. The determinant of A is denoted by |A| or by detA. This one number will encode much
information about A: in particular, it will determine completely whether or not A is invertible.
More importantly, it has an important geometric interpretation, which we will come to over the
next few lectures.

To start with, the determinant of a 2× 2 matrix is a number we’ve seen before in the formula
for the inverse of a 2× 2 matrix:

det

%
a b
c d

&
= ad− bc.

In this case, it is true that a 2× 2 matrix is invertible if and only if its determinant is nonzero; this
will be true in general.

Remark on Section 6.1. The definition of determinants and method for computing them giving
in Section 6.1 is ridiculous: technically it is correct, but makes the idea of a determinant way too
complicated. In particular, ignore anything having to do with “patterns” and “inversions”. Instead,
you should use the method of cofactor or Laplace expansion described towards the end of Section
6.2 when computing determinants. The rest of 6.1 contains useful facts that we’ll come to, but
seriously, I have no idea why the author chose to define determinants in the way he does.

Example 1. We illustrate the method of doing a cofactor expansion along the first row when
computing the following determinant:

''''''

1 2 3
4 5 −1
−2 3 1

''''''
.

To expand along the first row means we take each entry of the first row and multiply it by the
determinant of the matrix leftover when we cross out the row and column that entry is in. So, for
the entry 1, crossing out the row and column it is in (first row and first column in this case) leaves
us with

!
5 −1
3 1

"
. So we take

1

''''
5 −1
3 1

''''

as part of our cofactor expansion. We do the same with the 2 and 3 in the first row, giving the
terms

2

''''
4 −1
−2 1

'''' and 3

''''
4 5
−2 3

''''

in our expansion. The last thing to determine is what to do with the terms we’ve found: starting
with a + sign associated to the upper-left corner entry of our matrix, we alternate between assigning
+’s and −’s to all other entries, so in the 3× 3 case we would have

(

*
+ − +
− + −
+ − +

+

- .
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These signs tell us what to do with the corresponding terms in the cofactor expansion, so our
cofactor expansion along the first row becomes

1

''''
5 −1
3 1

''''− 2

''''
4 −1
−2 1

''''+ 3

''''
4 5
−2 3

'''' .

We are now down to computing these 2× 2 determinants, which we know how to do, so putting it
all together we have

''''''

1 2 3
4 5 −1
−2 3 1

''''''
= 1

''''
5 −1
3 1

''''− 2

''''
4 −1
−2 1

''''+ 3

''''
4 5
−2 3

''''

= 1(5 + 3)− 2(4− 2) + 3(12 + 10)

= 70.

Let us now compute the same determinant, only doing an expansion along the second column.
So we look at the terms

2

''''
4 −1
−2 1

'''' , 5

''''
1 3
−2 1

'''' , and 3

''''
1 3
4 −1

'''' ,

which we get the same way as before: moving down the second column and multiplying each entry
by the determinant of what’s left after crossing out the row and column that entry is in. In this
case, the first entry in the second column comes with a − sign, and alternating signs down gives us

−2

''''
4 −1
−2 1

''''+ 5

''''
1 3
−2 1

''''− 3

''''
1 3
4 −1

'''' .

Thus
''''''

1 2 3
4 5 −1
−2 3 1

''''''
= −2

''''
4 −1
−2 1

''''+ 5

''''
1 3
−2 1

''''− 3

''''
1 3
4 −1

''''

= −2(4− 2) + 5(1 + 6)− 3(−1− 12)

= 70,

agreeing with our answer from when we expanded along the first row.

Important. Performing a cofactor expansion along any row or any column of a matrix will always
give the same value. Choose the row or column which makes computations as simple as possible,
which usually means choose the row or column with the most zeroes.

Example 2. We compute the determinant of
(

))*

3 4 −1 2
3 0 1 5
0 −2 1 0
−1 −3 2 1

+

,,-

using a cofactor expansion along the third row, since this has two zeroes in it. The first and last
term we get will automatically be zero, so we only get:

''''''''

3 4 −1 2
3 0 1 5
0 −2 1 0
−1 −3 2 1

''''''''
= −(−2)

''''''

3 −1 2
3 1 5
−1 2 1

''''''
+ 1

''''''

3 4 2
3 0 5
−1 −3 1

''''''
.

64



Note that the signs follow the same pattern as before. Now we must compute each of these 3 × 3
determinants, and we do so by again using a cofactor expansion on each. Expanding along the first
row in the first and second row in the second, we get

''''''

3 −1 2
3 1 5
−1 2 1

''''''
= 3

''''
1 5
2 1

''''− (−1)

''''
3 5
−1 1

''''+ 2

''''
3 1
−1 2

''''

= 3(−9) + 1(8) + 2(7)

= −5

and
''''''

3 4 2
3 0 5
−1 −3 1

''''''
= −3

''''
4 2
−3 1

''''− 5

''''
3 4
−1 −3

''''

= −3(10)− 5(−5)

= −5.

Putting it all together gives
''''''''

3 4 −1 2
3 0 1 5
0 −2 1 0
−1 3 2 1

''''''''
= −(−2)

''''''

3 −1 2
3 1 5
−1 2 1

''''''
+ 1

''''''

3 4 2
3 0 5
−1 3 1

''''''
= 2(−5) + 1(−5) = −15.

Amazingly Awesome Theorem, continued. A square matrix is invertible if and only if its
determinant is not zero. (We will come back to why this is true later.)

Formula for inverses. As in the 2 × 2 case, there is actually a concrete formula for the inverse
of any square matrix. This formula looks like

A−1 =
1

detA

%
something pretty

complicated

&
,

which helps to explain why we need detA ∕= 0 in order for A to be invertible. The fact that such
a concrete formula exists is nice for certain theoretical reasons, but is not very practical due to
the complicated nature of the matrix involved. Indeed, even for 3 × 3 matrices it will be faster
to compute inverses using the technique we’ve previously described. So, we won’t say much more
about this explicit formula.

Lecture 17: Properties of Determinants

Today we continued talking about determinants, focusing on some of their important properties.
In particular, the way in which determinants behave under row operations can give a pretty useful
way to compute determinants in many cases.

Warm-Up 1. We find all values of λ such that
(

*
λ− 1 −3 −3
3 λ+ 5 3
−3 −3 λ− 1

+

-
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is not invertible. Trying to do this using previous techniques we would have to perform row
operations until we can determine what the rank of this matrix will be. The trouble is that with
all that λ’s floating around, these row operations will get a little tedious. Instead, we can simply
figure out when this matrix will have zero determinant.

Doing a cofactor expansion along the first row, we have:
''''''

λ− 1 −3 −3
3 λ+ 5 3
−3 −3 λ− 1

''''''
= (λ− 1)

''''
λ+ 5 3
−3 λ− 1

''''− (−3)

''''
3 3
−3 λ− 1

''''+ (−3)

''''
3 λ+ 5
−3 −3

''''

= (λ− 1)[(λ+ 5)(λ− 1) + 9] + 3[3(λ− 1) + 9]− 3[−9 + 3(λ+ 5)]

= (λ− 1)(λ2 + 4λ+ 4) + 3(3λ+ 6)− 3(3λ+ 6)

= (λ− 1)(λ+ 2)2.

This, the given matrix has determinant equal to 0 only for λ = 1 and λ = −2, so these are the only
two values of λ for which the matrix is not invertible.

Warm-Up 2. Recall that the transpose of a matrix A is the matrix AT obtained by turning the
rows of A into the columns of AT . We claim that for any square matrix A, detAT = detA. This is
actually quite simple: doing a cofactor expansion along row i of AT is the same as doing a cofactor
expansion along column i of A, so both expansions will give the same value.

Determinants are linear in columns and rows. To say that determinants are linear in the
columns of a matrix means the following; to simplify matters, let’s focus on a 3× 3 matrix, but the
general case is similar. Suppose that the second column of a 2× 2 matrix is written as the sum of
two vectors "a and "b: (

*
| | |
"v1 "a+"b "v3
| | |

+

- .

Then

det

(

*
| | |
"v1 "a+"b "v3
| | |

+

- = det

(

*
| | |
"v1 "a "v3
| | |

+

-+ det

(

*
| | |
"v1 "b "v3
| | |

+

-

so that the determinant “breaks up” when splitting the column "a +"b into two pieces. What does
this have to do with linearity? We can define a linear transformation T from R3 to R by setting

T ("x) = det

(

*
| | |
"v1 "x "v3
| | |

+

- .

Then this above property says that T ("a+"b) = T ("a) + T ("b), which is the first property required in
order to say that T is a linear transformation. The second property, T (c"a) = cT ("a), is the second
linearity property of determinants:

det

(

*
| | |
"v1 c"a "v3
| | |

+

- = c det

(

*
| | |
"v1 "a "v3
| | |

+

- ,

which says that scalars “pull out” when multiplied by a single column. Note that if two columns
were multiplied by c, then c would “pull out” twice and we would get c2 in front.
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The same is true no matter which column is written as the sum of two vectors or no matter
which column is scaled by a number, and the same is true if we do this all with rows instead.

Example 1. We find the matrix of the linear transformation T from R2 to R defined by

T

%
a
b

&
= det

%
3 a
4 b

&
.

We have

T

%
1
0

&
= det

%
3 1
4 0

&
= −4 and T

%
0
1

&
= det

%
3 0
4 1

&
= 3,

so the matrix of T is A =
!
−4 3

"
. Indeed, let’s check that

A

%
a
b

&
=

!
−4 3

"%a
b

&
= −4a+ 3b, which is the same as T

%
a
b

&
=

%
3 a
4 b

&
= 3b− 4a.

Row (and column) operations and determinants. Determinants behave in pretty simple
ways when performing row operations:

• swapping rows changes the sign of a determinant,

• scaling a row by a nonzero number multiplies a determinant by that same number, and

• adding a multiple of one row to another does nothing to a determinant.

This last property is the one which makes these observations actually useful, and gives us a new
way to compute determinants. Note that in this last property that it is crucial that the row we are
replacing is not the row we are scaling; if instead we had scaled the row we replaced the determinant
would change, it would be scaled by that same amount.

Example 2. We compute the determinant of the matrix

A =

(

))*

3 4 −1 2
3 0 1 5
0 −2 1 0
−1 −3 2 1

+

,,-

using row operations. We did this last time using a cofactor expansion, and it was a little tedious.
Row operations give us a bit of a smoother computation. We will reduce A, keeping track of how
the operations we do at each step affect the determinant.

First, we swap the first and fourth rows to get the −1 in the upper left corner. Note that if
instead we used something like 3IV + I → IV , this does change the determinant we’re after since
we scaled the row we replaced; this is why we’re swapping rows first, so that the row additions we
do later do not affect the determinant. After the row swap, the determinant of the resulting matrix
is the negative of the one before:

(

))*

3 4 −1 2
3 0 1 5
0 −2 1 0
−1 −3 2 1

+

,,- →

(

))*

−1 −3 2 1
3 0 1 5
0 −2 1 0
3 4 −1 2

+

,,- , detA → − detA.
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Now we do 3I + II → II and 3I + IV → IV , neither of which affect the determinant:

(

))*

−1 −3 2 1
3 0 1 5
0 −2 1 0
3 4 −1 2

+

,,- →

(

))*

−1 −3 2 1
0 −9 7 8
0 −2 1 0
0 −5 5 5

+

,,- , − detA → − detA.

Next let’s multiply the the last row by 1
5 , which scales the determinant by the same amount:

(

))*

−1 −3 2 1
0 −9 7 8
0 −2 1 0
0 −5 5 5

+

,,- →

(

))*

−1 −3 2 1
0 −9 7 8
0 −2 1 0
0 −1 1 1

+

,,- , − detA → −1

5
detA.

We swap the second and fourth rows to get the −1 where the −9 is:

(

))*

−1 −3 2 1
0 −9 7 8
0 −2 1 0
0 −1 1 1

+

,,- →

(

))*

−1 −3 2 1
0 −1 1 1
0 −2 1 0
0 −9 7 8

+

,,- , −1

5
detA → 1

5
detA.

The row operations −2II + III → III and −9II + IV → IV do not affect the determinant:

(

))*

−1 −3 2 1
0 −1 1 1
0 −2 1 0
0 −9 7 8

+

,,- →

(

))*

−1 −3 2 1
0 −1 1 1
0 0 −1 −2
0 0 −2 −1

+

,,- ,
1

5
detA → 1

5
detA.

Finally, we do −2III + IV → IV , which again does not affect the determinant:

(

))*

−1 −3 2 1
0 −1 1 1
0 0 −1 −2
0 0 −2 −1

+

,,- →

(

))*

−1 −3 2 1
0 −1 1 1
0 0 −1 −2
0 0 0 3

+

,,- ,
1

5
detA → 1

5
detA.

Now, the whole point is that the determinant of this final matrix is super-easy to compute:
this matrix is upper-triangular, and the determinant of such a matrix is simply the product of its
diagonal entries:

det

(

))*

−1 −3 2 1
0 −1 1 1
0 0 −1 −2
0 0 0 3

+

,,- = (−1)(−1)(−1)(3) = −3.

But also, we found above that the determinant of this final matrix is 1
5 detA, so we get

1

5
detA = −3.

Thus detA = −15, as we computed using a cofactor expansion last time. So, now we have a new
method for computing determinants. Either this way or using a cofactor expansion will always
work. Actually, once you get used to using row operations, this method will almost always be
faster, but feel free to compute determinants in whatever way you’d like.
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Important. To emphasize: row swaps multiply determinants by −1, scaling rows multiplies
determinants by the same amount, and adding multiples of rows to other rows does not change
determinants as long as long as the rows replaced are not the rows which were scaled.

Justifying some of these properties. Again, let’s just look at the 3 × 3 case. Why is it that
swapping rows changes the sign of a determinant? For instance, why is

det

(

*
a b c
d e f
g h i

+

- = − det

(

*
d e f
a b c
g h i

+

-?

A cofactor expansion along the first row of the first matrix looks like

a
''something

''− b
''something

''+ c
''something

'' .

Notice that you get the same type of expression when taking a cofactor expansion of the second
matrix along the second row, except that all the signs change:

−a
''something

''+ b
''something

''− c
''something

'' .

The 2 × 2 determinants in this and the previous expression are exactly the same, so this last
expression is negative the first one, justifying the fact that swapping the first two rows changes the
sign the determinant.

Notice that if we swapped the first and third row instead, at first glance it seems that doing
a cofactor expansion along the first row in the original matrix and a cofactor expansion along the
third row of the result give the same expression since both look like

a
''something

''− b
''something

''+ c
''something

'' .

However, if you look at the 2×2 determinants you get in this case it turns out that this is where the
extra negative signs show up, so that this type of row swap still changes the sign of the determinant.

As for the third type of row operation, consider something like

(

*
— "r1 —
— "r2 —
— "r3 —

+

- versus

(

*
— "r1 —
— 3"r1 + "r2 —
— "r3 —

+

- ,

where the second matrix is the result of doing the row operation 3I + II → II on the first. The
linearity property (in the second row in this case) of determinants tells us that:

det

(

*
— "r1 —
— 3"r1 + "r2 —
— "r3 —

+

- = 3det

(

*
— "r1 —
— "r1 —
— "r3 —

+

-+ det

(

*
— "r1 —
— "r2 —
— "r3 —

+

- .

The first matrix on the right is not invertible since it has linearly dependent rows, so its determinant
is zero. Hence we’re left with

det

(

*
— "r1 —
— 3"r1 + "r2 —
— "r3 —

+

- = det

(

*
— "r1 —
— "r2 —
— "r3 —

+

- ,

saying that this type of row operation does not change determinants.
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Invertibility and nonzero determinants. Now we can justify the fact that a matrix is invertible
if and only if its determinant is not zero. Let A be a square matrix. There is some sequence of row
operations getting us from A to its reduced echelon form:

A → · · · → rref(A).

Now, each row operation either changes the sign of the determinant, multiplies it by some nonzero
scalar, or does nothing, so the determinant of the final matrix ends up being related to the original
determinant by something like:

det(rref A) = kn · · · k2k1(−1)m detA,

where m is the number of row swaps we do and k1, . . . , kn are the numbers we scale rows by
throughout. None of these are zero, so

detA = 0 if and only if det(rref A) = 0.

But det(rref A) = 0 only if some diagonal entry of rref A is zero, which happens if and only if rref A
is not the identity, in which case A is not invertible. Thus A is invertible if and only if detA = 0.

Lecture 18: Geometric Interpretation of Determinants

Today we spoke about the long-awaited geometric interpretation of determinants, and used it to
justify some properties of determinants we’ve already seen. The key is the interpretation of a
determinant as an “expansion factor”.

Warm-Up 1. We compute the determinant of

A =

(

*
2 1 −1
2 0 3
3 1 2

+

-

using row operations. First we multiply the last row by 2, which multiplies the determinant by the
same amount: (

*
2 1 −1
2 0 3
3 1 2

+

- →

(

*
2 1 −1
2 0 3
6 2 4

+

- , detA → 2 detA.

Taking −I + II → II and −3I + III → III does not affect the determinant:

(

*
2 1 −1
2 0 3
6 2 4

+

- →

(

*
2 1 −1
0 −1 4
0 −1 7

+

- , 2 detA → 2 detA.

Finally, −II + III → III does not affect the determinant either:

(

*
2 1 −1
0 −1 4
0 −1 7

+

- →

(

*
2 1 −1
0 −1 4
0 0 3

+

- , 2 detA → 2 detA.

The determinant of this final matrix is 2(−1)3 = −6, which should also equal 2 detA, so detA = −3.
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Remark. Determinants also have the property that det(AB) = (detA)(detB), which we will
justify soon. For now, let’s use this to prove some more basic formulas. First, if A is invertible,
then

det(A−1) =
1

detA

which follows by taking the determinant of both sides of

AA−1 = I

and using the fact that det(AA−1) = (detA)(detA−1). (Note that the fraction 1/ detA is defined
since detA ∕= 0 for an invertible matrix.)

Second, if A and B are similar, so that A = SBS−1 for some invertible matrix S, we have

detA = det(SBS−1) = (detS)(detB)(detS−1) = detB

since detS and detS−1 cancel out according to the previous fact. Hence similar matrices always
have the same determinant.

Warm-Up 2. Say that A is a 4 × 4 matrix satisfying A3 = A5. We claim that detA must be
0 or ±1. Indeed, taking determinants of both sides of A3 = A5 and using the property from the
previous remark gives

(detA)3 = (detA)5,

and 0,−1, and 1 are the only numbers satisfying this equality.
To be complete, we give examples showing that each of these determinants is possible. First,

the zero matrix A satisfies A3 = A5 and detA = 0. Second, the identity matrix satisfies I3 = I5

and det I = 1. For the final possibility, the matrix

B =

(

))*

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

+

,,-

satisfies B3 = B5 and detB = −1. Note that negative the identity matrix doesn’t work for this
last example because although (−I)3 = (−I)5, the 4× 4 identity has determinant +1.

Determinants as areas and volumes. In the 2× 2 case, the absolute value of

det

%
a b
c d

&
= ad− bc

is the area of the parallelogram with sides formed by ( ac ) and
!
b
d

"
. Similarly, in the 3 × 3 case,

| detA| is the volume of the parallelepiped with sides formed by the columns of A.
Note that in both of these case it is the absolute value | detA| and not just detA itself which

is interpreted as an area or volume. It makes sense that this should be true: detA itself could be
negative, but areas and volumes cannot be negative.

Expansion factors. Say that T is a linear transformation from R2 to R2 given by T ("x) = A"x and
take some region D in the xy-plane. After applying T to the points of D we obtain a region T (D)
of the xy-plane called the image of D under T :
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We want to compare the area of T (D) with that of D, and | detA| is precisely what allows us to
do this: the area of T (D) is | detA| times the area of D. So, | detA| is the factor by which areas
are altered by after applying T . Note that areas are indeed expanded when | detA| > 1 but are
actually “contracted” (or shrinked) when | detA| < 1. Regardless, we will always refer to | detA|
as an expansion factor.

Important. For T ("x) = A"x and a region D, we have

area or volume of T (D) = | detA|(area or volume of D)

where we use “area” in the 2-dimensional setting and “volume” in the 3-dimensional setting. This
is the crucial geometric interpretation of determinants.

The sign of the determinant. Before looking at examples, if the absolute value of a determinant
is giving us the “expansion factor” for the corresponding transformation, it is natural to wonder
what the sign of a determinant tells us. The sign of a determinant also has a nice geometric
interpretation in terms of what’s called an “orientation”, and is relatively simple to state in the
2× 2 case.

Suppose we have two vectors "v1 and "v2 where "v2 occurs “counterclockwise” to the left of "v1,
meaning you have to move counterclockwise to get from "v1 to "v2; for instance,

are both examples of when this happens. After we apply a transformation T ("x) = A"x we get two
new vectors T ("v1) and T ("v2), and we can ask whether T ("v2) occurs “counterclockwise” to the left
of T ("v1). The matrix A has positive determinant when this is true, and negative determinant when
it isn’t. So, something like
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would correspond to a matrix with detA > 0 while something like

corresponds to a matrix with detA < 0. The technical explanation is that matrices with positive
determinant preserve orientation while those with negative determinant reverse orientation. A
similar explanation works for 3 × 3 matrices, although it gets a little trickier to talk about what
“orientation” means in higher dimensions; we’ll come back to this later when we do “vector calculus”
in the spring.

Remark. Recall that similar matrices have the same determinant. Now this makes sense: similar
matrices represent the same linear transformation only with respect to different bases, and thus the
expansion factor for each should be the same and so should the property of orientation preserving
or reversing.

Example 1. Consider the transformation T given by

A =

%
a b
c d

&
.

Taking D to be the unit square with sides the standard basis vectors "e1 and "e2, we have

A"e1 =

%
a
c

&
and A"e2 =

%
b
d

&
.

The image T (D) of the unit square is then the parallelogram with sides ( ac ) and
!
b
d

"
, so the area

of this parallelogram is
area T (D) = | detA|(area D) = | detA|.

Hence | detA| is the area of the parallelogram with sides formed by the columns of A, recovering
the first geometric interpretation of determinants we gave above.
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Example 2. For a transformation T which is either a rotation or a reflection, we have

area T (D) = area D

since rotations and reflections preserve lengths and angles. Thus the expansion factor for a rotation
or a reflection is 1, so the corresponding matrix A has

| detA| = 1, and thus detA = ±1.

Using the interpretation of the sign of a determinant, rotations have detA = 1 while reflections
have detA = −1. Note that if A and B both describe reflections, then

det(AB) = (detA)(detB) = (−1)(−1) = 1,

meaning that AB actually describes a rotation! There was a homework problem a while back
showing this was true in a particular example, where the composition of two reflections turned out
to be a rotation.

Example 3. We ask whether there can be a linear transformation T ("x) = A"x which sends

and

In the first case the area of the region gets larger so we would need | detA| > 1 while in the second
the area gets smaller so we would need | detA| < 1. We cannot have a matrix satisfying both, so
there is no much transformation.

Example 4. Suppose that T is a linear transformation from R3 to R3 with matrix A, and that
T sends a cube to a plane. We can ask whether T can then send a sphere of radius 5 to the unit
sphere. We have

volume of plane = | detA|(volume of cube).

But a cube has nonzero volume while a plane has zero volume, so this means that | detA| = 0 and
thus detA. Thus T cannot send a sphere of positive volume to another with positive volume.

Note that A is not invertible, which makes sense since T sends a 3-dimensional cube to a 2-
dimensional plane, so T “collapses” dimension. This means that rankA < 3, and we see that the
geometric interpretation of a determinant as an expansion factor gives us another way to see that
matrices of non-full rank (i.e. noninvertible matrices) must “collapse” dimension.

Justifying det(AB) = (detA)(detB). Suppose that A and B are 2× 2 matrices and take some
region D in R2. Applying the transformation B gives a region B(D) with

area of B(D) = | detB|(area of D).
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Taking the resulting region B(D) and applying the transformation A gives a region A(B(D)) with

area of A(B(D)) = | detA|(area of B(D)) = | detA|| detB|(area of D.

Thus the composed transformation has expansion factor | detA|| detB|.
However, the matrix of this composition is equal to the product AB, so the expansion factor is

also | det(AB)| and hence
| det(AB)| = | detA|| detB|.

By considering the cases where each of these determinants are positive or negative, we get that

det(AB) = (detA)(detB).

For instance, suppose that detA and detB are both negative. We want to show that then
(detA)(detB) is positive, so det(AB) should be positive. But this makes sense: if the trans-
formation B “reverses” orientation and A “reverses” it right back, the transformation AB will
preserve orientation and so will have positive determinant. Thus

det(AB) = (detA)(detB)

is true when detA and detB are both negative, and the other possibilities are similar to check.

Important. For square matrices A and B of the same size, det(AB) = (detA)(detB).

Lecture 19: Eigenvalues

Today we started talking about eigenvalues of eigenvectors, which make up our last topic for
the quarter, and probably the most important as well. Eigenvalues and eigenvectors are key to
understanding many properties of matrices, which often lead to their diverse applications.

Warm-Up. Suppose that the matrix of a linear transformation T ("x) = A"x relative to the basis;
( 13 ) ,

!
2
−1

"<
of R2 is

!
2 1
0 −3

"
. We want to find the area of T (D) where D is the parallelogram with

sides ( 11 ) and ( 15 ). Using the interpretation of | detA| as an expansion factor, we know that

area of T (D) = | detA|(area of D),

so our task is to find the two numbers on the right.
First, the matrix A is similar to any matrix which represents the same transformation T relative

to a non-standard basis, so A is similar to
!
2 1
0 −3

"
. Last time we saw that similar matrices have the

same determinant, so detA = −6 and hence the expansion factor for T is 6. Next, using another
geometric interpretation of determinants from last time, we know that the area of the parallelogram
D is ''''det

%
1 1
1 5

&'''' = 4.

Thus, putting it all together we have

area of T (D) = | detA|(area of D) = 6(4) = 24.

Note that the specific basis
;
( 13 ) ,

!
2
−1

"<
relative to which the matrix of T was

!
2 1
0 −3

"
was irrelevant;

the only thing we needed was that A is similar to this matrix.
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Motivation for eigenvalues and eigenvectors. Recall a previous example we did when talking
about coordinates, where we asked for a geometric interpretation of the linear transformation
T ("x) = A"x where

A =
!

13 −6
−1 12

"
.

We saw that if we use the basis vectors ( 21 ) and
!−3

1

"
for R2, the matrix of T relative to this basis

is %
10 0
0 15

&
,

meaning that T scales the axis span {( 21 )} by a factor of 10 and the axis span
;!−3

1

"<
by a factor

of 15. The lingering question is: why is this the “right” basis to use?
The key fact which made everything work is that these basis vectors satisfy

A

%
2
1

&
= 10

%
2
1

&
and A

%
−3
1

&
= 15

%
−3
1

&
.

The first of these equations says that 10 is an eigenvalue of A with eigenvector ( 21 ) and the second
says that 15 is an eigenvalue of A with eigenvector

!−3
1

"
. Thus, by finding the eigenvalues and

eigenvectors of A is how we could determine the right basis to use above.

Definition of eigenvalues and eigenvectors. Say that A is a square matrix. We say that a
scalar λ is an eigenvalue of A if there is a nonzero vector "x satisfying A"x = λ"x; in other words, λ
is an eigenvalue of A if

A"x = λ"x has a nonzero solution for "x.

For such an eigenvalue λ, we call a nonzero vector "x satisfying this equation an eigenvector of A
corresponding to the eigenvalue λ.

Important. Geometrically, the eigenvectors of a matrix A are those nonzero vectors with the
property that applying the transformation corresponding to A to them results in a multiple of that
vector; i.e. eigenvectors are “scaled” by the matrix A. In terms of axes, eigenvectors describe the
axes upon which A acts as a scaling, and the eigenvalues of A are the possible scalars describing
these scalings.

Remark. Let’s be clear about why we require that the eigenvalue/eigenvector equation A"x = λ"x
have a nonzero solution. The point is that for any scalar λ the equation A"x = λ"x always has
at least one solution: "x = "0, so without this nonzero requirement any scalar would satisfy the
eigenvalue definition and the notion of an eigenvalue would not be very interesting. The key is that
A"x = λ"x should have a solution apart from "x = "0.

Linguistic remark. The term “eigen” comes from the German word for “proper” or “character-
istic”, and in older books you might see the phrase “proper value” or “characteristic value” instead
of “eigenvalue”. Nowadays the terms eigenvalue and eigenvector are much more standard, but the
old phrase is what suggests that eigenvalues capture something “characteristic” about a matrix.

Example 1. Suppose that A is the 2 × 2 matrix of a reflection across some line L in R2. We
determine the eigenvalues of A using only geometry. First, note that we cannot possibly have a
vector satisfying something like

A"x = 2"x
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since a reflection will never make a vector twice as long. In fact, since reflections preserve lengths,
the only way in which reflecting a vector "x could result in a multiple of that vector is when that
vector satisfied either

A"x = "x or A"x = −"x.

The first equation is satisfied for any nonzero vector the line L of reflection and the second for any
nonzero vector perpendicular to L. Thus, 1 is an eigenvalue of A and any nonzero "x on L is an
eigenvector for 1, and −1 is also eigenvalue of A where any nonzero "x perpendicular to L is an
eigenvector for −1.

Example 2. Consider the 2× 2 matrix of a rotation by an angle 0 < θ < 180. As in the case of a
reflection, there is no way that rotating a vector by such an angle could result in a longer vector,
so only 1 or −1 might be possible eigenvectors. However, when rotating by an angle 0 < θ < 180,
no nonzero vector can be left as is, so no nonzero vector satisfies A"x = "x, and no nonzero vector
will be flipped completely around, so no nonzero vector satisfies A"x = −"x. Thus neither 1 nor −1
are actually eigenvalues of A, and we conclude that A has no eigenvalues.

(Actually, we can only conclude that A has no real eigenvalues. After we talk about complex
numbers we’ll see that A actually does have eigenvalues, they just happen to both be complex.
This hints at a deep relation between rotations and complex numbers.)

Having 0 as an eigenvalue. Let us note what it would mean for a matrix to have 0 as an
eigenvalue. This requires that there be some nonzero "x satisfying

A"x = 0 · "x = "0.

However, there can be such a nonzero vector only when A is not invertible, since this equation
would say that "x is in the kernel of A. So, saying that a matrix has 0 as an eigenvalue is the
same as saying that it is not invertible, giving us yet another addition to the Amazingly Awesome
Theorem; this is probably the last thing we’ll add to this theorem, and hopefully we can now all
see exactly why it is “amazingly awesome”.

Amazingly Awesome Theorem, continued. A square matrix A is invertible if and only if 0 is
not an eigenvalue of A.

Finding eigenvalues. The question still remains as to how we find eigenvalues of a matrix in
general, where a simple geometric interpretation might not be readily available as in the previous
examples. At first glance it might seem as if finding eigenvalues of a general matrix might be tough
since there are essentially two unknowns in the equation

A"x = λ"x

we must consider: namely, λ and "x are both “unkown”. In particular, it seems as though knowing
whether or not λ is an eigenvalue depends on knowing its eigenvectors ahead of time, but knowing
whether or not "x is an eigenvector depends on knowing its eigenvalue ahead of time. However, it
turns out that we can completely determine the eigenvalues first without knowing anything about
its eigenvectors. Here’s why.

To say that λ is an eigenvalue of A means that A"x = λ"x should have a nonzero solution. But
this equation be can be rewritten as

A"x− λ"x = "0, or (A− λI)"x = "0
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after “factoring” out "x. (Note that we can’t factor out "x to get (A − λ)"x = "0 since it does not
make sense to subtract a scalar from a matrix. But this is easy to get around: we write A"x−λ"x as
A"x− λI"x and then we factor out "x as desired.) So, to say that λ is an eigenvalue of A means that

(A− λI)"x = "0

should have a nonzero solution. But this is only possible precisely when the matrix A− λI is not
invertible! (A solution "x of this equation will then be in the kernel of A− λI.) And finally, A− λI
is not invertible precisely when its determinant is zero, so we get that

λ is an eigenvalue of A ⇐⇒ det(A− λI) = 0.

So, to find the eigenvalues of A we must solve the equation det(A − λI) = 0, and this does not
involve eigenvectors at all.

Definition. We call det(A − λI) the characteristic polynomial of A. Thus, the eigenvalues of A
are the roots of its characteristic polynomial.

Important. To find the eigenvalues of a matrix A, write down A−λI and then compute det(A−λI).
Setting this equal to 0 and solving for λ gives the eigenvalues of A.

Example 3. Recall the matrix A =
!

13 −6
−1 12

"
from out motivating example. We have

A− λI =

%
13 −6
−1 12

&
−

%
λ 0
0 λ

&
=

%
13− λ −6
−1 12− λ

&
.

Hence
det(A− λI) = (13− λ)(12− λ)− 6 = λ2 − 25λ+ 150

is the characteristic polynomial of A. (Hopefully this example makes it clear why we call refer
to this as a “polynomial”.) Since this factors as (λ − 10)(λ − 15), the roots of the characteristic
polynomial of A are 10 and 15, so 10 and 15 are the eigenvalues of A, precisely as we said in our
motivating example.

Example 4. Let B = ( 1 3
1 2 ). Then

det(B − λI) = det

%
1− λ 3
1 2− λ

&
= (1− λ)(2− λ)− 3 = λ2 − 3λ− 1.

According to the quadratic formula, the roots of this are

λ =
3±

√
9 + 4

2
, so

3 +
√
13

2
and

3−
√
13

2

are the eigenvalues of B. In particular, this means that there should be a nonzero vector "x satisfying

%
1 3
1 2

&
"x =

?
3 +

√
13

2

@
"x,

and such a vector is an eigenvector with eigenvalue 3+
√
13

2 . We will talk about how to precisely find
eigenvectors next time.
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Remark. The 2× 2 examples above illustrate a general fact about 2× 2 matrices: in general, the
characteristic polynomial of A =

!
a b
c d

"
is

λ2 − (a+ d)λ+ (ad− bc).

The constant term is detA, and the sum a + d is called the trace of A and is denoted by trA.
(The trace of any square matrix is the sum of its diagonal entries.) Thus we can rewrite this above
characteristic polynomial as

λ2 − (trA)λ+ detA,

a nice formula which may help to simplify finding eigenvalues of 2 × 2 matrices. However, note
that there is no nice analog of this for larger matrices, so for larger matrices we have to work out
det(A− λI) by hand.

Example 5. Let C be the matrix (

*
−6 1 4
−9 0 3
0 0 1

+

- .

We have (using a cofactor expansion along the third row)

det(C − λI) = det

(

*
−6− λ 1 4
−9 −λ 3
0 0 1− λ

+

- = (1− λ)

''''
−6− λ 1
−9 −λ

'''' = (1− λ)(λ+ 3)2.

Thus the eigenvalues of C are 1 and −3. We will talk later about what it means for a 3× 3 matrix
to only have two (real) eigenvalues.

Lecture 20: Eigenvectors

Today we continued talking about eigenvalues and eigenvectors, focusing on finding eigenvectors of
a matrix once its eigenvalues are known.

Warm-Up. We find the eigenvalues of

A =

(

*
4 2 2
2 4 2
2 2 4

+

- .

The characteristic polynomial of A is:

det(A− λI) = det

(

*
4− λ 2 2
2 4− λ 2
2 2 4− λ

+

-

= (4− λ)

''''
4− λ 2
2 4− λ

''''− 2

''''
2 2
2 4− λ

''''+ 2

''''
2 4− λ
2 2

''''

= (4− λ)

''''
4− λ 2
2 4− λ

''''+ 4

''''
2 4− λ
2 2

''''

= (4− λ)(16− 8λ+ λ2 − 4) + 4(4− 8 + 2λ)

= (4− λ)(λ− 2)(λ− 6) + 8(λ− 2)
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= (λ− 2)[(4− λ)(λ− 6) + 8]

= (λ− 2)(−λ2 + 10λ− 16)

= −(λ− 2)2(λ− 8).

Thus the eigenvalues of A, which are the roots of the characteristic polynomial, are 2 and 8. Since
λ − 2 appears twice in the characteristic polynomial and λ − 8 appears once, we say that the
eigenvalue 2 has algebraic multiplicity 2 and the eigenvalue 8 has algebraic multiplicity 1.

Remark. For the matrix A above, you can check that detA = 32. Note also that this is what you
get when you multiply the eigenvalues of A together, using 2 twice since it has multiplicity 2:

detA = 2 · 2 · 8.

This is true in general: for any square matrix A, detA equals the product of the eigenvalues of
A taking into account multiplicities and possibly having to use complex eigenvalues, which we’ll
talk about later. We can see this using the fact that the eigenvalues of A are the roots of its
characteristic polynomial: if the eigenvalues are λ1, . . . ,λn, the characteristic polynomial factors as

det(A− λI) = (λ1 − λ)(λ2 − λ) · · · (λn − λ)

and setting λ = 0 in this expression gives detA = λ1λ2 · · ·λn.
This makes sense geometrically: each eigenvalue tells us the amount by which A scales a certain

direction (the direction corresponding to an eigenvector), and so the overall “expansion factor”
corresponding to A is the product of these individual scaling factors.

Finding eigenvectors. Now that we know how to find the eigenvalues of a matrix, the next step is
to find its eigenvectors, which geometrically are the vectors on which your matrix acts as a scaling.
But we essentially worked out how to do this last time: recall that we derived the condition that
det(A− λI) = 0 for an eigenvalue λ using the fact that

A"x = λ"x is the same as (A− λI)"x = "0.

A nonzero vector satisfying the first equation is an eigenvector with eigenvalue λ, so this should be
the same as a nonzero vector satisfying the second equation. Thus the eigenvectors corresponding
to λ are precisely the nonzero vectors in the kernel of A− λI!

Important. For a square matrix A with eigenvalue λ, the eigenvectors of A corresponding to λ
are the nonzero vectors in ker(A−λI). We call this kernel the eigenspace of A corresponding to λ.

Eigenspaces are subspaces. Since for an n×n matrix A, ker(A−λI) is a subspace of A, it must
be true that adding eigenvectors corresponding to the same eigenvalue should give an eigenvector
for that same eigenvalue, and similarly scaling an eigenvector should give an eigenvector with the
same eigenvalue. We can actually see this directly without having to resort to looking at kernels:
if "v1 and "v2 are both eigenvectors of A with eigenvalue λ, then

A("v1 + "v2) = A"v1 +A"v2 = λ"v1 + λ"v2 = λ("v1 + "v2)

so "v1 + "v2 is also an eigenvector of a with eigenvalue λ, and for any scalar r we have

A(r"v1) = r(A"v1) = r(λ"v1) = λ(r"v1),
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so r"v1 is also an eigenvector of A with eigenvalue λ. Thus, as expected, eigenspaces are closed
under addition and scalar multiplication.

Since an eigenspace for an n×n matrix is a subspace of Rn, it makes sense to ask about possible
bases for it. Expressing an eigenspace as ker(A− λI) tells us how to find such a basis: we simply
find a basis for the kernel of A− λI as we would for the kernel of any matrix.

Example 1. We find bases for each eigenspace of A =
!

13 −6
−1 12

"
. We found the eigenvalues of A

last time to be 10 and 15. The eigenvectors corresponding to 10 are the nonzero vectors in the
kernel of

A− 10I =

%
3 −6
−1 2

&
.

Note that this matrix is not invertible, which makes sense since we found the eigenvalue 10 by
determining that this would make det(A− 10I) = 0. This matrix reduces to

%
3 −6
−1 2

&
→

%
1 −2
0 0

&
,

so a possible basis for ker(A− 10I) is given by ( 21 ). That is,

eigenspace of A corresponding to 10 = span

9%
2
1

&:
,

which geometrically is the line passing through ( 21 ) and the origin. The claim is that any nonzero
vector on this line is an eigenvector of A with eigenvalue 10, which geometrically means that
anything on this line is scaled by a factor of 10 after under the transformation corresponding to A.
For good measure, note that

%
13 −6
−1 12

&%
2
1

&
=

%
20
10

&
= 10

%
2
1

&
,

so ( 21 ) is indeed an eigenvector of A with eigenvalue 10.
The eigenvectors corresponding to 15 are the nonzero vectors in the kernel of

A− 15I =

%
−2 −6
−1 −3

&
.

This matrix reduces to %
−2 −6
−1 −3

&
→

%
1 3
0 0

&
,

so
!−3

1

"
alone forms a basis for ker(A− 15I):

eigenspace of A corresponding to 15 = span

9%
−3
1

&:
.

Again, note that %
13 −6
−1 12

&%
−3
1

&
=

%
−45
15

&
= 15

%
−3
1

&
,

and similarly anything on the line spanned by
!−3

1

"
is scaled by 15 under the transformation

corresponding to A.
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Remark. This matrix above is the one we looked at last time when motivating eigenvalues and
eigenvectors, and came from a previous example dealing with coordinates. If you go back to that
coordinate example (from November 1st on the Week 6 Lecture Notes), it should now be clear why
we used the basis we did in that example: those basis vectors are precisely the eigenvectors we
found above, and give us the directions along which A acts as a scaling!

Example 2. We find bases for the eigenspaces of B =
!

7 2
−4 1

"
. First, the characteristic polynomial

of B is

det(B − λI) =

''''
7− λ 2
−4 1− λ

'''' = λ2 − 8λ+ 15 = (λ− 5)(λ− 3).

Thus the eigenvalues of B are 5 and 3. For the eigenvalue 5 we have

B − 5I =

%
2 2
−4 −4

&
→

%
1 1
0 0

&

so
!−1

1

"
forms a basis for the eigenspace of B corresponding to 5. For the eigenvalue 3 we have

B − 3I =

%
4 2
−4 −2

&
→

%
2 1
0 0

&
,

so
!

1
−2

"
forms a basis for the eigenspace of B corresponding to 3. As a check, note that

%
7 2
−4 1

&%
−1
1

&
= 5

%
1
1

&
and

%
7 2
−4 1

&%
1
−2

&
= 3

%
1
−2

&
,

so our proposed basis eigenvectors are indeed eigenvectors with the claimed eigenvalues.
(Of course, the matrix we got above when reducing B − 3I is not in reduced echelon form; if

you had put it into reduced form you might have gotten
.

−1/2
1

/
as a basis vector. But of course,

this vector and
!

1
−2

"
have the same span, so they are both bases for the same eigenspace. I used

the vector I did to avoid fractions, which is something you should be on the lookout for as well.)

Example 3. We find bases for the eigenspaces of the matrix A from the Warm-Up. The eigenvalues
were 2 with algebraic multiplicity 2 and 8 with multiplicity 1. For 2 we have:

A− 2I =

(

*
2 2 2
2 2 2
2 2 2

+

- →

(

*
1 1 1
0 0 0
0 0 0

+

- ,

giving (

*
−1
1
0

+

- and

(

*
−1
0
1

+

-

as a basis for the eigenspace corresponding to 2. You can check that multiplying A by either of
these does give 2 times that same vector, as should happen if these are eigenvectors with eigenvalue
2. For the eigenvalues 8 we have:

A− 8I =

(

*
−4 2 2
2 −4 2
2 2 −4

+

- →

(

*
−4 2 2
0 −6 6
0 0 0

+

- ,
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so (

*
1
1
1

+

-

is a basis for the eigenspace corresponding to 8. (I jumped some steps here which you might want
to fill in. In fact, since I know that this eigenspace will only be 1-dimensional, if I want to get a
basis for this eigenspace all I need to do is find one nonzero vector in ker(A− 8I), and the vector
I gave is such a vector. How did I know that this eigenspace would only be 1-dimensional? More
on that in a bit.)

This matrix was also one we looked at when dealing with coordinates (Example 2 from November
1st), and low-and-behold the basis eigenvectors we found here were precisely the basis vectors we
used in that example. Again, this was no accident ;)

Eigenvectors for different eigenvalues are linearly independent. Note in these three exam-
ples that in each case the eigenvectors we found for different eigenvalues turned out to be linearly
independent. In fact this is always true: for a square matrix A, if "v1, . . . ,"vk are eigenvectors of A
corresponding to distinct eigenvalues λ1, . . . ,λk, then "v1, . . . ,"vk must be linearly independent.

The book has a full justification for this, but to get a feel for it let’s just work it out when
k = 3, so we have eigenvectors "v1,"v2,"v3 of A corresponding to the different eigenvalues λ1,λ2,λ3.
To show that "v1,"v2,"v3 are linearly independent, we setup the equation

c1"v1 + c2"v2 + c3"v3 = "0 (4)

and show that for this to be true all coefficients must be zero. Multiplying this through by A and
using the fact that

A"v1 = λ1"v1, A"v2 = λ2"v2, and A"v3 = λ3"v3,

we get
c1λ1"v1 + c2λ2"v2 + c3λ3"v3 = "0.

Now, multiplying equation (1) through by λ1 gives

c1λ1"v1 + c2λ1"v2 + c3λ1"v3 = "0.

Subtracting this from the previous equation gets rid of c1λ1"v1, giving

c2(λ2 − λ1)"v2 + c3(λ3 − λ1)"v3 = "0. (5)

Multiplying this through by A gives

c2(λ2 − λ1)λ2"v2 + c3(λ3 − λ1)λ3"v3 = "0,

and multiplying equation (2) through by λ2 gives

c2(λ2 − λ1)λ2"v2 + c3(λ3 − λ1)λ2"v3 = "0.

Subtracting these gets rid of the first term, and we’re left with

c3(λ3 − λ1)(λ3 − λ2)"v3 = "0.

Since "v3 ∕= 0 and λ3 − λ1,λ3 − λ2 are nonzero (since are eigenvalues are distinct), this means that
c3 must be zero. Equation (2) then becomes

c2(λ2 − λ1)"v2 = "0,
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so c2 = 0, and equation (1) becomes
c1"v1 = "0,

so c1 = 0. Hence "v1,"v2,"v3 are linearly independent, and a similar idea works no matter how many
eigenvectors corresponding to different eigenvalues we have.

Important. Eigenvectors of a matrix corresponding to distinct eigenvalues are linearly indepen-
dent. Thus, the collection of vectors formed by putting the bases of all eigenspaces together in
one big list is always linearly independent: indeed, basis eigenvectors from the same eigenspace
are linearly independent since they came from the same basis, and basis eigenvectors for different
eigenspaces are linearly independent by the fact above.

Example 4. One more time, let’s find bases for the eigenspaces of

C =

(

*
4 1 0
0 4 1
0 0 4

+

- .

Here, the only eigenvalue is 4, since the eigenvalues of any upper-triangular (or lower-triangular)
matrix are simply the entries on its diagonal; indeed, the characteristic polynomial of C is (4−λ)3.
We have

C − 4I =

(

*
0 1 0
0 0 1
0 0 0

+

- ,

and basis for ker(C − 4I), and hence a basis for the eigenspace of C corresponding to 4, is given by

(

*
1
0
0

+

- .

Geometric multiplicities and eigenbases. Note that something happened in the above ex-
ample which had not happened in previous examples: even though the eigenvalue 4 has algebraic
multiplicity 3, the dimension of the eigenspace corresponding to 4 is only 1. In previous exam-
ples, it was always true that the dimension of each eigenspace was equal to the multiplicity of the
corresponding eigenvalue.

In general, all we can say is that

dim(eigenspace corresponding to λ) ≤ algebraic multiplicity of λ,

but these two numbers are not necessarily the same. (This is how I knew in Example 3 that the
eigenspace corresponding to 8 was only going to be 1-dimensinal.) We call dimker(A − λI) the
geometric multiplicity of the eigenvalue λ, since it describes the dimension of the eigenspace when
pictured geometrically.

That leaves the question: when is geometric multiplicity = algebraic multiplicty? Going back
to Example 3, note that if we put together all the basis eigenvectors we found into one big list:

(

*
−1
1
0

+

- ,

(

*
−1
0
1

+

- ,

(

*
1
1
1

+

-
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we get a basis of R3. Indeed, these are linearly independent (the first two are linearly independent
since they came from a basis for the same eigenspace, and they are linearly independent from
the third since they and the third correspond to different eigenvalues), and any three linearly
independent vectors in R3 is automatically a basis. Such a basis of Rn, where each basis vector is
an eigenvector of a given matrix, is called an eigenbasis. In Example 4, we only got one linearly
independent eigenvector overall, and that one vector is not enough to give an eigenbasis of R3.
Indeed, finding an eigenbasis for Rn from a given matrix is only possible when the geometric and
algebraic multiplicities of each eigenvalue are the same!

The 2× 2 matrices in Examples 1 and 2 both gave eigenbases for R2 (the basis of R2 formed by
putting together all basis eigenvectors we found), since for each of those the geometric and algebra
multiplicities of each eigenvalue was 1. We’ll come back to the notion of an eigenbasis next week,
and see what it really means for such a basis to exist.

Important. For any eigenvalue λ of a square matrix A, we have

geometric multiplicity of λ ≤ algebraic multiplicity of λ.

The matrix A gives rise to an eigenbasis of Rn precisely when the geometric multiplicities of all
eigenvalues agree with their algebraic multiplicities.

Lecture 21: Applications of Eigenvectors

Today we looked at some applications of eigenvectors outside the scope of this course. This was
purely done to convince you that the types of things we are looking at really do show up elsewhere,
but none of this (apart from the Warm-Up) is part of the standard course material and so will
never be on an exam or anything else. Think of today as a break from actual course material,
which we will come back to after the midterm.

Warm-Up. We find bases for each eigenspace of

A =

(

*
5 8 1
0 0 7
0 0 −2

+

- , B =

(

*
−1 0 25
3 2 −15
−1 0 9

+

- , and C =

(

*
2 3 0
4 3 0
0 0 6

+

- .

First, A is upper-triangular so its eigenvalues are its diagonal entries: 5, 0, 2. The algebraic mul-
tiplicity of each is 1, so the geometric multiplicity of each is also 1. Thus each eigenspace should
only have 1 basis eigenvector. We have:

A− 5I =

(

*
0 8 1
0 −5 7
0 0 −7

+

- →

(

*
0 8 1
0 0 1
0 0 0

+

- , so a basis for this eigenspace is

(

*
1
0
0

+

- ,

A− 0I =

(

*
5 8 1
0 0 7
0 0 −2

+

- →

(

*
5 8 1
0 0 1
0 0 0

+

- , so a basis for this eigenspace is

(

*
−8
5
0

+

- ,

A− (−2)I =

(

*
7 8 1
0 2 7
0 0 0

+

- →

(

*
1 8/7 1/7
0 1 7/2
0 0 0

+

- , so a basis for this eigenspace is

(

*
54
−49
14

+

- .
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Note that in the last one if you use the given reduced form to get a basis for ker(A+2I) you might
end up with (

*
1/7− 56/14

−7/2
1

+

- ,

which is fine, but to get a “cleaner” eigenvector I set the free variable equal to 14 to end up with
only integer entries. Note that

(

*
5 8 1
0 0 7
0 0 −2

+

-

(

*
54
−49
14

+

- = −2

(

*
54
−49
14

+

-

so the vector I used is indeed an eigenvector of A with eigenvalue −2. In this case putting all three
eigenvectors we found into one list gives an eigenbasis of R3.

The characteristic polynomial of B is

det(B − λI) = −(λ− 2)(λ− 4)2,

so 2 is an eigenvalue of algebraic multiplicity 1 and 4 an eigenvalue with algebraic multiplicity
2. Thus we know that the eigenspace corresponding to 2 is 1-dimensional and the eigenspace
corresponding to 4 is either 1 or 2-dimensional. We have:

B − 2I =

(

*
−3 0 25
3 0 −15
−1 0 7

+

- →

(

*
−3 0 25
0 0 1
0 0 0

+

- , so a basis for this eigenspace is

(

*
0
1
0

+

- ,

B − 4I =

(

*
−5 0 25
3 −2 −15
−1 0 5

+

- →

(

*
−5 0 25
0 −10 0
0 0 0

+

- , so a basis for this eigenspace is

(

*
5
0
1

+

- .

In this case, there are only two linearly independent eigenvectors, so there can be no eigenbasis for
R3 consisting of eigenvectors of B.

Finally, the characteristic polynomial of C is

det(C − λI) = −(λ+ 1)(λ− 6)2,

so the eigenvalues are −1, with algebraic multiplicity 1, and 6, with algebraic multiplicity 2. We
have:

C − (−1)I =

(

*
3 3 0
4 4 0
0 0 7

+

- →

(

*
1 1 0
0 0 1
0 0 0

+

- , so a basis for this eigenspace is

(

*
−1
1
0

+

- ,

C − 6I =

(

*
−4 3 0
4 −3 0
0 0 0

+

- →

(

*
−4 3 0
0 0 0
0 0 0

+

- , so a basis for this eigenspace is

0
1

2

(

*
3
4
0

+

- ,

(

*
0
0
1

+

-

3
4

5 .

In this case, the geometric multiplicity of each eigenvalue is the same as its algebraic multiplicity,
and the three linearly independent eigenvectors we found gives an eigenbasis of R3.

Web search rankings. When you search for something on the internet, whatever search engine
you use takes your search terms and goes through its catalog of all possible web pages, picking out
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the ones which might in someway be relevant to your search. What then determines the order in
which these resulting pages are presented, with whatever the engine thinks is most relevant being
listed first? The answer heavily depends on the theory of eigenvectors!

To see how eigenvectors naturally come up in such a problem, let’s consider a simplified version
of the internet with only three web pages:

where the arrows indicate links from one page to another. The basic assumption is that sites with
links from “relevant” pages should themselves be relevant, and the more links from relevant pages
it has the more relevant it is. Let’s the denote the “relevant” of page k by xk. The goal is to find
values for these, which then determine the order in which our three pages are listed after a search,
with the one with largest xk value appearing first.

The assumption that a page’s relevance depends on links coming to it from relevant pages turns
into a relation among x1, x2, x3. For instance, page 1 has links from page 2 and from page 3, so x1
should depend on x2 and x3. Since page 2 only has one link coming out of it, its entire “relevance”
contributes to the relevance of page 1, while since page 3 has two links coming out of it, only half
of its “relevance” contributes to that of page 1 with the other half contributing to the relevance of
page 2. This gives the relation

x1 = x2 +
x3
2
.

Similarly, page 2’s relevance comes from that of pages 1 and 3, with half of x1 contributing to x2
and half of x3 contributing to x2 since each of pages 1 and 3 have two links coming out of them;
this gives

x2 =
x1
2

+
x3
2
.

Only page 1 links to page 3, so x3 =
x1
2 since page 1 has two links coming out of it. The resulting

system of equations

x1 = x2 +
x3
2

x2 =
x1
2

+
x3
2

x3 =
x1
2

can be written in matrix form as
(

*
x1
x2
x3

+

- =

(

*
0 1 1/2

1/2 0 1/2
1/2 0 0

+

-

(

*
x1
x2
x3

+

- ,
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which says that the “relevance” vector we’re looking for should be an eigenvector with eigenvalue

1 of

%
0 1 1/2

1/2 0 1/2
1/2 0 0

&
. Thus, we find the relevance of each page by finding eigenvectors of this matrix!

This was a really simplified example, but the basic idea works for real-life web searches: ranking
orders are determined by looking at eigenvectors of some matrices whose entries have something to
do with links between pages. All modern search engines somehow use this idea, with various tweaks.
In particular, Google’s ranking algorithm, known as “PageRank”, works as follows. Given some
search terms, take all pages that might have some relevance; this likely gives over a million pages.
Define the matrix A by saying that it ij-th entry is 1 is page i links to page j, and 0 otherwise.
As with the example above, now some modifications are done to “weight” the relevances we want,
with more links to a page give that page a higher weight; in its most basic form this amounts to
replacing A by something of the form

D +A

where D is some type of “weighting” matrix. (The exact nature of D is one of Google’s trade
secrets, as well as any additional modifications which are done to A.) The claim is that the
rankings determined by Google’s search engine come from dominant eigenvectors of D +A, which
are eigenvectors corresponding to the largest eigenvalue. In practice, such eigenvectors are almost
impossible to find directly, even for a computer, since D + A will be some huge (over 1000000 ×
1000000 in size) matrix, but fortunately there exist good algorithms for approximating the entries
of these dominant eigenvectors.

The internet would surely be a much different place if it weren’t for the existence of eigenvectors
and eigenvalues!

Population models. Suppose we have populations of deer and wolves in some forest, with x1(t)
denoting the population of deer at time t and x2(t) the population of wolves at time t. We are
interested in understanding the long-term behavior of these two. The basic assumption is that the
rate at which these changes (i.e. the values of their derivatives) depend on the values of both at
any specific time.

For instance, since wolves feed on deer, the rate of change in the population of deer should obey
something like

x′1(t) = (positive)x1(t) + (negative)x2(t)

where the first term comes from deer reproducing (so having a positive effect on population) and
the second from deer lost due to the population of wolves (so having a negative effect on deer
population. Similarly, the rate of change in the population of wolves might be something like

x′2(t) = (positive)x1(t) + (positive)x2(t)

since the more wolves there are the more wolves there will be, and the more food there is the more
wolves there will be. In reality, these are somewhat naive assumptions since there are many other
factors contributing to these populations, and maybe in fact since a forest can only support so
many wolves, maybe x′2(t) should actually depend negatively on x2(t). Regardless, we’ll just use
this basic model.

Suppose that our populations are modeled by

x′1(t) = 13x1(t)− 6x2(t)

x′2(t) = −x1(t) + 12x2(t),
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which again probably isn’t very realistic, but whatever. This is what is known as a system of linear
differential equations, and we are interested in determining what functions x1(t), x2(t) satisfy these
equations. A key observation is that this system can be written as

%
x′1(t)
x′2(t)

&
=

%
13 −6
−1 12

&%
x1(t)
x2(t)

&
.

Suppose that the functions we want have the form

x1(t) = r1e
λt and x2(t) = r2e

λt.

Plugging this into the rewritten system gives
%
r1λe

λt

r2λe
λt

&
=

%
13 −6
−1 12

&%
r1e

λt

r2e
λt

&
.

Since eλt is never zero, we can divide both sides through by it to get

λ

%
r1
r2

&
=

%
13 −6
−1 12

&%
r1
r2

&
,

which says that the unknowns λ, r1, r2 in our expressions for x1(t) and x2(t) come from eigenvalues
and eigenvectors of the matrix

!
13 −6
−1 12

"
! So, finding these eigenvectors is how we are able to find

solutions of our population model.
This is a matrix we’ve seen before, where we computed that its eigenvalues were 10 and 15 with

corresponding eigenvectors %
2
1

&
and

%
−3
1

&
.

Thus we get as solutions of our model:
%
x1(t)
x2(t)

&
=

%
2e10t

e10t

&
and

%
x1(t)
x2(t)

&
=

%
−3e15t

e15t

&
.

As part of the general theory you would learn about for systems of differential equations in a more
advanced differential equations course, it turns out that the general solution of the system above
looks like %

x1(t)
x2(t)

&
= c1

%
2e10t

e10t

&
+ c2

%
−3e15t

e15t

&
.

This helps us to visualize our solutions and determine the long-term behavior of our system. Plot-
ting such solutions (for varying c1 and c2) on the x1x2-axes gives something which looks like:
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The red lines are determined by the directions corresponding to the eigenvectors we found, and
each green curve represents a solution for some specific c1 and c2. The observation is that no matter
which solution we’re on (say we’re at the orange dot at time t = 0), we will also moves “towards”
the line determined by the eigenvector with eigenvalue 15 as t → ∞, essentially because this is the
larger eigenvalue. So, long-term, no matter what the initial population of deer and wolves are, the
populations will always approach some “ideal” populations determined by the eigenvalue 15.

Again, this is all something you would learn more about in any course which heavily uses
differential equations. This was based on a population model, but the same types of models show
up in economics and finance, chemistry, engineering, and pretty much everywhere. We’d be lost in
all this applications were it not for eigenvalues and eigenvectors!

Eigenfunctions. The previous type of application suggests a strong relation between derivatives
and matrices, which indeed we will come to next quarter when we do multivariable calculus. But
here’s another fun realization.

In this class, all spaces we’ve dealt with are either Rn or subspaces of Rn. However, linear
algebra works in more general types of settings; in particular, in other contexts we can consider
spaces of “functions” whose elements are themselves functions. Say that V is such a “space”,
containing say the function f(x) = x2, or f(x) = ex, or f(x) = sinx, etc. We can define an
operation D from V to V by

D(f) = f ′.

In other words, D is the “transformation” which takes as input a function and spits out its deriva-
tive. The well-known properties of derivatives which say:

(f + g)′ = f ′ + g′ and (cf)′ = cf ′ for a scalar c

then become the statements that

D(f + g) = D(f) +D(g) and D(cf) = cD(f),

so that D is actually a linear transformation in this more general context!
Now, observe that since the derivative of ex is ex we have

D(ex) = ex,

so ex is an “eigenvector” of D with eigenvalue 1! Also, the derivative of e2x is 2e2x:

D(e2x) = 2e2x,

so e2x is an eigenvector of D with eigenvalue 2. Such functions are called eigenfunctions of D, and
D is called a differential operator. The study of differential operators and their eigenfunctions has
led to deep advancements in physics, chemistry, economics, and pretty much anywhere differential
equations show up. Again, things you would learn about in more advanced courses.

Remark. Again, today’s lecture was outside the scope of this course, and is purely meant to
illustrate how eigenvectors and eigenvalues show up in various contexts. Hopefully you can now
somewhat better appreciate why we spend time learning about these things!
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Lecture 22: Diagonalization

Today we started talking about what it means for a matrix to be diagonalizable, which we’ve
actually been secretly talking about for a while now. This will be our final topic, apart from the
notion of complex eigenvalues, and really brings together many different concepts. It’s not an
exaggeration to say that pretty much every single thing we’ve covered this entire quarter plays
some kind of role in questions dealing with diagonalizability.

Warm-Up 1. We claim that similar matrices always have the same eigenvalues, with the same
algebraic multiplicities. Indeed, suppose that A and B are similar, so that A = SBS−1 for some
invertible S. Note that then

det(A− λI) = det(SBS−1 − λI).

Now, we can write the identity I as I = SIS−1 since SS−1 = I, and making this substitution above
gives

det(A− λI) = det(SBS−1 − SλIS−1).

The point is that now we can factor S out from the left and S−1 out from the right on both sides
of the matrix we’re taking the determinant above, giving

det(A− λI) = det(S[B − λI]S−1).

The right-side breaks up into (detS)(det[B−λI])(detS−1), so we get

det(A− λI) = det(B − λI).

Hence A and B have the same characteristic polynomial, and so have the same eigenvalues with
the same multiplicities as well.

Remark. Let’s be careful with what the above is saying. It is NOT true that two matrices with
the same eigenvalues must be similar: for instance,

%
1 0
0 1

&
and

%
1 1
0 1

&

have the same eigenvalues with the same algebraic multiplicities, but are not similar, as we will
soon see. It is also NOT true that similar matrices must have the same eigenvectors: for instance,

%
1 0
0 2

&
and

%
1 1
0 2

&

are similar, as we’ll see, but ( 01 ) is an eigenvector of the first which is not an eigenvector of the
second. On the other hand, it is true that two matrices with different eigenvalues or multiplicities
cannot be similar.

Warm-Up 2. We find bases for the eigenspaces of

A =

(

*
2 1 0
0 2 0
0 0 −3

+

- and B =

(

*
2 −5 5
0 3 −1
0 −1 3

+

- .
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Since A is upper-triangular, its eigenvalues are 2 with algebraic multiplicity 2 and −3 with mul-
tiplicity 1. Thus the eigenspace corresponding to 2 is 1 or 2-dimensional, while the eigenspace
corresponding to −3 is 1-dimensional. We have:

A− 2I =

(

*
0 1 0
0 0 0
0 0 −5

+

- →

(

*
0 1 0
0 0 1
0 0 0

+

- , so a basis for E2 is

(

*
1
0
0

+

- ,

A+ 3I =

(

*
5 1 0
0 5 0
0 0 0

+

- →

(

*
1 0 0
0 1 0
0 0 0

+

- , so a basis for E−3 is

(

*
0
0
1

+

- .

(Note that Eλ = ker(A−λI) is just notation for the eigenspace corresponding to λ.) Putting these
basis vectors together only gives two linearly independent eigenvectors, so there does not exist an
eigenbasis of R3 associated to A.

Using a cofactor expansion along the first column, the characteristic polynomial of B is

det(B − λI) =

''''''

2− λ −5 5
0 3− λ −1
0 −1 3− λ

''''''

= (2− λ)

''''
3− λ −1
−1 3− λ

''''

= (2− λ)(λ2 − 6λ+ 8)

= −(λ− 2)2(λ− 4).

Thus the eigenvalues of B are 2 with algebraic multiplicity 2 and 4 with multiplicity 1. We have:

B − 2I =

(

*
0 −5 5
0 1 −1
0 −1 1

+

- →

(

*
0 1 −1
0 0 0
0 0 0

+

- , so a basis for E2 is

0
1

2

(

*
1
0
0

+

- ,

(

*
0
1
1

+

-

3
4

5

B − 4I =

(

*
−2 −5 5
0 −1 −1
0 −1 −1

+

- →

(

*
−2 −5 5
0 1 1
0 0 0

+

- , so a basis for E4 is

(

*
5
−1
1

+

- .

Putting these basis vectors together gives an eigenbasis of R3 associated to B, meaning that
0
1

2

(

*
1
0
0

+

- ,

(

*
0
1
1

+

- ,

(

*
5
−1
1

+

-

3
4

5

is a basis of R3 consisting of eigenvectors of B. Note that here the geometric multiplicity of each
eigenvalue is the same as its algebraic multiplicity.

Eigenbases are good. Finally we come to the question: why do we care about eigenbases, and
whether or not a matrix gives rise to one? The answer is one we’ve been hinting at for a while
now. Consider the matrix B from the Warm-Up, and the associated transformation T ("x) = B"x.
The matrix of T relative to the eigenbasis B we found turns out to be

[T ]B =

(

*
2 0 0
0 2 0
0 0 4

+

- ,
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precisely because each basis vector was an eigenvector of B! Indeed, the fact that T ("vi) = λivi for
each of these basis vectors tells us that the coordinate vector of T ("vi) simply has λi in the i-th
position and zeroes elsewhere, which is why the matrix of T turns out to be diagonal. This is good,
since it says that geometrically T scales the axes corresponding to these specific basis eigenvectors
by an amount equal to the corresponding eigenvalue.

In general, given some transformation T ("x) = A"x, the only possible bases relative to which the
matrix of T is diagonal are ones where each basis vector is an eigenvector of A, since having the
i-th column in the matrix of T relative to this basis be of the form

i-th column of [T ]B =

(

))))))*

0
...
λi
...
0

+

,,,,,,-
,

with λi in the i-th position, requires that the i-th basis vector vi satisfy A"vi = λi"vi. In other words,
such a basis must be an eigenbasis corresponding to A!

Definition. A square matrix A diagonalizable if it is similar to a diagonal matrix; i.e. if there
exists an invertible matrix S and a diagonal matrix D satisfying A = SDS−1. To diagonalize
a matrix A means to find such an S and D and to express A as A = SDS−1. Geometrically,
diagonalizable matrices are the ones for which there exists a complete set of “axes” for Rn upon
which the corresponding transformations acts via scalings.

Important. An n × n matrix A is diagonalizable precisely when it gives rise to an eigenbasis of
Rn. Thus, to diagonalize A (if possible):

(i) find all eigenvalues of A,

(ii) find a basis for each eigenspace of A, and

(iii) count the total number of basis eigenvectors you find and see if you have n of them.

If so, A is diagonalizable and A = SDS−1 with S being the matrix having the eigenvectors you
found as columns and D being the diagonal matrix with the corresponding eigenvalues down the
diagonal. If you end up with fewer than n basis eigenvectors, A is not diagonalizable.

Remark. If you only want to determine diagonalizability without explicitly finding an eigenbasis
(i.e. without explicitly diagonalizing it), it is enough to check whether the geometric multiplicity
of each eigenvalue is the same as its algebraic multiplicity: these have to be equal in order for a
matrix to be diagonalizable.

Example 1. Let A =
!
1 3
4 −3

"
. The eigenvalues of A are −5 and 3, so already we know that A is

diagonalizable: the algebraic multiplicity of each eigenvalue is 1 and so the geometric multiplicity
of each eigenvalue must also be 1. Finding a basis for each of ker(A+ 5I) and ker(A− 3I) gives

E−5 = span

9%
−1
2

&:
and E3 = span

9%
3
2

&:
.
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Thus
;!−1

2

"
, ( 32 )

<
forms an eigenbasis for R2 and we can diagonalize A as

%
1 3
4 −3

&
=

%
−1 3
2 2

&%
−5 0
0 3

&%
−1 3
2 2

&−1

.

Note that the order in which we write the eigenvalues in the diagonal matrix D matters: they
should correspond to the order in which we write the eigenvectors as columns of S.

Of course, a diagonalization of A is not unique. For one thing, we can change the order of the
columns of S and the order of the eigenvalues in D:

%
1 3
4 −3

&
=

%
3 −1
2 2

&%
3 0
0 −5

&%
3 −1
2 2

&−1

,

or we can use different eigenvectors altogether; for instance,
!

2
−4

"
is also an eigenvector of A with

eigenvalue −5 and ( 96 ) is another eigenvector with eigenvalue 3 so

%
1 3
4 −3

&
=

%
2 9
−4 6

&%
−5 0
0 3

&%
2 9
−4 6

&−1

as well. There is no preference for one diagonalization over another, except that trying to avoid
fractions might be a good idea.

Example 2. Let B =
!
4 −1
1 2

"
. This only has one eigenvalue, namely 3. Since B − 3I =

!
1 −1
1 −1

"
,

we only come up with one basis eigenvector for the eigenspace corresponding to 3. With only
one eigenvalue, there are no other eigenspaces which could produce basis eigenvectors, so B is not
diagonalizable.

Actually, there is a way to see this is true only knowing that B has one eigenvalue. In general,
if A is an n× n diagonalizable matrix with only one eigenvalue λ, then A must equal λI. Indeed,
A diagonalizable gives A = SDS−1 with D diagonal, but if λ is the only eigenvalue of A then D
must be D = λI. But then

A = SDS−1 = S(λI)S−1 = λ(SIS−1) = λI,

so A must have been A = λI to start with. In the example above, since the only eigenvalue of B
is 3, if B was going to be diagonalizable it must have been equal to 3I, which it is not.

Back to Warm-Up. The matrix A from the second Warm-Up is not diagonalizable, while the
matrix B is. Using the eigenbasis we found associated to B, we can diagonalize B as

(

*
2 −5 5
0 3 −1
0 −1 3

+

- =

(

*
1 0 5
0 1 −1
0 1 1

+

-

(

*
2 0 0
0 2 0
0 0 4

+

-

(

*
1 0 5
0 1 −1
0 1 1

+

-
−1

.

Example 3. Suppose that A is a diagonalizable 3× 3 matrix with eigenvectors

(

*
1
0
1

+

- ,

(

*
0
0
1

+

- , and

(

*
1
1
1

+

-

corresponding to the eigenvalues 2, 2, and 3 respectively. We want to compute A
.

3
1
2

/
. Now, we

are not given A explicitly, but we can actually find A using the given information: note that the
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two given eigenvectors with eigenvalue 2 are linearly independent, so all three given eigenvectors
together form an eigenbasis for R3. Hence we can diagonalize A as

A =

(

*
1 0 1
0 0 1
1 1 1

+

-

(

*
2 0 0
0 2 0
0 0 3

+

-

(

*
1 0 1
0 0 1
1 1 1

+

-
−1

.

Thus by computing out the right-hand side, we can figure out what A actually is.
BUT, this is totally unnecessary! To save this extra work, I claim that we can actually find

A
.

3
1
2

/
without knowing A explicitly. Think about what is going on: we have a basis for R3 made up

of eigenvectors of A, and we know that A acts as a scaling on each of those basis vectors. Thus, if

we know how to express the vector
.

3
1
2

/
in terms of that basis, then we can use linearity properties

to easily determine A
.

3
1
2

/
.

To be clear, since the given vectors form a basis of R3 there are coefficients satisfying.

(

*
3
1
2

+

- = c1

(

*
1
0
1

+

-+ c2

(

*
0
0
1

+

-+ c3

(

*
1
1
1

+

- .

Multiplying by A gives

A

(

*
3
1
2

+

- = A

(

*c1

(

*
1
0
1

+

-+ c2

(

*
0
0
1

+

-+ c3

(

*
1
1
1

+

-

+

-

= c1A

(

*
1
0
1

+

-+ c2A

(

*
0
0
1

+

-+ c3A

(

*
1
1
1

+

-

= 2c1

(

*
1
0
1

+

-+ 2c2

(

*
0
0
1

+

-+ 3c3

(

*
1
1
1

+

-

where in the last step we use the fact that the basis vectors are eigenvectors of A, so we know what

A times each of them is. Thus all we need to know to be able to compute A
.

3
1
2

/
are the coefficients

c1, c2, c3. Solving (

*
3
1
2

+

- = c1

(

*
1
0
1

+

-+ c2

(

*
0
0
1

+

-+ c3

(

*
1
1
1

+

-

gives c1 = 2, c2 = −1, c3 = 1, so

A

(

*
3
1
2

+

- = 2(2)

(

*
1
0
1

+

-+ 2(−1)

(

*
0
0
1

+

-+ 3(1)

(

*
1
1
1

+

- =

(

*
7
3
5

+

- ,

as desired. Again, note that we still don’t even know what A actually is, and yet using the same
method as above we can in fact compute A"x for any possible "x!

Remark. This idea, that we can determine how a (diagonalizable) linear transformation acts
without explicitly knowing that transformation, lies at the core of many important applications

95



of eigenvalues and eigenvectors. In practice, it is often the case that you have enough data to
determine enough eigenvectors and eigenvalues of some transformation without explicitly knowing
what that transformation is, and if you’re lucky this is enough information to do what you want.
In particular, most computations in quantum physics are based on this idea ;)

Lecture 23: More on Diagonalization

Today we continued talking about diagonalization, and looked at some interesting applications
which were based on the fact that diagonalizing a matrix makes its powers relatively easy to
compute. As I said in class, these applications were purely meant to show why this is something
we might want to know how to do, but they will NOT be on the final.

Warm-Up 1. We determine the values of k for which

A =

(

*
0 0 3
3 k 3
1 0 −2

+

-

is diagonalizable. First, the characteristic polynomial of A is

det(A− λI) =

''''''

−λ 0 3
3 k − λ 3
1 0 −2− λ

''''''
= (k − λ)

''''
−λ 3
1 −2− λ

'''' = (k − λ)(λ− 1)(λ+ 3),

where we used a cofactor expansion along the second column. Hence the eigenvalues of A are
k, 1,−3. So, there are either two or three distinct eigenvalues depending on what k is.

If k ∕= 1,−3, there are three distinct eigenvalues and so in this case A is for sure diagonalizable:
with three distinct eigenvalues each eigenspace is 1-dimensional and finding a basis vector for each
gives 3 linearly independent eigenvectors overall.

If k = 1, then there are only two eigenvalues: 1 with algebraic multiplicity 2 and −3 with
algebraic multiplicity 1. We will get one basis eigenvector corresponding to −3, so what determines
whether or not A is diagonalizable is how many basis eigenvectors we get for the eigenvalue 1. We
have (keeping in mind that k = 1):

A− I =

(

*
−1 0 3
3 0 3
1 0 −3

+

- →

(

*
−1 0 3
0 0 12
0 0 0

+

- ,

so E1 is 1-dimensional. Hence we only get one basis eigenvector for λ = 1, and together with the
basis eigenvector for −3 we only get two overall, so A is not diagonalizable.

If k = −3, then again there are two eigenvalues, but now 1 has algebraic multiplicity 1 and
−3 has algebraic multiplicity 2. We will get one basis eigenvector corresponding to 1, and since
(keeping in mind that k = −3)

A+ 3I =

(

*
3 0 3
3 0 3
1 0 1

+

- →

(

*
3 0 3
0 0 0
0 0 0

+

-

has a 2-dimensional kernel, E−3 is two dimensional so we get two basis eigenvectors. These together
with the basis eigenvector for 1 gives three in total, so A is diagonalizable.
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To summarize, A is diagonalizable for all k ∕= 1. Note however that the reasons differ for k ∕= −3
and k = −3: in the former case there are three distinct eigenvalues, while in the latter there are
only two but the geometric multiplicity of each eigenvalue agrees with its algebraic multiplicity.

Warm-Up 2. Suppose that A is diagonalizable and that A is similar to B. We claim that B must
also be diagonalizable. Indeed, A diagonalizable gives

A = SDS−1

for some invertible S and diagonal D, while A similar to B gives

A = PBP−1

for some invertible P . Then

SDS−1 = PBP−1, so B = P−1SDS−1P = (P−1S)D(P−1S)−1,

so B is similar to the diagonal matrix D and is hence diagaonlizable.

Computing powers. Why do we care about diagonalizable matrices? Here is perhaps the main
practical reason: if A = SDS−1, then

Ak = SDkS−1.

Indeed, if you write out Ak as (SDS−1)k:

(SDS−1)(SDS−1)(SDS−1) · · · (SDS−1),

note that all the S−1S terms cancel out so we’re left with the first S, then a bunch of D’s, and the
final S−1. In addition, if D is diagonal, its power are easy to compute:

(

)*
λ1 · · · 0

. . .

0 · · · λn

+

,-

k

=

(

)*
λk
1 · · · 0

. . .

0 · · · λk
n

+

,- ,

that is, Dk is the diagonal matrix whose entries are the k-th powers of the diagonal entries of D.
Putting this all together gives a relatively easy way to find Ak when A is diagonalizable.

Important. If A is diagonalizable and A = SDS−1 with D diagonal, then Ak = SDkS−1 where
Dk is still diagonal with diagonal entries equal to the k-th powers of the diagonal entries of D.

Example 1. Last time we diagonalized
!
1 3
4 −3

"
as

%
1 3
4 −3

&
=

%
−1 3
2 2

&%
−5 0
0 3

&%
−1 3
2 2

&−1

.

Then

%
1 3
4 −3

&k

=

%
−1 3
2 2

&%
−5 0
0 3

&k %−1 3
2 2

&−1

=

%
−1 3
2 2

&%
(−5)k 0

0 3k

&%
−1 3
2 2

&−1

.
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The right side is now pretty straightforward to compute, and so we get a concrete description of!
1 3
4 −3

"k
for any k > 0.

Example 2. Say we want to solve

(

*
−1 1 −1
−2 2 −1
−2 2 −1

+

-
100

"x =

(

*
4
1
2

+

- .

The wrong way to go about is to try to actually this 100th power directly. Instead, the matrix

(

*
−1 1 −1
−2 2 −1
−2 2 −1

+

-

has three distinct eigenvalues 0, 1, and−1, so it is diagonalizable. Finding a basis for each eigenspace
gives one possible diagonalization as:

(

*
−1 1 −1
−2 2 −1
−2 2 −1

+

- =

(

*
1 0 1
1 1 1
0 1 1

+

-

(

*
0 0 0
0 1 0
0 0 −1

+

-

(

*
1 0 1
1 1 1
0 1 1

+

-
−1

.

From this we have

(

*
−1 1 −1
−2 2 −1
−2 2 −1

+

-
100

=

(

*
1 0 1
1 1 1
0 1 1

+

-

(

*
0 0 0
0 1100 0
0 0 (−1)100

+

-

(

*
1 0 1
1 1 1
0 1 1

+

-
−1

=

(

*
1 0 1
1 1 1
0 1 1

+

-

(

*
0 0 0
0 1 0
0 0 1

+

-

(

*
1 0 1
1 1 1
0 1 1

+

-
−1

.

The inverse on the right is (

*
1 0 1
1 1 1
0 1 1

+

-
−1

=

(

*
0 1 −1
−1 1 0
1 −1 1

+

- ,

so

(

*
−1 1 −1
−2 2 −1
−2 2 −1

+

-
100

=

(

*
1 0 1
1 1 1
0 1 1

+

-

(

*
0 0 0
0 1 0
0 0 1

+

-

(

*
1 0 1
1 1 1
0 1 1

+

-
−1

=

(

*
1 0 1
1 1 1
0 1 1

+

-

(

*
0 0 0
0 1 0
0 0 1

+

-

(

*
0 1 −1
−1 1 0
1 −1 1

+

-

=

(

*
1 0 1
1 1 1
0 1 1

+

-

(

*
0 0 0
−1 −1 0
1 −1 1

+

-

=

(

*
1 −1 1
0 −2 1
0 −2 1

+

- .
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Now we can solve (

*
−1 1 −1
−2 2 −1
−2 2 −1

+

-
100

"x =

(

*
1 −1 1
0 −2 1
0 −2 1

+

- "x =

(

*
4
1
2

+

-

fairly straightforwardly, and it turns out that there are no solutions. The point is that diagonalizing

(

*
−1 1 −1
−2 2 −1
−2 2 −1

+

-

gave us a direct way to compute its powers.

Remark. The two examples which follow are only meant to illustrate how computing powers of
a matrix might come up in applications, but as said in the intro you will not be expected to know
how to do these types of examples on the final.

Fibonacci numbers. The Fibonacci numbers are the numbers defined as follows: start with 1, 1,
and take as the next term the sum of the previous terms. So, the first few fibonacci numbers are

1, 1, 2, 3, 5, 8, 13, 21, 35, . . . .

Our goal is to find an explicit expression for the n-th Fibonacci number Fn. The key is the equation:

Fn+2 = Fn+1 + Fn,

which says precisely that each term is the sum of the two previous terms. Take this equation and
throw in the silly-looking equation Fn+1 = Fn+1 to get the system

Fn+2 = Fn+1 + Fn

Fn+1 = Fn+1.

Now, this can be written in matrix form as

%
Fn+2

Fn+1

&
=

%
1 1
1 0

&%
Fn+1

Fn

&
,

and thus the matrix ( 1 1
1 0 ) tells us how to move from Fn and Fn+1 to Fn+1 and Fn+2. Similarly,

%
Fn+1

Fn

&
=

%
1 1
1 0

&%
Fn

Fn−1

&
,

and combining this with our previous equation gives

%
Fn+2

Fn+1

&
=

%
1 1
1 0

&%
1 1
1 0

&%
Fn

Fn−1

&
=

%
1 1
1 0

&2%
Fn

Fn−1

&
.

Continuing in this manner, the end result is that

%
Fn+2

Fn+1

&
=

%
1 1
1 0

&n%
F2

F1

&
.
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We know that F2 = F1 = 1, so if can find an expression for ( 1 1
1 0 )

n
we will be able to explicitly

compute Fn+2 and Fn+1.
Luckily the matrix ( 1 1

1 0 ) is diagonalizable! Its characteristic polynomial is λ2 − λ − 1, so its

eigenvalues (using the quadratic formula) are 1±
√
5

2 . Let’s denote these by

λ+ =
1 +

√
5

2
and λ− =

1−
√
5

2
.

We have

A− λ±I =

%
1− λ± 1

1 −λ±

&
→

%
1 −λ±

1− λ± 1

&
→

%
1 −λ±
0 0

&
,

so possible eigenvectors corresponding to each of these respectively are
%
λ+

1

&
and

%
λ−
1

&
.

Thus ( 1 1
1 0 ) diagonalizes as

%
1 1
1 0

&
=

%
λ+ λ−
1 1

&%
λ+ 0
0 λ−

&%
λ+ λ−
1 1

&−1

,

and so %
1 1
1 0

&n

=

%
λ+ λ−
1 1

&%
λn
+ 0
0 λn

−

&%
λ+ λ−
1 1

&−1

.

The inverse on the right is %
λ+ λ−
1 1

&−1

=
1√
5

%
1 −λ−
−1 λ+

&
,

so
%
1 1
1 0

&n

=
1√
5

%
λ+ λ−
1 1

&%
λn
+ 0
0 λn

−

&%
1 −λ−
−1 λ+

&

=
1√
5

%
λ+ λ−
1 1

&%
λn
+ −λ−λ

n
+

−λn
− λ+λ

n
−

&

=
1√
5

%
λn+1
+ − λn+1

− −λ−λ
n+1
+ + λ+λ

n+1
−

λn
+ − λn

− −λ−λ
n
+ + λ+λ

n
−

&
.

Putting it all together gives
%
Fn+2

Fn+1

&
=

1√
5

%
λn+1
+ − λn+1

− −λ−λ
n+1
+ + λ+λ

n+1
−

λn
+ − λn

− −λ−λ
n
+ + λ+λ

n
−

&%
1
1

&
,

and multiplying out the right-hand side gives an explicit expression for Fn+1; after readjusting n
we get an explicit expression for Fn. Note that this expression can still be simplified further, since
for instance

λ−λ+ =

?
1−

√
5

2

@?
1 +

√
5

2

@
= −1.

But, you get the idea.

Remark. Again, this is not a computation you’d be expected to be able to on the final since, as
you can see, although fairly straightforward it does get a little messy. The system above where we
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start with a vector and repeatedly multiply by the same matrix in order to generate new vectors
is an example of what’s called a discrete dynamical system. Diagonalization plays a big role in the
study of such systems, and in a related concept known as a Markov chain. These are topics you
would perhaps come across in some later course, in other departments as well.

Matrix exponentials. Take A =
!
1 3
4 −3

"
to be the matrix from Example 1. We want to compute

the matrix exponential eA. The first question is: what on Earth is meant by taking e to the power
of a matrix? The answer comes from recalling some calculus and looking at Taylor series for ex:

ex =

∞A

n=0

xn

n!
= 1 + x+

x2

2
+

x3

3!
+ · · · .

(If you didn’t see Taylor series in your calculus course, no worries, this again is just to illustrate
how diagonalization can be useful.) The point is that this series makes sense when we substitute a
matrix in place of x, so we define eA to be the matrix

eA =

∞A

n=0

An

n!
= I +A+

1

2
A2 +

1

3!
A3 + · · · .

Since A is diagonalizable, this series is actually something we can directly compute.
First, diagonalizing A = SDS−1 as we did in Example 1, we have An = SDnS−1 so

eA = I + SDS−1 +
1

2
SD2S−1 +

1

3!
SD3S−1 + · · · .

Now, if we rewrite I as SIS−1, then we can factor S out on the left and S−1 out on the right of
the resulting expression, so

eA = SIS−1 + SDS−1 +
1

2
SD2S−1 +

1

3!
SD3S−1 + · · ·

= S

%
I +D +

1

2
D2 +

1

3!
D3 + · · ·

&
S−1.

But the infinite sum in the middle is the definition of eD, so we get that

eA = SeDS−1.

Now all that’s left is to compute eD for D =
!−5 0

0 3

"
. This is (fairly) straightforward:

eD = I +D +
1

2
D2 +

1

3!
D3 + · · ·

=

%
1 0
0 1

&
+

%
−5 0
0 3

&
+

?
(−5)2

2 0

0 32

2

@
+

?
(−5)3

3! 0

0 33

3!

@
+ · · ·

=

%
1 + (−5) + 1

2(−5)2 + 1
3!(−5)3 + · · · 0

0 1 + 3 + 1
23

2 + 1
3!3

3 · · ·

&

and we can now recognize these diagonal terms as the series expressions for e−5 and e3 respectively.
Thus

eD =

%
e−5 0
0 e3

&
,
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so

eA =

%
−1 3
2 2

&%
e−5 0
0 e3

&%
−1 3
2 2

&−1

and multiplying this out gives an explicit expression for eA.
Matrix exponentials show up in many applications, such as in any advanced study of differential

equations or in applications of differential equations. The upshot is that matrix exponentials are
pretty easy to compute for diagonalizable matrices, which is what makes them manageable. Note
that you can now do all sorts of crazy looking computations, such as

sinA or cosA

where A is a matrix: you just take the Taylor series definitions for sinx and cosx and replace x in
those series by the matrix A.

Non-diagonalizable matrices aren’t so bad. Again, this final remark is not something you
would have to know for the final. The question remains: what happens when you try to compute
powers of a non-diagonalizable matrix? It turns out that this is still somewhat manageable to do
(and thus so is computing e to the power of a non-diagonalizable matrix), since even matrices which
aren’t diagonalizable are still “almost diagonalizable” in the sense that any matrix whatsoever will
always (as long as we allow complex eigenvalues and complex eigenvectors) be similar to one of the
form (

)))))*

λ1 ∗
λ2 ∗

. . .
. . .

λn−1 ∗
λn

+

,,,,,-

where all non-diagonal entries are zero except for possibly some 1’s in the starred locations right
above the diagonal. Such a matrix is called a Jordan matrix and if A is similar to this, this
is called the Jordan form of A. The point is that for such matrices, powers are still somewhat
straightforward to compute in a way which is good enough for most applications.

Jordan forms are something you would learn about in a later linear algebra course, such as Math
334. They are related to what are called generalized eigenvectors, which as the name suggests are
generalizations of eigenvectors. As one final fact, we can now answer a questions which I’m sure
has been on all of your minds: when are two matrices similar? The answer: two square matrices
are similar if and only if they have the same Jordan form.

Lecture 24: Complex Eigenvalues

Today we spoke about complex eigenvalues and eigenvectors. The point is that this all works the
same way as real eigenvalues and eigenvectors do, only that now we work with complex numbers.

Warm-Up. Say A is a 4× 4 matrix with eigenvectors

(

))*

1
0
0
0

+

,,- ,

(

))*

2
3
−1
0

+

,,- ,

(

))*

1
2
3
−1

+

,,- ,

(

))*

1
2
0
0

+

,,-
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corresponding to the eigenvalues 2, 2, 1, 1 respectively. We want to find A−1 and justify along the
way that A is indeed invertible.

First note that the given eigenvectors are linearly independent, which is maybe easier to see by
writing them in the order (

))*

1
0
0
0

+

,,- ,

(

))*

1
2
0
0

+

,,- ,

(

))*

2
3
−1
0

+

,,- ,

(

))*

1
2
3
−1

+

,,- .

The matrix with these as columns has full rank, so those columns are linearly independent. Hence
we know that the eigenspaces E1 and E2 are each at least 2-dimensional, since we have at least two
linearly independent eigenvectors in each. Thus the algebraic multiplicities of 1 and 2 are at least
2, so the characteristic polynomial of A looks like

det(A− λI) = (λ− 1)m(λ− 2)n(other stuff), where m,n ≥ 2.

But A is only 4×4, so since the degree of this polynomial has to be 4 there is no choice but to have

det(A− λI) = (λ− 1)2(λ− 2)2.

Thus 0 is not an eigenvalue of A so A is invertible, and since now we see that the geometric
multiplicity of each eigenvalue equals its algebraic multiplicity, A is diagonalizable.

Using the given eigenvectors, we can diagonalize A as

A =

(

))*

1 1 2 1
0 2 3 2
0 0 −1 3
0 0 0 1

+

,,-

(

))*

2 0 0 0
0 1 0 0
0 0 2 0
0 0 0 1

+

,,-

(

))*

1 1 2 1
0 2 3 2
0 0 −1 3
0 0 0 1

+

,,-

−1

.

Now, we could multiply this out to find A, and then use that to find A−1. However, we save some
time as follows. Recall that in general the inverse of a product of matrices is the product of the
individual inverses but in reverse order. So, for instance, (BCD)−1 = D−1B−1C−1. In our case,
this means that

A−1 =

(

)))*

(

))*

1 1 2 1
0 2 3 2
0 0 −1 3
0 0 0 1

+

,,-

−1
+

,,,-

−1(

))*

2 0 0 0
0 1 0 0
0 0 2 0
0 0 0 1

+

,,-

−1(

))*

1 1 2 1
0 2 3 2
0 0 −1 3
0 0 0 1

+

,,-

−1

.

But (S−1)−1 = S, so

A−1 =

(

))*

1 1 2 1
0 2 3 2
0 0 −1 3
0 0 0 1

+

,,-

(

))*

2 0 0 0
0 1 0 0
0 0 2 0
0 0 0 1

+

,,-

−1(

))*

1 1 2 1
0 2 3 2
0 0 −1 3
0 0 0 1

+

,,-

−1

=

(

))*

1 1 2 1
0 2 3 2
0 0 −1 3
0 0 0 1

+

,,-

(

))*

1/2 0 0 0
0 1 0 0
0 0 1/2 0
0 0 0 1

+

,,-

(

))*

1 1 2 1
0 2 3 2
0 0 −1 3
0 0 0 1

+

,,-

−1

103



(Note that if A = SDS−1, then A−1 = SD−1S−1 so the formula Ak = SDkS−1 for the powers of a
diagonalizable matrix we saw last time works even for negative powers.) The inverse on the right
is (

))*

1 1 2 1
0 2 3 2
0 0 −1 3
0 0 0 1

+

,,-

−1

=

(

))*

1 −1/2 1/2 −3/2
0 1/2 3/2 −11/2
0 0 −1 3
0 0 0 1

+

,,- ,

so multiplying out

A−1 =

(

))*

1 1 2 1
0 2 3 2
0 0 −1 3
0 0 0 1

+

,,-

(

))*

1/2 0 0 0
0 1 0 0
0 0 1/2 0
0 0 0 1

+

,,-

(

))*

1 −1/2 1/2 −3/2
0 1/2 3/2 −11/2
0 0 −1 3
0 0 0 1

+

,,-

will give us A−1. As opposed to finding A first and then A−1, this method only requires us to find
one inverse explicitly (namely S−1) using row operations instead of two: S−1 and A−1.

Example 1. Consider the matrix A =
!
0 −1
1 0

"
. Its characteristic polynomial is

det(A− λI) = λ2 + 1

so A has no real eigenvalues. (This makes sense, since a rotation by 90◦ will turn no vector into a
scalar multiple of itself.) However, A does have two complex eigenvalues: i and −i. We can find
eigenvectors for each of these using the same method as for real eigenvalues.

For λ = i, we have

A− iI =

%
−i −1
1 −i

&
.

Now, we can reduce this by multiplying the first row by −i and adding to the second row, but
instead since we know this matrix will not be invertible, we know that the second row will have to
become all zeroes after reducing, so

%
−i −1
1 −i

&
→

%
−i −1
0 0

&
.

Now, for a matrix of this form, finding a nonzero vector in the kernel is easy: we just switch the
two entries in the top row and multiply one by a negative. Thus,

%
1
−i

&

is in ker(A− iI), so this is an eigenvector of A with eigenvalue i. As a check:

%
0 −1
1 0

&%
1
−i

&
=

%
i
1

&
= i

%
1
−i

&
,

so
!

1
−i

"
is indeed an eigenvector with eigenvalue i.

For λ = −i, we have

A+ iI =

%
i −1
1 i

&
→

%
i −1
0 0

&
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so ( 1i ) is an eigenvector of A with eigenvalue −i. Thus, even though A is not diagonalizable over
R, we would say that it is diagonalizable over C (the set of complex numbers) as:

A =

%
1 1
−i i

&%
i 0
0 −i

&%
1 1
−i i

&−1

.

Finally, this inverse is obtained using the same formula for the inverse of a 2× 2 matrix with real
entries: %

1 1
−i i

&−1

=
1

2i

%
i −1
i 1

&
.

Remark. Note something special that happened above: the eigenvalues of A were complex con-
jugates of each other, and the associated eigenvectors were also complex conjugates of each other
in the sense that one is obtained by taking the complex conjugate of each entry of the other. This
is actually true for any matrix with real entries which has complex eigenvalues, and cuts down on
many computations which come up when dealing with complex eigenvalues.

Important. Suppose that A is a square matrix with real entries. If a + ib is an eigenvalue of A,
then a− ib is also an eigenvalue of A. Moreover, if "v is a complex eigenvector of A with eigenvalue
a+ ib, then "v is an eigenvector of A with eigenvalue a− ib where "v means the vector obtained by
taking the complex conjugate of each entry of "v.

Example 2. Let A =
!

6 1
−17 2

"
. The characteristic polynomial of A is

det(A− λI) = λ2 − 4λ+ 5.

Using the quadratic formula, the eigenvalues of A are then 2± i. To find eigenvectors, all we need
to do is find an eigenvector for 2 + i and then take its conjugate to get one for 2− i. We have:

A− (2 + i)I =

%
4− i 1
−17 −4− i

&
→

%
4− i 1
0 0

&
,

so
!

1
−4+i

"
is an eigenvector of A with eigenvalue 2 + i. Hence

!
1

−4−i

"
is an eigenvector of A with

eigenvalue 2− i, so we can diagonalize A over C as

%
6 1

−17 2

&
=

%
1 1

−4 + i −4− i

&%
2 + i 0
0 2− i

&%
1 1

−4 + i −4− i

&−1

.

Now, notice that the matrix B =
!
2 −1
1 2

"
has the same eigenvalues as A, and after finding some

eigenvectors we see that we can diagonalize B as

B =

%
1 1
−i i

&%
2 + i 0
0 2− i

&%
1 1
−i i

&−1

.

Since A and B are both similar to
!
2+i 0
0 2−i

"
, they are similar to each other! The matrix

!
2 −1
1 2

"

geometrically represents a rotation combined with some scalings—compare to the rotation matrix!
cos θ − sin θ
sin θ cos θ

"
—so we conclude that A =

!
6 1

−17 2

"
also represents a rotation combined with scalings.

Remark. In general, a 2× 2 matrix with complex eigenvalues a± ib will be similar to
%
a −b
b a

&
,
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and so geometrically represents a rotation combined with scalings. This is further evidence that
there is a deep relation between complex numbers and rotations, which you would elaborate more
on in a complex analysis course.

Example 3. Let A be the matrix

A =

(

*
1 2 −1
0 1 −3
0 3 1

+

- ,

which has characteristic polynomial

(1− λ)(λ2 − 2λ+ 10).

Hence the eigenvalues of A are 1 and 1±3i. For λ = 1 we get
.

1
0
0

/
as an eigenvector. For λ = 1+3i

we have

A− (1 + 3i)I =

(

*
−3i 2 −1
0 −3i −3
0 3 3i

+

- →

(

*
−3i 2 −1
0 −3i −3
0 0 0

+

- .

Setting the free variable equal to 3i, we find that one possible eigenvector is
(

*
−1 + 2i

−3
3i

+

- .

Hence (

*
−1− 2i

−3
−3i

+

-

is an eigenvector of A for the eigenvalue 1− 3i, so we can diagonalize A as

A =

(

*
1 −1 + 2i −1− 2i
0 −3 −3
0 3i −3i

+

-

(

*
1 0 0
0 1 + 3i 0
0 0 1− 3i

+

-

(

*
1 −1 + 2i −1− 2i
0 −3 −3
0 3i −3i

+

-
−1

.

Note that things get tougher once you move past 2× 2 matrices with complex eigenvalues!

3-dimensional rotations have axes of rotations. And now, after a full quarter, we can finally
justify something I claimed on the very first day of class, and which I included as part of the
introduction to the class on the syllabus: any 3-dimensional rotation has an axis of rotation. Note
how much we had to develop in order to get to this point!

Say that A is a 3 × 3 rotation matrix. First, we know that A must have at least one real
eigenvalue, since complex eigenvalues come in (conjugate) pairs and a 3 × 3 matrix will have 3
eigenvalues counted with multiplicity. Now, we also know that since A describes a rotation, only
−1 and 1 can be real eigenvalues. We claim that 1 must be an eigenvalue. There are two possibilities:
either A has 3 real eigenvalues or it has 1 real eigenvalue.

If A has 3 real eigenvalues and they are all −1, then detA, which is the product of the eigenvalues
of A, would be −1, but we’ve seen that a rotation must have positive determinant. Hence if A has
3 real eigenvalues at least one of them must be 1.

If A has only 1 real eigenvalue, it has two other complex eigenvalue a± ib. If −1 is the one real
eigenvalue, then

detA = (−1)(a− ib)(a+ ib) = −(a2 + b2)
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is negative, which again is not possible. Hence the one real eigenvalue of A must be 1.
Thus either way, 1 is an eigenvalue of A; take "x to be a corresponding eigenvector. Then the

line spanned by "x is an axis of rotation for A. Tada!
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