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Written by Santiago Cañez

These are notes which provide a basic summary of each lecture for Math 290-2, the second quar-
ter of “MENU: Linear Algebra & Multivariable Calculus”, taught by the author at Northwestern
University. The books used as references are the 5th edition of Linear Algebra with Applications
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Lecture 1: Orthonormal Bases

The beginning of a new quarter, hoorah! Today I gave a brief overview of the course, and mentioned
that the problem of classifying extrema points of multivariable functions is one way in which we
will see linear algebra pop up in multivariable calculus. Then we started talking about the notion
of an orthonormal basis.

Dot products. Recall that the dot product of two vectors

󰂓u =

󰀳

󰁅󰁃
u1
...
un

󰀴

󰁆󰁄 and 󰂓v =

󰀳

󰁅󰁃
v1
...
vn

󰀴

󰁆󰁄

in Rn is the number 󰂓u · 󰂓v defined by

󰂓u · 󰂓v = u1v1 + · · ·+ unvn.

We’ll see later that this formula is (surprisingly) the same as

󰂓u · 󰂓v = 󰀂󰂓u󰀂 󰀂󰂓v󰀂 cos θ

where 󰀂󰂓u󰀂 and 󰀂󰂓v󰀂 denote the length of 󰂓u and 󰂓v respectively and where θ is the angle between 󰂓u
and 󰂓v. Recall that the length of a vector 󰂓x can be written as

󰀂󰂓x󰀂 =
√
󰂓x · 󰂓x.

Properties of dot products. The expression for the dot product given above in terms of cos θ
should make it clear that 󰂓u · 󰂓v = 0 if and only if 󰂓u and 󰂓v are orthogonal, meaning perpendicular.
Indeed, for nonzero 󰂓u and 󰂓u the dot product is zero if and only if cos θ = 0, which happens if and
only if θ = 90◦.

But note that even when nonzero, the sign of the dot product still gives useful geometric
information: 󰂓u · 󰂓v > 0 if and only if the angle between 󰂓u and 󰂓v is less than 90◦ and 󰂓u · 󰂓v < 0 if
and only if the angle between 󰂓u and 󰂓v is greater than 90◦. We’ll use these interpretations later,
especially in the spring quarter.

Orthonormal vectors. A collection 󰂓u1, · · · , 󰂓uk of vectors in Rn is said to be orthonormal if all
vectors are orthogonal to each other and all have length 1. In particular, an orthonormal basis of
Rn (or of a subspace of Rn) is a basis consisting of orthonormal vectors.

Example 1. The standard basis of Rn is an orthonormal basis, but of course, there can be other
orthonormal bases. In particular, the vectors

󰀕
1/

√
2

1
√
2

󰀖
and

󰀕
−1/

√
2

1
√
2

󰀖

also form an orthonormal basis of R2.

Example 2. The vectors 󰀳

󰁃
2/3
1/3
2/3

󰀴

󰁄 ,

󰀳

󰁃
−2/3
2/3
1/3

󰀴

󰁄 , and

󰀳

󰁃
1/3
2/3
−2/3

󰀴

󰁄
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form an orthonormal basis of R3.

Why care about orthonormal bases? Say that 󰂓u1, . . . , 󰂓un is an orthonormal basis of some
space. Given another vector 󰂓x, it should be possible to express 󰂓x as a linear combination of these
basis vectors: i.e.

󰂓x = c1󰂓u1 + · · ·+ cn󰂓un

for some scalars c1, . . . , cn. Using techniques from last quarter, we could solve this equation for the
unknown scalars either by converting it into a system of linear equations and using row operations,
or by converting it into a matrix equation and using some kind of inverse. However, both of these
methods lead to a lot of extra work, and are completely unnecessary in this case.

Take the above expression and dot both sides with 󰂓u1:

󰂓x · 󰂓u1 = (c1󰂓u1 + · · ·+ cn󰂓un) · 󰂓u1.

Dot products are distributive, so the right side breaks up into

c1󰂓u1 · 󰂓u1 + c1󰂓u2 · 󰂓u1 + · · ·+ cn󰂓un · 󰂓u1.

But now the magic happens: since our basis is orthonormal, all of these dot products are zero
except for 󰂓u1 · 󰂓u1, which is 1 since 󰂓u1 has length 1. Thus we are let with

󰂓x · 󰂓u1 = c1.

In general, ci = 󰂓x · 󰂓ui. The point is that we have an easy way of determining the coefficients
needed to express 󰂓x in terms of an orthonormal basis: we simply take the dot product of 󰂓x with
each basis vector. This is why orthonormal bases will be useful.

Important. Given an orthonormal basis 󰂓u1, . . . , 󰂓un of some space and another vector 󰂓x in that
space, we have

󰂓x = (󰂓x · 󰂓u1)󰂓u1 + · · ·+ (󰂓x · 󰂓un)󰂓un,

so an orthonormal basis gives us an easy way of finding the coefficients in a linear combination
expression.

Orthogonal vectors are linearly independent. Note one quick consequence of what we’ve
done above: if 󰂓u1, . . . , 󰂓un are orthogonal, then they are linearly independent. Indeed, starting with

󰂓0 = c1󰂓u1 + · · ·+ cn󰂓un,

a similar technique as above (taking dot products of both sides with some 󰂓ui) shows that each ci
must be zero, so 󰂓u1, · · · , 󰂓un are linearly independent as claimed.

Back to Example 1. Consider the orthonormal basis

󰀕
1/

√
2

1
√
2

󰀖
,

󰀕
−1/

√
2

1
√
2

󰀖

of R2 from Example 1. Say we want to solve

󰀕
3
4

󰀖
= c1

󰀕
1/

√
2

1
√
2

󰀖
+ c2

󰀕
−1/

√
2

1
√
2

󰀖
.
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The coefficients needed are

c1 =

󰀕
3
4

󰀖
·
󰀕
1/

√
2

1
√
2

󰀖
=

7√
2

and

c2 =

󰀕
3
4

󰀖
·
󰀕
−1/

√
2

1
√
2

󰀖
=

1√
2
.

You can check on your own that

7√
2

󰀕
1/

√
2

1
√
2

󰀖
+

1√
2

󰀕
−1/

√
2

1
√
2

󰀖

does in fact equal ( 34 ).

Back to Example 2. Consider the orthonormal basis
󰀳

󰁃
2/3
1/3
2/3

󰀴

󰁄 ,

󰀳

󰁃
−2/3
2/3
1/3

󰀴

󰁄 ,

󰀳

󰁃
1/3
2/3
−2/3

󰀴

󰁄

of R3 from Example 2. We can write
󰀓

1
1
1

󰀔
as a linear combination of these as

󰀳

󰁃
1
1
1

󰀴

󰁄 =
5

3

󰀳

󰁃
2/3
1/3
2/3

󰀴

󰁄+
1

3

󰀳

󰁃
−2/3
2/3
1/3

󰀴

󰁄+
1

3

󰀳

󰁃
1/3
2/3
−2/3

󰀴

󰁄 ,

where these coefficients come from taking dot product of
󰀓

1
1
1

󰀔
with each orthonormal basis vector.

Producing orthonormal bases. Given two nonzero orthogonal vectors 󰂓u and 󰂓v, it is easy to
come up with orthonormal vectors which point in the same direction as these: 󰂓u and 󰂓v are already
orthogonal, so all we need to do is rescale them to have length 1, which is done by dividing each
by their lengths. In other words, if 󰂓u and 󰂓v are nonzero and orthogonal, then

󰂓u

󰀂󰂓u󰀂 and
󰂓v

󰀂󰂓v󰀂

are orthonormal. The same works for a larger collection of nonzero vectors which are orthogonal
to begin with.

But, what do we do when the vectors we start with are not orthogonal? How can we use them to
product orthonormal vectors with the same span as the original vectors? This is what the so-called
Gram-Schmidt process is all about; we’ll come back to this on Monday.

Lecture 2: Orthogonal Projections

Today we spoke about orthogonal projections onto arbitrary spaces, not just lines as we saw last
quarter. The fact that we can easily compute such projections given an orthonormal basis for our
space gives further evidence that orthonormal vectors are good to have around.

Warm-Up 1. Among all unit vectors u =

󰀕 u1

...
un

󰀖
in Rn we want to find the one for which

u1+ · · ·+un is maximal. The key point is that we can rewrite the expression we want to maximize
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as a certain dot product, and then we can express this dot product in terms of the angle between
two vectors. In particular, we have

u1 + · · ·+ un =

󰀳

󰁅󰁃
u1
...
un

󰀴

󰁆󰁄 ·

󰀳

󰁅󰁃
1
...
1

󰀴

󰁆󰁄 = 󰀂u󰀂

󰀐󰀐󰀐󰀐󰀐󰀐󰀐

󰀳

󰁅󰁃
1
...
1

󰀴

󰁆󰁄

󰀐󰀐󰀐󰀐󰀐󰀐󰀐
cos θ

where θ is the angle between u and

󰀕 1
...
1

󰀖
. We are only considering unit vectors u, so 󰀂u󰀂 = 1, and

the length of the vector with all entries equal to 1 is
√
n. So

u1 + · · ·+ un =
√
n cos θ.

This is maximized when cos θ = 1, which happens when θ = 0, so we conclude that the vector u we

want should be the unit vector pointing in the same direction as

󰀕 1
...
1

󰀖
. This unit vector is obtained

by dividing

󰀕 1
...
1

󰀖
by its length, so

u =

󰀳

󰁅󰁃
1/

√
n

...
1/

√
n

󰀴

󰁆󰁄

is the unit vector in Rn which makes u1 + · · ·+ un as large as possible.

Warm-Up 2. Let’s find a basis for span
󰁱󰀓

1
1
1

󰀔󰁲⊥
. Here, for a subspace V of Rn, V ⊥ denotes the

orthogonal complement of V in Rn, which is the subspace consisting of all vectors in Rn which are
orthogonal to everything in V . In our case, we’re looking at the orthogonal complement of the line

spanned by
󰀓

1
1
1

󰀔
. Geometrically, this orthogonal complement should be a plane.

In order for a vector
󰀓

x
y
z

󰀔
to be in span

󰁱󰀓
1
1
1

󰀔󰁲⊥
, it must be orthogonal to

󰀓
1
1
1

󰀔
. Thus a vector

in this orthogonal complement satisfies the equation

0 =

󰀳

󰁃
x
y
z

󰀴

󰁄 ·

󰀳

󰁃
1
1
1

󰀴

󰁄 = x+ y + z.

As expected, the orthogonal complement to span
󰁱󰀓

1
1
1

󰀔󰁲
is a plane, namely the plane with equation

x+ y + z = 0. We can now find a basis for this plane as we would have done last quarter, and one
possible basis turns out to be 󰀳

󰁃
−1
1
0

󰀴

󰁄 ,

󰀳

󰁃
−1
0
1

󰀴

󰁄 .

Now instead say we wanted to find an orthonormal basis for this orthogonal complement. The
basis we found above doesn’t work since those basis vectors aren’t orthogonal. But, we can use
them to find what we want. Keeping the first basis vector as is, we then want to find another vector

v on the plane x+ y+ z = 0 which is orthogonal to the first basis vector
󰀓−1

1
0

󰀔
. We know that this
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vector v we want can be written as a linear combination of the basis vectors found above (as any
vector on this plane can), so the problem boils down to finding coefficients which make

v = c1

󰀳

󰁃
−1
1
0

󰀴

󰁄+ c2

󰀳

󰁃
−1
0
1

󰀴

󰁄

orthogonal to
󰀓−1

1
0

󰀔
. This means that v ·

󰀓−1
1
0

󰀔
should be zero, which gives the equation

2c1 + c2 = 0.

Taking c1 = 1 and c2 = −2 gives one possible set of coefficients, and then

v =

󰀳

󰁃
−1
1
0

󰀴

󰁄− 2

󰀳

󰁃
−1
0
1

󰀴

󰁄 =

󰀳

󰁃
1
1
−2

󰀴

󰁄 .

This gives 󰀳

󰁃
−1
1
0

󰀴

󰁄 ,

󰀳

󰁃
1
1
−2

󰀴

󰁄

as an orthogonal basis for span
󰁱󰀓

1
1
1

󰀔󰁲⊥
, and dividing each of these basis vectors by its length then

gives an orthonormal basis for this orthogonal complement.

Orthogonal projections. Recall from last quarter that the orthogonal projection of a vector x
onto the line spanned by a vector u is given by

proju(x) =
󰀓x · u
u · u

󰀔
u.

We derived this formula in class, but I’ll omit that here—you can look it up in the book if interested.
We can now generalize this to the orthogonal projection of a vector onto any subspace of Rn,

whether it be a line, a plane, or something higher dimensional. First the definition:

Given a subspace V of Rn, the orthogonal projection of a vector x in Rn onto V is the
unique vector projV (x) in V which makes x− projV (x) orthogonal to V .

This orthogonality requirement is why we call this an “orthogonal projection” as opposed to simply
a “projection”. It turns out that there is a relatively easy way of computing such orthogonal
projections, at least if we have an orthonormal basis of V available to us. The key fact is that
given an orthogonal basis of V (what follows would not be true if our basis wasn’t orthogonal), the
orthogonal projection of x onto V is obtained by orthogonal projecting x onto each basis vector
separately and adding together all such projections.

Important. If u1, . . . ,uk is an orthonormal basis of V , the orthogonal projection of 󰂓x onto V is
given by

projV (x) = proju1
(x) + · · ·+ projuk

(x)

= (x · u1)u1 + · · ·+ (x · uk)uk.
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If our basis were only orthogonal instead of orthonormal, all that would change is that the formula
for the coefficients above would have denominators of the form ui ·ui; such denominators all happen
to be equal to 1 for an orthonormal basis.

Example. Let’s find the orthogonal projection of

󰀕
1
1
1
1

󰀖
onto the subspace

V = span

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

󰀳

󰁅󰁅󰁃

2
2
1
0

󰀴

󰁆󰁆󰁄 ,

󰀳

󰁅󰁅󰁃

−2
2
0
1

󰀴

󰁆󰁆󰁄 ,

󰀳

󰁅󰁅󰁃

1
1
−4
0

󰀴

󰁆󰁆󰁄

󰀼
󰁁󰁁󰁀

󰁁󰁁󰀾

of R4. The nice thing is that these given vectors are already orthogonal, so to get an orthonormal
basis for this span we only need to divide each by its length. This gives

󰀳

󰁅󰁅󰁃

2/3
2/3
1/3
0

󰀴

󰁆󰁆󰁄 ,

󰀳

󰁅󰁅󰁃

−2/3
2/3
0

1/3

󰀴

󰁆󰁆󰁄 ,

󰀳

󰁅󰁅󰁃

1/3
√
2

1/3
√
2

−4/3
√
2

0

󰀴

󰁆󰁆󰁄

as an orthonormal basis for the given span.

Denoting these orthonormal basis vectors by u1,u2,u3 and

󰀕
1
1
1
1

󰀖
by x, we then have

projV

󰀳

󰁅󰁅󰁃

1
1
1
1

󰀴

󰁆󰁆󰁄 = (x · u1)u1 + (x · u2)u2 + (x · u3)u3

=
5

3
u1 +

1

3
u2 −

2

3
√
2
u3

=
5

3

󰀳

󰁅󰁅󰁃

2/3
2/3
1/3
0

󰀴

󰁆󰁆󰁄+
1

3

󰀳

󰁅󰁅󰁃

−2/3
2/3
0
1/3

󰀴

󰁆󰁆󰁄− 2

3
√
2

󰀳

󰁅󰁅󰁃

1/3
√
2

1/3
√
2

−4/3
√
2

0

󰀴

󰁆󰁆󰁄

as the explicit orthogonal projection we want. (Don’t be scared, it’s unlikely that you would ever
have to simplify such an expression further. When in doubt, ask!)

Why care about orthogonal projections? All of this is well and good, but it’s not yet clear
that orthogonal projections are actually useful things. Here is the key fact: among all vectors in
V , projV (󰂓x) is the one which is “closest” to 󰂓x in the sense that 󰀂x− v󰀂 is minimized for v in V
precisely when v = projV (x). This is such an important fact that I’ll repeat it again, in red! We’ll
exploit this minimization property of orthogonal projections next week to great effect.

Important. Given a subspace V of Rn and a vector x in Rn, the quantity 󰀂x− v󰀂 as v ranges
through all vectors in V is minimized when v = projV (x).
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Lecture 3: Gram-Schmidt Process

Today we spoke about the Gram-Schmidt process, which is a procedure for producing orthonormal
bases of any kind of spaces we want. The calculations can be kind of tedious, but the results are
well worth it.

Warm-Up 1. For x =
󰀓

1
1
−1

󰀔
, we want to find the minimum possible value of 󰀂x− v󰀂 as v ranges

through all vectors in

V = span

󰀻
󰀿

󰀽

󰀳

󰁃
2
1
1

󰀴

󰁄 ,

󰀳

󰁃
−1
1
1

󰀴

󰁄

󰀼
󰁀

󰀾 .

The key fact is that this minimum value is obtained precisely when v = projV (x), so this problem
is really just a convoluted way of saying “compute 󰀂x− projV (x)󰀂”. The given basis vectors of V
are already orthogonal, so calling them v1 and v2 respectively we have:

projV (x) = projv1
x+ projv2

x

=

󰀕
x · v1

v1 · v1

󰀖
v1 +

󰀕
x · v2

v2 · v2

󰀖
v2

=
2

6

󰀳

󰁃
2
1
1

󰀴

󰁄− 1

3

󰀳

󰁃
−1
1
1

󰀴

󰁄

=

󰀳

󰁃
1
0
0

󰀴

󰁄 .

Thus the minimum value of 󰀂x− v󰀂 we want is

󰀂x− projV x󰀂 =

󰀐󰀐󰀐󰀐󰀐󰀐

󰀳

󰁃
0
1
1

󰀴

󰁄

󰀐󰀐󰀐󰀐󰀐󰀐
=

√
2.

Geometrically, V is a plane in R3 and what we have computed is the distance from
󰀓

1
1
−1

󰀔
to this

plane. We’ll see more of this later when we do calculus.

The matrix of an orthogonal projection. Suppose that u1, . . . ,uk is an orthonormal basis for
a subspace V of Rn, and let Q be the matrix having these as columns:

Q =

󰀳

󰁃
| |
u1 · · · uk

| |

󰀴

󰁄 .

Then QQT is the matrix of “orthogonal projection onto V ”, that is, the linear transformation which
orthogonally projects a vector in Rn onto the subspace V . Indeed, let’s compute the product QQTx
for a vector x in Rn:

QQTx =

󰀳

󰁃
| |
u1 · · · uk

| |

󰀴

󰁄

󰀳

󰁅󰁃
—– u1 —–

...
—– uk —–

󰀴

󰁆󰁄

󰀳

󰁅󰁃
x1
...
xn

󰀴

󰁆󰁄
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=

󰀳

󰁃
| |
u1 · · · uk

| |

󰀴

󰁄

󰀳

󰁅󰁃
x · u1

...
x · uk

󰀴

󰁆󰁄

= (x · u1)u1 + · · ·+ (x · uk)uk.

We’ve seen already that this resulting expression is the orthogonal projection of x onto V , so

QQTx = projV x

as claimed. The strange looking formula in Chapter 2 of the book for orthogonally projecting onto
a line can now be derived using this approach.

Warm-Up 2. Let’s compute the matrix of the orthogonal projection onto the plane

V = span

󰀻
󰀿

󰀽

󰀳

󰁃
2
1
1

󰀴

󰁄 ,

󰀳

󰁃
−1
1
1

󰀴

󰁄

󰀼
󰁀

󰀾

from the first Warm-Up. We need an orthonormal basis for V , which is obtained simply by dividing
each of the given orthogonal basis vectors by their lengths:

u1 =
1√
6

󰀳

󰁃
2
1
1

󰀴

󰁄 =

󰀳

󰁃
2/

√
6

1/
√
6

1/
√
6

󰀴

󰁄 , u2 =
1√
3

󰀳

󰁃
−1
1
1

󰀴

󰁄 =

󰀳

󰁃
−1/

√
3

1/
√
3

1/
√
3

󰀴

󰁄 .

Using these as the columns of a matrix Q, the matrix for the orthogonal projection onto V is

QQT =

󰀳

󰁃
2/

√
6 −1/

√
3

1/
√
6 1/

√
3

1/
√
6 1/

√
3

󰀴

󰁄
󰀕

2/
√
6 1/

√
6 1/

√
6

−1/
√
3 1/

√
3 1/

√
3

󰀖

=

󰀳

󰁃
1 0 0
0 1/2 1/2
0 1/2 1/2

󰀴

󰁄 .

As a check, this matrix should have the property that QQTx = projV x, so using the vector

x =
󰀓

1
1
−1

󰀔
from the first Warm-Up we get:

QQTx =

󰀳

󰁃
1 0 0
0 1/2 1/2
0 1/2 1/2

󰀴

󰁄

󰀳

󰁃
1
1
−1

󰀴

󰁄 =

󰀳

󰁃
1
0
0

󰀴

󰁄 ,

which agrees with the answer we found for projV x in that Warm-Up.

Gram-Schmidt process. The point of the Gram-Schmidt process is to take a collection of
linearly independent vectors and to produce a collection of orthonormal vectors with the same span
as the original set of vectors. I wrote up some notes on this last year, which you can find on my
website at http://math.northwestern.edu/~scanez/archives/lin-algebra/notes.php. This
describes an approach to the Gram-Schmidt process which is slightly different than how the book
does it, but which is I think a bit simpler computationally. Use whichever method works best for
you, but be consistent!

9
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The main point of the process is to at each step replace a vector in your original collection by
what you get when you subtract from it its orthogonal projection onto all previously constructed
vectors. Again, check the notes linked to above for more details. One thing I didn’t mention in
class is the following: how do we know that the resulting vectors will have the same span as the
original vectors? This is because each vector constructed during the Gram-Schmidt process is a
linear combination of the original vectors, so the span does not change.

One final point: how do we know that the resulting vectors must be orthogonal? For instance,
how do we know

b2 = v2 −
󰀕
v2 · b1

b1 · b1

󰀖
b1

is orthogonal to b1? We simply compute:

b2 · b1 =

󰀗
v2 −

󰀕
v2 · b1

b1 · b1

󰀖
b1

󰀘
· b1

= v2 · b1 −
󰀕
v2 · b1

b1 · b1

󰀖
(b1 · b1)

= v2 · b1 − v2 · b1

= 0.

A similar computation works for the other vectors in the construction.

Important. Given linearly independent vectors v1, . . . ,vk, the Gram-Schmidt process produces
orthonormal vectors u1, . . . ,uk such that span {u1, . . . ,uk} = span {v1, . . . ,vk}.

Example 1. Let’s apply the Gram-Schmidt process to

v1 =

󰀳

󰁃
1
−1
0

󰀴

󰁄 , v2 =

󰀳

󰁃
1
3
−1

󰀴

󰁄 , v3 =

󰀳

󰁃
4
1
1

󰀴

󰁄 .

First we set

b1 = v1 =

󰀳

󰁃
1
−1
0

󰀴

󰁄 .

Next we compute:

b2 = v2 − projb1
v2

= v2 −
󰀕
v2 · b1

b1 · b1

󰀖
b1

=

󰀳

󰁃
1
3
−1

󰀴

󰁄− −2

2

󰀳

󰁃
1
−1
0

󰀴

󰁄

=

󰀳

󰁃
2
2
−1

󰀴

󰁄 .

Note that this is indeed orthogonal to b1. Finally, we compute:

b3 = v3 − projb1
v3 − projb2

v3

10



= v3 −
󰀕
v3 · b1

b1 · b1

󰀖
b1 −

󰀕
v3 · b2

b2 · b2

󰀖
b2

=

󰀳

󰁃
4
1
1

󰀴

󰁄− 3

2

󰀳

󰁃
1
−1
0

󰀴

󰁄− 9

9

󰀳

󰁃
2
2
−1

󰀴

󰁄

=

󰀳

󰁃
1/2
1/2
2

󰀴

󰁄 .

The final step is to divide each of b1,b2,b3 by their lengths, so the vectors resulting from applying
the Gram-Schmidt process to v1,v2,v3 are

u1 =
b1

󰀂b1󰀂
=

󰀳

󰁃
1/

√
2

−1/
√
2

0

󰀴

󰁄 , u2 =
b2

󰀂b2󰀂
=

󰀳

󰁃
2/3
2/3
−1/3

󰀴

󰁄 , u3 =
b3

󰀂b3󰀂
=

1󰁳
9/2

󰀳

󰁃
1/2
1/2
2

󰀴

󰁄 =

󰀳

󰁃
1/3

√
2

1/3
√
2

2
√
2/3

󰀴

󰁄 .

Example 2. We find an orthonormal basis for the kernel of

A =

󰀕
1 2 −1 1
−2 −4 2 −2

󰀖
.

First we need any basis for kerA, which we can find using techniques from last quarter. One
possible basis is

v1 =

󰀳

󰁅󰁅󰁃

−2
1
0
0

󰀴

󰁆󰁆󰁄 , v2 =

󰀳

󰁅󰁅󰁃

1
0
1
0

󰀴

󰁆󰁆󰁄 , v3 =

󰀳

󰁅󰁅󰁃

1
0
0
−1

󰀴

󰁆󰁆󰁄 .

Next we apply the Gram-Schmidt process to this basis. We get:

b1 = v1 =

󰀳

󰁅󰁅󰁃

−2
1
0
0

󰀴

󰁆󰁆󰁄

b2 = v2 − projb1
v2 =

󰀳

󰁅󰁅󰁃

1
0
1
0

󰀴

󰁆󰁆󰁄− −2

5

󰀳

󰁅󰁅󰁃

−2
1
0
0

󰀴

󰁆󰁆󰁄 =

󰀳

󰁅󰁅󰁃

1/5
2/5
1
0

󰀴

󰁆󰁆󰁄 .

At this point, to avoid having to deal with so many fractions, let’s scale this vector by 5 and use

b2 =

󰀳

󰁅󰁅󰁃

1
2
5
0

󰀴

󰁆󰁆󰁄

instead; this is fine, since this new choice for b2 is still orthogonal to b1. Finally:

b3 = v3 − projb1
v3 − projb2

v3 =

󰀳

󰁅󰁅󰁃

1
0
0
−1

󰀴

󰁆󰁆󰁄− −2

5

󰀳

󰁅󰁅󰁃

−2
1
0
0

󰀴

󰁆󰁆󰁄− 1

30

󰀳

󰁅󰁅󰁃

1
2
5
0

󰀴

󰁆󰁆󰁄 =

󰀳

󰁅󰁅󰁃

1/6
1/3
−1/6
−1

󰀴

󰁆󰁆󰁄 .
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Finally we divide by lengths to get

󰀳

󰁅󰁅󰁃

−2/
√
5

1/
√
5

0
0

󰀴

󰁆󰁆󰁄 ,

󰀳

󰁃
1/

√
30

2/
√
30

5/
√
30

󰀴

󰁄 ,
1󰁳
7/6

󰀳

󰁅󰁅󰁃

1/6
1/3
−1/6
−1

󰀴

󰁆󰁆󰁄

as an orthonormal basis for kerA.

Lecture 4: Orthogonal Matrices

Today we spoke about orthogonal transformations and matrices, otherwise known as rotations and
reflections. Such matrices turn out to have many useful properties, as we’ll see.

Warm-Up. We compute the distance from x =
󰀓−1

2
2

󰀔
to each eigenspace of the matrix

A =

󰀳

󰁃
3 1 1
1 3 1
1 1 3

󰀴

󰁄 .

Recall that such a distance is given by the length of x minus its orthogonal projection onto the
eigenspace we’re looking at, and to compute such orthogonal projections we need orthonormal bases
for the eigenspaces, which are obtained using the Gram-Schmidt process. This problem touches
upon pretty much everything we’ve looked at so far this quarter, and some things from last quarter.

First we need any bases for the eigenspaces of A. The eigenvalues of A (as you should check)
are 2 and 5, and computing bases for the eigenspace corresponding to each using techniques from
last quarter gives:

󰀳

󰁃
−1
0
1

󰀴

󰁄 ,

󰀳

󰁃
−1
1
0

󰀴

󰁄 as a basis for E2 and

󰀳

󰁃
1
1
1

󰀴

󰁄 as a basis for E5.

Let’s first work with E5. To get an orthonormal basis for E5 we divide the given basis vector by
its length:

u =

󰀳

󰁃
1/

√
3

1/
√
3

1/
√
3

󰀴

󰁄 .

The orthogonal projection of x onto E5 is thus

projE5
(x) = (x · u)u =

3√
3

󰀳

󰁃
1/

√
3

1/
√
3

1/
√
3

󰀴

󰁄 =

󰀳

󰁃
1
1
1

󰀴

󰁄 .

The distance from x to E5 is therefore

󰀐󰀐x− projE5
(x)

󰀐󰀐 =

󰀐󰀐󰀐󰀐󰀐󰀐

󰀳

󰁃
−2
1
1

󰀴

󰁄

󰀐󰀐󰀐󰀐󰀐󰀐
=

√
6.

12



Now for E2. To get an orthonormal basis for E2 we apply the Gram-Schmidt process to the
basis vectors v1 and v2 we found previously:

b1 = v1 =

󰀳

󰁃
−1
0
1

󰀴

󰁄

b2 = v2 − projb1
v2 =

󰀳

󰁃
−1
1
0

󰀴

󰁄− 1

2

󰀳

󰁃
−1
0
1

󰀴

󰁄 =

󰀳

󰁃
−1/2
1

−1/2

󰀴

󰁄

u1 =
b1

󰀂b1󰀂
=

󰀳

󰁃
−1/

√
2

0

1/
√
2

󰀴

󰁄

u2 =
b2

󰀂b2󰀂
=

1󰁳
3/2

󰀳

󰁃
−1/2
1

−1/2

󰀴

󰁄 =

󰀳

󰁃
−1/

√
6

2/
√
6

−1/
√
6

󰀴

󰁄 ,

so u1 and u2 form an orthonormal basis of E2. The orthogonal projection of x onto E2 is then

projE2
(x) = (x · u1)u1 + (x · u2)u2 =

3√
2

󰀳

󰁃
−1/

√
2

0

1/
√
2

󰀴

󰁄+
3√
6

󰀳

󰁃
−1/

√
6

2/
√
6

−1/
√
6

󰀴

󰁄 =

󰀳

󰁃
−2
1
1

󰀴

󰁄 ,

so the distance from x to E2 is

󰀐󰀐x− projE2
(x)

󰀐󰀐 =

󰀐󰀐󰀐󰀐󰀐󰀐

󰀳

󰁃
1
1
1

󰀴

󰁄

󰀐󰀐󰀐󰀐󰀐󰀐
=

√
3.

As you can see, some of the dot product computations get a little messy; don’t worry too much
about getting all values exactly right, much more important is understanding the thought process
which went into figuring out how to compute what we wanted to compute.

Orthogonal Matrices. Suppose that Q is an n× n matrix with orthonormal columns, say

Q =

󰀳

󰁃
| |
u1 · · · un

| |

󰀴

󰁄 .

We call such a matrix an orthogonal matrix. For a vector x in Rn, let’s compute 󰀂Qx󰀂. We have

Qx =

󰀳

󰁃
| |
u1 · · · un

| |

󰀴

󰁄

󰀳

󰁅󰁃
x1
...
xn

󰀴

󰁆󰁄 = x1u1 + · · ·+ xnun

so

Qx ·Qx = (x1u1 + · · ·+ xnun) · (x1u1 + · · ·+ xnun)

= x21(u1 · u1) + x22(u2 · u2) + · · ·+ x2n(un · un),
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which we get after distributing dot products and using the fact that ui ·uj = 0 for i ∕= j. But each
ui has length 1, so ui · ui = 1 for all i and the above becomes

Qx ·Qx = x21 + x22 + · · ·+ x2n = x · x.

Thus
󰀂Qx󰀂 = 󰀂x󰀂 for any x.

In other words, an orthogonal matrix has the property that it “preserves” lengths.
Here’s a definition:

A linear transformation T from Rn to Rn is an orthogonal transformation if it is length-
preserving in the sense that 󰀂T (x)󰀂 = 󰀂x󰀂 for all x in Rn.

The upshot is that orthogonal matrices give examples of orthogonal transformations. We will soon
see that in fact all orthogonal transformations come about from orthogonal matrices.

Important. To say that a square matrix is orthogonal means that is has orthonormal columns, not
just orthogonal columns. We don’t have a specific term for matrices with only orthogonal columns.
The term “orthogonal matrix” has been around long enough that we’re stuck with it, even though
“orthonormal matrix” might be a more descriptive name.

Rotations and reflections. Geometrically, the only types of linear transformations we’ve seen
which preserve lengths are rotations and reflections, and indeed any orthogonal transformation must
be one of these. To distinguish between the two, recall the interpretation of the sign of the deter-
minant we saw last quarter: positive determinant means “orientation preserving” while negative
determinant means “orientation reversing”. In particular, if T (x) = Qx is length-preserving, then
considering the interpretation of | detQ| as an expansion factor gives | detQ| = 1, so detQ = ±1;
rotations have determinant +1 and reflections have determinant −1.

Properties of orthogonal transformations. Here are two more key properties of orthogonal
transformations: they “preserve angles” in the sense that the angle between T (x) and T (y) is the
same as the angle between x and y, and they “preserve dot products” in the sense that T (x) ·T (y)
is the same as x ·y. The book shows that orthogonal transformations preserve right angles at least,
and these two general facts are exercises in the book which will show up on Homework 3.

For now, let’s use the fact that orthogonal transformations preserve dot products to justify a
property of dot products we saw earlier: the fact that x · y = 󰀂x󰀂 󰀂y󰀂 cos θ where θ is the angle
between x and y. First consider the case where y points along the positive x-axis, so

y =

󰀕
a
0

󰀖
for some a > 0.

Then for x = ( c
d ), we have x · y = ac. But a = 󰀂y󰀂 and a correctly-drawn right triangle:
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shows that c = 󰀂x󰀂 cos θ. Thus x ·y = ac = 󰀂y󰀂 󰀂x󰀂 cos θ is true in this special case. Now, let x and
y be any nonzero vectors. Take T to be a rotation which rotates y to the positive x-axis. Then by
the special case we just did we have

T (x) · T (y) = 󰀂T (x)󰀂 󰀂T (y)󰀂 cos θ

where θ is the angle between T (x) and T (y). But this is the same as the angle between x and
y, and since T is orthogonal 󰀂T (x)󰀂 = 󰀂x󰀂 , 󰀂T (y)󰀂 = 󰀂y󰀂 , and T (x) · T (y) = x · y so the above
expression becomes

x · y = 󰀂x󰀂 󰀂y󰀂 cos θ
as claimed. The other way I know of deriving this property of dot products is via the so called
“law of cosines” in trigonometry, which is nowhere near as enlightening as the way we did it here.

The matrix of an orthogonal transformation. Say that T is an orthogonal transformation.
Since the standard basis vectors e1, . . . , en are orthonormal and T preserves lengths and angles,
T (e1), . . . , T (en) are also orthonormal. But these vectors make up the columns of the matrix of T
relative to the standard basis, so we are saying that

matrix of T =

󰀳

󰁃
| |

T (e1) · · · T (en)
| |

󰀴

󰁄

is an orthogonal matrix. So we have come full circle: not only do orthogonal matrices give examples
of orthogonal transformations, but the matrix of any orthogonal transformation must actually be
an orthogonal matrix.

Examples. The matrix of a 2-dimensional rotation:
󰀕
cos θ − sin θ
sin θ cos θ

󰀖

is an orthogonal matrix, and so is the matrix of a 2-dimensional reflection.
The matrix 󰀳

󰁃
1/

√
2 2/3 1/3

√
2

−1/
√
2 2/3 1/3

√
2

0 −1/3 2
√
2/3

󰀴

󰁄

is a 3 × 3 orthogonal matrix, meaning that its columns are orthonormal. Being orthogonal, this
matrix must represent either a rotation or a reflection. Since it has determinant 1 (as you can
check), it describes a 3-dimensional rotation.
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The inverse of an orthogonal matrix. Again, suppose that Q is an orthogonal n × n matrix.
We’ve worked out before that for any matrix (not necessarily square) with orthonormal columns,
QTQ = I. But now if Q is square we can say more. The product QQT describes the orthogonal
projection onto the space spanned by the columns of Q, which in this case is Rn since Q has n
columns. But “orthogonal projection of Rn onto Rn” is the identity transformation since projecting
a vector in a given space onto that same space does nothing to it. Thus

QQT = I when Q is an orthogonal square matrix.

Since QTQ = I and QQT = I, QT = Q−1 so we find that the inverse of an orthogonal matrix is
simply its transpose. For instance, the inverse of the 3 × 3 matrix in the previous example is its
transpose. This property gives another characterization of orthogonal matrices.

Important. For a square matrix Q, the following conditions are equivalent:

• The transformation T (x) = Qx preserves lengths,

• The transformation T (x) = Qx preserves dot products,

• The transformation T (x) = Qx describes either a rotation or a reflection,

• The columns of Q are orthonormal (i.e. Q is an orthogonal matrix),

• QTQ = I and QQT = I, so Q−1 = QT .

Final example. Let’s find all orthogonal matrices of the form

󰀳

󰁃
1 a d
0 b e
0 c f

󰀴

󰁄 .

In order for the first two columns to be orthogonal it must be the case that a = 0. Then, for the
second columns to have length 1 it must be true that b2 + c2 = 1. Thus the second column must
be of the form 󰀳

󰁃
0

cos θ
sin θ

󰀴

󰁄 .

For the third column to be orthogonal to the first column we again need d = 0, and to also be
orthogonal to this second column the third column must be of the form

󰀳

󰁃
0

− sin θ
cos θ

󰀴

󰁄 or

󰀳

󰁃
0

sin θ
− cos θ

󰀴

󰁄 .

Thus, we see that all 3× 3 orthogonal matrices of the given form must look like

󰀳

󰁃
1 0 0
0 cos θ − sin θ
0 sin θ cos θ

󰀴

󰁄 or

󰀳

󰁃
1 0 0
0 cos θ sin θ
0 sin θ − cos θ

󰀴

󰁄

The first form has determinant 1 and describes a rotation of the yz-plane around the x-axis while
the second has determinant −1 and describes a reflection across a plane containing the x-axis.
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Lecture 5: Least Squares

Today we spoke about the method of least squares, which is a beautiful application of orthogonal
projections. In the course of working through this, we derived a way of computing orthogonal
projections which avoids any mention of Gram-Schmidt or orthonormal bases, and so is usually
much quicker to carry out computationally.

Warm-Up. We claim that the rows of an orthogonal matrix Q are in fact orthonormal. The rows
of Q are the columns of QT , so the claim is that QT is also an orthogonal matrix. Here are two
ways of seeing this.

First, if Q is orthogonal, the corresponding transformation preserves lengths and hence so
does the inverse transformation. Thus Q−1 describes an orthogonal transformation, so Q−1 is an
orthogonal matrix. (Another way to see that Q−1 is orthogonal is to note that the inverse of
a rotation or reflection is itself a rotation or reflection.) Since Q−1 = QT , QT is orthogonal as
claimed.

Second, since Q is orthogonal we have QQT = I = QTQ. But Q = (QT )T so

[(QT )T ]QT = I = QT [(QT )T ].

In other words, QT times its transpose is the identity, so by one of the equivalent characterizations
of orthogonal matrices QT is also orthogonal.

Least squares. Say we want to find a function of the form f(t) = c0 + c1t whose graph passes
through the points (0, 3), (1, 3), (2, 6). Of course here this is not possible since such a function
describes a line and these three points do not lie on the same line. Instead, we ask for the function
of this type which “best fits” the given points in the following sense.

Given any line, we consider the points on the line with x-coordinates 0, 1, 2. Each of these
points has some vertical distance to the original data points, which we denote by 󰂃1, 󰂃2, 󰂃3:

We say that f(t) = c0+ c1t “best fits” the given points in the least squares sense if it is the line for
which the “error” 󰂃21 + 󰂃22 + 󰂃23 is minimized. But this expression is minimized when its square root
is minimized, so we are looking to minimize

󰁴
󰂃21 + 󰂃22 + 󰂃23.
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The point is that we can rewrite this quantity as the length of a certain vector.
Indeed, if our line were going to pass through the given points exactly it would satisfy

f(0) = 3, so c0 = 3

f(1) = 3, so c0 + c1 = 3

f(2) = 6, so c0 + 2c1 = 6.

These resulting system of equations can be written as Ax = b where

A =

󰀳

󰁃
1 0
1 1
1 2

󰀴

󰁄 , x =

󰀕
c0
c1

󰀖
, b =

󰀳

󰁃
3
3
6

󰀴

󰁄 .

The expression we want to minimize is then precisely 󰀂b− Ax󰀂. Again, the equation Ax = b has
no solution since our points do not lie on the same line, so our goal is to find x such that 󰀂b−Ax󰀂
is as small as possible; this x is called the least squares solution of Ax = b.

Note that the vectors of the form Ax we consider make up the image of A, so we are asking to
find the vector in this image which is closest to b—but this is something we already know how to
do! Indeed, we know that the closest such vector is the orthogonal projection of b onto this image,
so our goal is to find x such that Ax = projimA b.

Example 1. Let’s find this x using previous methods. First we need to find projimA b. Using
techniques from last quarter we see that the image of A has basis

󰀳

󰁃
1
1
1

󰀴

󰁄 ,

󰀳

󰁃
0
1
2

󰀴

󰁄 .

Applying the Gram-Schmidt process gives

u1 =

󰀳

󰁃
1/

√
3

1/
√
3

1/
√
3

󰀴

󰁄 , u2 =

󰀳

󰁃
−1/

√
2

0

1/
√
2

󰀴

󰁄

as an orthonormal basis of imA. Thus

projimA b = proju1
b+ proju2

b =
12√
3

󰀳

󰁃
1/

√
3

1/
√
3

1/
√
3

󰀴

󰁄+
3√
2

󰀳

󰁃
−1/

√
2

0

1/
√
2

󰀴

󰁄 =

󰀳

󰁃
5/2
4

11/2

󰀴

󰁄 .

Now we need x such that Ax = projimA b. Solving

󰀳

󰁃
1 0
1 1
1 2

󰀴

󰁄x =

󰀳

󰁃
5/2
4

11/2

󰀴

󰁄

using row operations gives

x =

󰀕
5/2
3/2

󰀖
.

Recall that the entries of x were the coefficients of the best-fitting line we’re looking for, so the line
which best fits the given points in the least squares sense is thus f(t) = 5

2 + 3
2 t.
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Normal equation. It turns out there is a quicker way of finding this line without using an
orthonormal basis. The key is in the condition that Ax = projimA b. Since b − projimA b should
be orthogonal to imA by one of the characterizations of orthogonal projections, this means that
Ax should have the property that b− Ax is orthogonal to imA. But as the book shows, a vector
orthogonal to imA is the same as a vector in kerAT ! Thus we’re looking for x such that b − Ax
is in kerAT , meaning that

AT (b−Ax) should be 0.

The equation AT (b−Ax) = 0 is the same as ATAx = ATb, so the x which makes Ax = projimA b
is precisely the x satisfying

ATAx = ATb.

This equation is called the normal equation of Ax = b, and as mentioned before its solution is
called the least square of Ax = b.

Important. The least squares solution of Ax = b is the vector x such that Ax = projimA b, which
is precisely the solution of the normal equation ATAx = ATb. Geometrically, this is the vector x
giving the vector Ax in the image of A which is closest to b.

Back to Example 1. Let’s use the newly-derived normal equation to solve our previous example.
We wanted to find x such that Ax = projimA b where

A =

󰀳

󰁃
1 0
1 1
1 2

󰀴

󰁄 and b =

󰀳

󰁃
3
3
6

󰀴

󰁄 .

The corresponding normal equation ATAx = ATb is

󰀕
1 1 1
0 1 2

󰀖󰀳

󰁃
1 0
1 1
1 2

󰀴

󰁄x =

󰀕
1 1 1
0 1 2

󰀖󰀳

󰁃
3
3
6

󰀴

󰁄 ,

which becomes 󰀕
3 3
3 5

󰀖
x =

󰀕
12
15

󰀖
.

Solving this using whatever method we want gives x =
󰀓

5/2
3/2

󰀔
as we found before. Hopefully you

can see why this method is usually much quicker than the “orthonormal basis” method.

Example 2. To drive home the point, let’s work out an example we did previously using this
new least squares method. In the Warm-Up from last class we wanted to find the distance from

x =
󰀓−1

2
2

󰀔
to each eigenspace of

󰀳

󰁃
3 1 1
1 3 1
1 1 3

󰀴

󰁄 .

We found that the eigenspace corresponding to 2 had basis

󰀳

󰁃
−1
0
1

󰀴

󰁄 ,

󰀳

󰁃
−1
1
0

󰀴

󰁄 .
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Let us compute projE2
x using least squares. To be able to do this, we need to express the space

we’re projecting onto as the image of some matrix, but this is easy: we use the basis vectors for
that subspace as the columns of the matrix. In other words, for

B =

󰀳

󰁃
−1 −1
0 1
1 0

󰀴

󰁄 ,

we have E2 = imB. So to find projimB x we first solve the normal equation BTBy = BTx for y.
This normal equation is

󰀕
−1 0 1
−1 1 0

󰀖󰀳

󰁃
−1 −1
0 1
1 0

󰀴

󰁄y =

󰀕
−1 0 1
−1 1 0

󰀖󰀳

󰁃
−1
2
2

󰀴

󰁄 ,

or 󰀕
2 1
1 2

󰀖
y =

󰀕
3
3

󰀖
.

Solving gives y = ( 11 ). Since this least-squares solutions satisfies projimB x = Ay, this orthogonal
projection we want is

Ay =

󰀳

󰁃
−1 −1
0 1
1 0

󰀴

󰁄
󰀕
1
1

󰀖
=

󰀳

󰁃
−2
1
1

󰀴

󰁄 .

If you go back to the previous Warm-Up in question you’ll see that this is the same answer for
projE2

x we found there. Yay!

Lecture 6: Symmetric Matrices

Today we spoke about symmetric matrices and their amazing properties. The culmination of
these ideas is the so-called Spectral Theorem, which says that symmetric matrices are the same as
“orthogonally diagonalizable” ones.

Warm-Up 1. We find the quadratic function f(t) = c0+ c1t+ c2t
2 which best fits the data points

(0, 4), (1, 3), (2, 6), and (−1, 3) in the least-squares sense. Recall the idea: there is no function of
the specified form which passes through all four given points, so we are looking for the function
which comes as close as possible to doing so.

The condition that f pass through the given points gives the following system of equations:

f(0) = 4 =⇒ c0 = 4

f(1) = 3 =⇒ c0 + c1 + c2 = 3

f(2) = 6 =⇒ c0 + 2c1 + 4c2 = 6

f(−1) = 3 =⇒ c0 − c1 + c2 = 3,

which can be written in matrix form Ax = b as
󰀳

󰁅󰁅󰁃

1 0 0
1 1 1
1 2 4
1 −1 1

󰀴

󰁆󰁆󰁄

󰀳

󰁃
c0
c1
c2

󰀴

󰁄 =

󰀳

󰁅󰁅󰁃

4
3
6
3

󰀴

󰁆󰁆󰁄 .
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(You can check that this system indeed has no solution.) The least squares solution x =
󰀓

c0
c1
c2

󰀔
of

Ax = b is the actual solution of the corresponding normal equation ATAx = ATb, which is:

󰀳

󰁃
1 1 1 1
0 1 2 −1
0 1 4 1

󰀴

󰁄

󰀳

󰁅󰁅󰁃

1 0 0
1 1 1
1 2 4
1 −1 1

󰀴

󰁆󰁆󰁄x =

󰀳

󰁃
1 1 1 1
0 1 2 −1
0 1 4 1

󰀴

󰁄

󰀳

󰁅󰁅󰁃

4
3
6
3

󰀴

󰁆󰁆󰁄 ,

or 󰀳

󰁃
4 2 6
2 6 8
6 8 18

󰀴

󰁄x =

󰀳

󰁃
16
12
30

󰀴

󰁄 .

Solving this gives

x =

󰀳

󰁃
31/10
3/10
1/2

󰀴

󰁄 ,

so the quadratic function which best fits the given data points is f(t) = 31
10 + 3

10 t+
1
2 t

2.

Warm-Up 2. (This second Warm-Up is actually the same as the first Warm-Up in disguise.) Say
we want to find the vector in

V = span

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

󰀳

󰁅󰁅󰁃

1
1
1
1

󰀴

󰁆󰁆󰁄 ,

󰀳

󰁅󰁅󰁃

0
1
2
−1

󰀴

󰁆󰁆󰁄 ,

󰀳

󰁅󰁅󰁃

0
1
4
−1

󰀴

󰁆󰁆󰁄

󰀼
󰁁󰁁󰁀

󰁁󰁁󰀾

which is closest to

b =

󰀳

󰁅󰁅󰁃

4
3
6
2

󰀴

󰁆󰁆󰁄 .

We know that this vector should be projV b, and I claim that we can easily compute this based on
what we did in the first Warm-Up. Indeed, noting that the space V can also be described as the
image of the matrix

A =

󰀳

󰁅󰁅󰁃

1 0 0
1 1 1
1 2 4
1 −1 1

󰀴

󰁆󰁆󰁄 ,

we are looking for the orthogonal projection of b onto imA and the point is that the least squares
solution x we computed in the first Warm-Up precisely has the property that Ax is this projection!
Thus,

Ax =

󰀳

󰁅󰁅󰁃

1 0 0
1 1 1
1 2 4
1 −1 1

󰀴

󰁆󰁆󰁄

󰀳

󰁃
31/10
3/10
1/2

󰀴

󰁄 =

󰀳

󰁃
31/10
39/10
33/10

󰀴

󰁄

is projV b = projimA b, so this is the vector in V which is closest to b.
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Why are transposes important? Before talking about symmetric matrices, let’s be clear about
why the transpose of a matrix is a useful thing to look at. The key is the following fact: for any
square matrix A and vectors v and w,

Av ·w = v ·ATw.

In other words, when multiplying one vector in a dot product by a matrix A, the resulting dot
product is the same as the one we would get when instead multiplying the other vector by AT . It
is this “moving around a dot product expression” property of transposes which accounts for their
usefulness.

In particular, if A is symmetric (so that A = AT ) it does not matter which vector we multiply
by A, the resulting dot products are always the same: Av ·w = v ·Aw for any v and w.

Key properties of symmetric matrices. Suppose that A is symmetric. Then:

• All eigenvalues of A exist and are real. Say that λ = a + ib is a complex eigenvalue (which
always exists) of A with complex eigenvector v + iw. Then as we saw at the end of last
quarter λ = a− ib is also an eigenvalue of A with complex eigenvector v− iw. We compute:

A(v + iw) · (v − iw) = λ(v + iw) · (v − iw)

= λ(v · v − iv ·w + iw · v +w ·w)

= λ(󰀂v󰀂2 + 󰀂w󰀂2)
(v + iw) ·A(v − iw) = (v + iw) · λ(v − iw)

= λ(v · v − iv ·w + iw · v +w ·w)

= λ(󰀂v󰀂2 + 󰀂w󰀂2).

Since A is symmetric A(v+ iw) · (v− iw) should equal (v+ iw) ·A(v− iw), so we get that
λ = λ; i.e. a+ ib = a− ib so b = 0 and the eigenvalue a+ ib = a is actually real.

• Eigenvectors of A with different eigenvalues are orthogonal. Say that v andw are eigenvectors
of A with eigenvalues λ ∕= µ respectively. Then

Av ·w = λ(v ·w) and v ·Aw = v · (µw) = µ(v ·w).

Since A is symmetric these two expressions are equal, so since λ ∕= µ it must be that v ·w = 0.

• A is diagonalizable. This is not easy to justify in general, and the book’s proof is not very
enlightening, but here is an “intuitive” idea why it is true, at least for a 3 × 3 symmetric
matrix. (This same idea generalizes to symmetric matrices of any size.) We know from the
first property above that A has at least one real eigenvalue and so at least one eigenvector v1.
This eigenvector spans some line in R3, so its orthogonal complement is some 2-dimensional
plane in R3. Now, here is the key fact: A preserves this orthogonal complement in the sense
that if x is on this orthogonal plane, then Ax remains on this orthogonal plane. So, we can
view A as describing a transformation from this orthogonal plane to itself. Applying the first
property again now tells us that A has some eigenvector v2 on this plane. The space of vectors
orthogonal to both v1 and v2 is now a line, and again A preserves this line, so viewing A as
a transformation from this line to itself gives a third eigenvector v3 when applying the first
property one more time. We end up with three orthogonal (and hence linearly independent)
eigenvectors v1,v2,v3, so A is diagonalizable.
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Example 1. Take A to be the matrix

A =

󰀳

󰁃
3 1 1
1 3 1
1 1 3

󰀴

󰁄 ,

which we used in the Warm-Up from January 15th. There we said the eigenvalues of A were 2 and
5, with bases for the eigenspaces being

󰀳

󰁃
−1
0
1

󰀴

󰁄 ,

󰀳

󰁃
−1
1
0

󰀴

󰁄 for E2 and

󰀳

󰁃
1
1
1

󰀴

󰁄 for E5.

As expected from the key properties listed above, A has all real eigenvalues, is diagonalizable, and
eigenvectors corresponding to different eigenvalues are orthogonal.

In the previous Warm-Up with this matrix, using the Gram-Schmidt process we also found
orthonormal bases for each eigenspace, which were:

󰀳

󰁃
−1/

√
2

0

1/
√
2

󰀴

󰁄 ,

󰀳

󰁃
−1/

√
6

2/
√
6

−1/
√
6

󰀴

󰁄 for E2 and

󰀳

󰁃
1/

√
3

1/
√
3

1/
√
3

󰀴

󰁄 for E5.

Note that again, the first two (orthonormal) eigenvectors are orthogonal to the third. Putting these
three together thus gives an orthonormal basis for R3 consisting of eigenvectors of A.

Example 2. Let B be the matrix

B =

󰀳

󰁃
−2 0 2
0 −3 0
2 0 1

󰀴

󰁄 .

This has eigenvalues 2 and −3, and possible bases for the eigenspaces are
󰀳

󰁃
1
0
2

󰀴

󰁄 for E2 and

󰀳

󰁃
0
1
0

󰀴

󰁄 ,

󰀳

󰁃
−2
1
1

󰀴

󰁄 for E−3.

Again, B has real eigenvalues, is diagonalizable, and eigenvectors for different eigenvalues are
orthogonal, as should be the case since B is symmetric. Applying Gram-Schmidt to each basis
separately then gives three orthonormal eigenvectors:

󰀳

󰁃
1/

√
5

0

2/
√
5

󰀴

󰁄 ,

󰀳

󰁃
0
1
0

󰀴

󰁄 ,

󰀳

󰁃
−2/

√
5

0

1/
√
5

󰀴

󰁄 ,

which as before form an “orthonormal eigenbasis” for R3.

Orthogonal diagonalization. Recall that to diagonalize a matrix A means to write it as A =
SDS−1 with D diagonal, which amounts to finding a basis for Rn consisting of eigenvectors of A.
(These eigenvectors make up the columns of S.) In the two examples above, using the orthonormal
eigenbases we found as the columns of S makes S an orthogonal matrix. The nice thing is that,
as we’ve seen, the inverse of such a matrix is simply its transpose, so S−1 is easy to write down
explicitly.

The point is that we can thus actually diagonalize the matrices from the two examples in a
particularly nice way, leading to the definition of “orthogonally diagonalizable”:
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A square matrix A is orthogonally diagonalizable if we can diagonalize it as A = QDQT

where D is diagonal and Q is an orthogonal matrix, in which case QT = Q−1.

Note that what makes this work in the two examples above is that since eigenvectors for different
eigenvalues were already orthogonal, applying Gram-Schmidt to each eigenspace separately still
results in orthogonal vectors even when we put eigenvectors with different eigenvalues together into
one big list; this is not necessarily going to be true for matrices in general, and in fact we’ll see in
a second that it’s only true for symmetric matrices.

Back to Example 1. Using the orthonormal eigenbasis we found, we can orthogonally diagonalize
A as

󰀳

󰁃
3 1 1
1 3 1
1 1 3

󰀴

󰁄 =

󰀳

󰁃
−1/

√
2 −1/

√
6 1/

√
3

0 2/
√
6 1/

√
3

1/
√
2 −1/

√
6 1/

√
3

󰀴

󰁄

󰀳

󰁃
2 0 0
0 2 0
0 0 5

󰀴

󰁄

󰀳

󰁃
−1/

√
2 0 1/

√
2

−1/
√
6 2/

√
6 −1/

√
6

1/
√
3 1/

√
3 1/

√
3

󰀴

󰁄 .

We can now do awesome things like (fairly) easily compute arbitrary powers of A.

Back to Example 2. We can orthogonally diagonalizable B as
󰀳

󰁃
−2 0 2
0 −3 0
2 0 1

󰀴

󰁄 =

󰀳

󰁃
1/

√
5 0 −2/

√
5

0 1 0

2/
√
5 0 1/

√
5

󰀴

󰁄

󰀳

󰁃
2 0 0
0 −3 0
0 0 −3

󰀴

󰁄

󰀳

󰁃
1/

√
5 0 2/

√
5

0 1 0

−2/
√
5 0 1/

√
5

󰀴

󰁄 .

As an application of this, say we want to find a matrix C such that C3 = B. Intuitively, we want
to take a “cube root” of B, which we can do using this diagonalization simply by taking the cube
root of each entry in the diagonal matrix part. Indeed, the matrix

C =

󰀳

󰁃
1/

√
5 0 −2/

√
5

0 1 0

2/
√
5 0 1/

√
5

󰀴

󰁄

󰀳

󰁃
3
√
2 0 0

0 − 3
√
3 0

0 0 − 3
√
3

󰀴

󰁄

󰀳

󰁃
1/

√
5 0 2/

√
5

0 1 0

−2/
√
5 0 1/

√
5

󰀴

󰁄

satisfies C3 = B as required.

Spectral Theorem. What remains is to determine the matrices for which orthogonal diagonal-
ization is possible. As said before, to be able to carry this out for an n× n matrix we need to end
up with n orthonormal eigenvectors in the end, which can only happen if eigenvectors for different
eigenvalues are already orthogonal.

This works for symmetric matrices, and now we can justify that this only works for symmetric
matrices. Indeed, if A = QDQT with D diagonal and Q orthogonal, then

AT = (QDQT )T = (QT )TDTQT = QDTQT = QDQT = A,

so that A must in fact be symmetric. Thus we get the statement of the famous Spectral Theorem: a
matrix is orthogonally diagonalizable if and only if it is symmetric. In other words, “symmetric” and
“orthogonally diagonalizable” mean the same thing! This is quite surprising, since the definitions
of these two terms really seem to be worlds apart. Next time I’ll hint at some possible applications
of this truly wonderful fact.

Important. To orthogonally diagonalize a symmetric matrix, find eigenvalues and basis eigenvec-
tors as you normally would when diagonalizing, and then apply Gram-Schmidt to the bases you find
for each eigenspace separately, using the resulting orthonormal eigenvectors as the columns of Q.
The phrases: “A is symmetric”, “A is orthogonally diagonalizable”, and “can find an orthonormal
eigenbasis of Rn corresponding to A” all mean the same thing.
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Lecture 7: Quadratic Forms

Today we spoke about quadratic forms, which is a nice application of orthogonally diagonalizing
symmetric matrices. Later we will use these ideas to study surfaces and to classify extrema of
multivariable functions.

Warm-Up 1. Suppose that A is a 3 × 3 matrix with eigenvalues 1, 1,−3 and corresponding
eigenvectors 󰀳

󰁃
2
1
2

󰀴

󰁄 ,

󰀳

󰁃
0
3
3

󰀴

󰁄 ,

󰀳

󰁃
1
2
−2

󰀴

󰁄 .

We want to orthogonally diagonalize A. Note that according to the Spectral Theorem this should
only be possible if A is symmetric, which is not something we are told. However, we can see
right away that A is symmetric since both eigenvectors corresponding to 1 are orthogonal to the
eigenvector corresponding to −3, and only symmetric matrices have this property.

To get orthonormal eigenvectors we apply Gram-Schmidt to the vectors we have for each
eigenspace separately. We get the orthonormal bases:

󰀳

󰁃
2/3
1/3
2/3

󰀴

󰁄 ,

󰀳

󰁃
−2/3
2/3
1/3

󰀴

󰁄 for E1 and

󰀳

󰁃
1/3
2/3
−2/3

󰀴

󰁄 for E−3.

All three together give an orthonormal eigenbasis for R3, so we can orthogonally diagonalize A as

A =

󰀳

󰁃
2/3 −2/3 1/3
1/3 2/3 2/3
2/3 1/3 −2/3

󰀴

󰁄

󰀳

󰁃
1 0 0
0 1 0
0 0 −3

󰀴

󰁄

󰀳

󰁃
2/3 1/3 2/3
−2/3 2/3 1/3
1/3 2/3 −2/3

󰀴

󰁄 .

Note that as a consequence, we now see that there is only one matrix having the given eigenvalues
and eigenvectors—namely the product above—and that it is symmetric.

Warm-Up 2. With the same setup as above, let’s compute A
󰀓

1
1
1

󰀔
. Now, using the diagonalization

from above we can actually determine A explicitly and then multiply it by
󰀓

1
1
1

󰀔
, but here we want

to do this computation without ever figuring out exactly what A is. The point is that we can easily

write
󰀓

1
1
1

󰀔
as a linear combination of the eigenbasis we found above since those basis vectors are

orthonormal, and after this we can easily determine what happens when we multiply through by
A since A will just scale each eigenvector by its eigenvalue.

We have 󰀳

󰁃
1
1
1

󰀴

󰁄 =
5

3

󰀳

󰁃
2/3
1/3
2/3

󰀴

󰁄+
1

3

󰀳

󰁃
−2/3
2/3
1/3

󰀴

󰁄+
1

3

󰀳

󰁃
1/3
2/3
−2/3

󰀴

󰁄

using the fact that x = (x · u1)u1 + · · ·+ (x · un)un when u1, . . . ,un form an orthonormal basis of
Rn. Then multiplying through by A gives:

A

󰀳

󰁃
1
1
1

󰀴

󰁄 =
5

3
A

󰀳

󰁃
2/3
1/3
2/3

󰀴

󰁄+
1

3
A

󰀳

󰁃
−2/3
2/3
1/3

󰀴

󰁄+
1

3
A

󰀳

󰁃
1/3
2/3
−2/3

󰀴

󰁄
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=
5

3

󰀳

󰁃
2/3
1/3
2/3

󰀴

󰁄+
1

3

󰀳

󰁃
−2/3
2/3
1/3

󰀴

󰁄+
1

3
(−3)

󰀳

󰁃
1/3
2/3
−2/3

󰀴

󰁄

=

󰀳

󰁃
10/9
5/9
10/9

󰀴

󰁄+

󰀳

󰁃
−2/9
2/9
1/9

󰀴

󰁄+

󰀳

󰁃
−3/9
−6/9
6/9

󰀴

󰁄

=

󰀳

󰁃
5/9
1/9
17/9

󰀴

󰁄 .

And we are done, having never found A explicitly.

Can you hear the shape of a drum? (This is purely for your own interest, and is not standard
course material.) The idea from the second Warm-Up that computations involving a symmetric
matrix can be carried out without knowing it explicitly as long we know eigenvalues and orthonor-
mal eigenvectors is an important one in many applications. Indeed, the study of eigenvalues and
eigenvectors of symmetric matrices (and their generalizations) has developed into its own branch
of mathematics called Spectral Theory. Here is one illustration of these ideas.

Say there is a drum which we cannot see but which we can hear; the sound which the drum
makes when hit depends on the shape of the drum. The question is: from the sound we hear alone,
can we determine what shape the drum must have had? Here is how this relates to what we’ve
been studying.

The geometry of the drum can be used to construct a certain matrix called the Laplacian of the
drum, which encodes some geometric properties of the drum. This turns out to be a huge matrix
with an infinite number of rows and columns, but the saving grace is that it is symmetric! Thus,
an analog of the Spectral Theorem in this infinite-dimensional setting still says that the Laplacian
is orthogonally diagonalizable, so we get eigenvalues and orthonormal eigenvectors. (Probably an
infinite number of each.) It turns out that these data are related to the sound waves produced by
the drum: the eigenvalues describe the frequencies of the waves and the orthonormal eigenvectors
the structure of the wave. (Surprising, no?)

The question is whether we can reverse this process: given the sound, recover the geometry.
From the sound we hear we can determine the frequencies of the sound waves and their structure,
and hence the eigenvalues and orthonormal eigenvectors of the (at this point) unknown Laplacian.
The same idea as in the second Warm-Up (courtesy of the Spectral Theorem) now says that from
this we can determine how the Laplacian behaves, without having to write it down explicitly (which
would likely be hard since it is a matrix of infinite size). So, now that we have the Laplacian, all
that remains is to figure out what geometric shape would have given rise to that Laplacian.

Unfortunately, this is not something we can do exactly, since different shapes can actually
have the same Laplacian. BUT, these different shapes can be classified, so that if we know the
Laplacian we can at least determine that the shape of the drum must belong to some easy-to-
manage (hopefully finite) list. So, we cannot hear the shape of the drum precisely... but we can
come pretty close!

Important. A symmetric matrix is completely determined by its eigenvalues and orthonormal
eigenvectors. In other words, if two symmetric matrices have the same eigenvalues and associated
orthonormal eigenvectors, then they are actually the same matrix.

Quadratic forms. A quadratic form (say in two variables x, y for now) is a function which only
involves quadratic terms: x2, xy, and y2. (So no linear terms and no additional +constant terms.)
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The basic fact is that any such function q can be written as

q(x, y) = x ·Ax

where x = ( xy ) and A is a symmetric matrix called the matrix of the quadratic form. (We’ll work
this out in some examples in a bit.) The point is then the following: by orthogonally diagonalizing
the matrix A, we can come up with a new system of coordinates to use which will simplify the
description of the form, and which will thus make studying the form simpler.

Example 1. Consider the quadratic form

q(x, y) = −7x2 + 8xy − 13y2.

The matrix of this form is

A =

󰀕
−7 4
4 −13

󰀖
,

whose entries come simply from the coefficients of the various terms in the form. (The 4 comes
from half the coefficient 8 of xy.) Indeed, let us compute:

x ·Ax =

󰀕
x
y

󰀖
·
󰀕
−7 4
4 −13

󰀖󰀕
x
y

󰀖

=

󰀕
x
y

󰀖
·
󰀕
−7x+ 4y
4x− 13y

󰀖

= −7x2 + 4xy + 4yx− 13y2

= q(x, y),

so A is really is the matrix of q. Note that we needed to use 4 in the matrix since there are two
terms in the expression we get from x ·Ax which involve xy, so to get coefficient 8 in total we need
each of those terms to have coefficient 4. (Also, having coefficient 4 for both the xy piece and yx
piece in x ·Ax guarantees that A is symmetric, as we want.)

Now, A has eigenvalues −5,−15 with associated orthonormal eigenvectors

󰀕
2/

√
5

1/
√
5

󰀖
,

󰀕
−1/

√
5

2/
√
5

󰀖

respectively. Let c1, c2 be coordinates relative to this basis of R2. Recall from last quarter that this
means for a given x, its coordinates are the values of c1, c2 satisfying

x = c1

󰀕
2/

√
5

1/
√
5

󰀖
+ c2

󰀕
−1/

√
5

2/
√
5

󰀖
.

With respect to these coordinates, the equation for the quadratic form becomes

−7x2 + 8xy − 13y2 = −5c21 − 15c22,

and the point is that we’ve eliminated the mixed term. (We’ll see in a second why this is the correct
equation.) Note that the resulting coefficients are simply the eigenvalues of A.

To see why this is useful, consider the problem of sketching the curve

−7x2 + 8xy − 13y2 = −1.
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Relative to our new coordinates this equation becomes

−5c21 − 15c22 = −1, or 5c21 + 15c22 = 1,

which is the equation of an ellipse! (Note that the number which we set the quadratic form equal
to is important; for instance, −7x2 + 8xy − 13y2 = 1 is not an ellipse, and in fact has no solutions
since −5c21 − 15c22 = 1 has no solutions.) To draw this ellipse, we draw the set of axes determined
by the eigenvectors:

Then the ellipse is

where the intercepts with the c1 and c2-axes are determined as follows: the c1 intercept occurs
when c2 = 0, so when 5c21 = 1, giving c1 = ±1/

√
5, and the c2 intercept occurs when c1 = 0 so

when 15c22 = 1, giving c2 = ±1/
√
15.

Why a change of coordinates works. To complete the example above, we should justify the
claim that

q(x, y) = −7x2 + 8xy − 13y2 becomes q(c1, c2) = −5c21 − 15c22

after a change of coordinates. For a general quadratic form q(x) = x · Ax, we orthogonally di-
agonalize A as A = QDQT with the columns of the orthogonal matrix Q being the orthonormal
eigenvectors of A and the diagonal entries of D being the eigenvalues of A. Denote by 󰂓c = ( c1c2 ) the
coordinates of a vector x = ( xy ) relative to our orthonormal eigenbasis. In particular, recall from
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that quarter that Q is then the “change of basis” matrix satisfying x = Q󰂓c, meaning Q tells us how
to move from new coordinates to standard coordinates.

Plugging in some substitutions, we can now compute:

x ·Ax = (Q󰂓c) · [(QDQT )(Q󰂓c)]

= Q󰂓c ·QD󰂓c, since QTQ = I

= 󰂓c ·D󰂓c, since Q preserves dot products.

Thus the quadratic form x ·Ax becomes 󰂓c ·D󰂓c in new coordinates, and working this expression out

for D =
󰀓

λ1 0
0 λ2

󰀔
gives

󰂓c ·D󰂓c = λ1c
2
1 + λ2c

2
2

as claimed. Note that the reason why mixed terms are eliminated is because D is diagonal, and so
gives coefficient 0 for the mixed terms.

Important. After a change of coordinates, any quadratic form q(x) = x ·Ax can be written as

q(c1, . . . , cn) = λ1c
2
1 + · · ·+ λnc

2
n

where λ1, . . . ,λn are the eigenvalues of A and c1, . . . , cn are coordinates relative to an orthonormal
eigenbasis of Rn corresponding to A.

Example 2. We sketch the curve determined by

−3x2 + 6xy + 5y2 = 1.

The quadratic form q(x, y) = −3x2 + 6xy − 5y2 has matrix

󰀕
−3 3
3 −5

󰀖
,

which has eigenvalues −4, 6 and associated orthonormal eigenvectors

󰀕
3/

√
10

−1/
√
10

󰀖
,

󰀕
1/

√
10

3/
√
10

󰀖
.

Relative to coordinates c1, c2 determined by this basis of R2, the quadratic form q is given by
q(c1, c2) = −4c21 + 6c22, so the given curve becomes

−4c21 + 6c22 = 1.

This describes a hyperbola which crosses the c2-axis. (We can see this since setting c2 = 0 in the
equation for the curve gives no solutions for c1, meaning that the curve cannot cross the c1-axis.)
The intercepts on the c2-axis are ±1/

√
6 (found by setting c1 = 0), so the hyperbola looks like:
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Lecture 8: Curves and Lines

Today we started talking about parametric curves, and lines in particular. Parametric equations
give us a concrete way to talk about arbitrary curves in 2 and 3-dimensions, where much of the
calculus we will eventually talk about takes place.

Warm-Up 1. We sketch the curve in R2 given by the equation

6x21 + 4x1x2 + 3x22 = 1.

The left-hand side defines a quadratic form with matrix
󰀕
6 2
2 3

󰀖
.

This has eigenvalues 2 and 7, with possible corresponding orthonormal eigenvectors respectively:
󰀕

1/
√
5

−2/
√
5

󰀖
and

󰀕
2/

√
5

1/
√
5

󰀖
.

In coordinates c1 and c2 relative to this basis of R2 the equation for the curve becomes

2c21 + 7c22 = 1,

so the curve is an ellipse. The intercepts with the c1-axis occur when c2 = 0, so at c1 = ±1/
√
2,

and the intercepts with the c2-axis occur when c1 = 0, so at c2 = ±1/
√
7. The ellipse thus looks

like:
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Note that the part of the c1-axis in the fourth quadrant is the positive c1-axis since the eigenvector
spanning that line points in this direction, which is why the intersection point there is labeled with
a positive 1/

√
2.

Warm-Up 2. Now we determine the point (or points) on the surface −x21+2x2x3 = 1 in R3 which
is (or are) closest to the origin. The quadratic form q(x1, x2, x3) = −x21 + 2x2x3 has matrix

󰀳

󰁃
−1 0 0
0 0 1
0 1 0

󰀴

󰁄 ,

which has eigenvalues −1 and 1, with orthonormal eigenvectors

󰀳

󰁃
1
0
0

󰀴

󰁄 ,

󰀳

󰁃
0

−1/
√
2

1/
√
2

󰀴

󰁄 for − 1 and

󰀳

󰁃
0

1/
√
2

1/
√
2

󰀴

󰁄 for 1.

Taking coordinates c1, c2, c3 relative to this orthonormal basis of R3, the equation of the surface
becomes

−c21 − c22 + c23 = 1.

To get a sense for what this surface looks like, we note the following. First, setting c3 = 0 in
the given equation gives −c21 − c22 = 1, which as no solutions since the left side is never positive.
This means that our surface never crosses the plane c3 = 0, which is the c1c2-plane. Second, setting
c1 = 0 and c2 = 0 in the given equation determines the points where the surface intersects the
c3-axis: c

2
3 = 1 so c3 = ±1. We’ll see later how to determine precisely what this surface looks like,

but for now I claim that it is what’s called a hyperboloid of two sheets, which is a 3-dimensional
analog of a hyperbola. It looks like:

where we draw the c1, c2, c3-axes as if they were the ordinary x1, x2, x3-axes. (With respect to the
standard axes, the actual hyperboloid we’re looking at would be a rotated version of the one drawn
above.)

Thus we see that the points closest to the origin occur when c1 = c2 = 0 and c3 = ±1. In terms
of standard coordinates, these are the points

0

󰀳

󰁃
1
0
0

󰀴

󰁄+ 0

󰀳

󰁃
0

−1/
√
2

1/
√
2

󰀴

󰁄±

󰀳

󰁃
0

1/
√
2

1/
√
2

󰀴

󰁄 ,
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so (0, 1/
√
2, 1/

√
2) and (0,−1/

√
2,−1.

√
2).

Parametric Curves. We describe arbitrary curves in 2 and 3-dimensions using parametric equa-
tions, which are equations: 󰀻

󰁁󰀿

󰁁󰀽

x = x(t)

y = y(t)

z = z(t)

giving the (x, y, z)-coordinates of points along the curve in terms of a parameter t. The idea is that
as t varies, we get various points (x(t), y(t), z(t)) which trace out the curve we’re considering. We
can describe only a piece of a curve by restricting the values of the parameter we consider.

For instance, the parametric equations
󰀫
x = cos t

y = sin t

give a unit circle. Indeed, for these equations one can check that x2 + y2 does equal 1 (so we are
on the unit circle), and that varying gives the entire circle. (Actually, the entire circle is already
traced out for 0 ≤ t ≤ 2π.) In this case, the parameter t simply describes an angle, and the circle
is traced out counterclockwise starting at (1, 0) when t = 0.

The parametric equations 󰀫
x = sin t

y = cos t
0 ≤ t ≤ π

describe only the right half of the unit circle due to the restriction on t. In this case, the curve is
traced out clockwise starting at (0, 1) when t = 0.

Finally, the parametric equations
󰀫
x = cos t− sin t

y = cos t+ sin t

describe a circle of radius
√
2 centered at the origin. To see this, note that these equations can be

written in vector form as 󰀕
x
y

󰀖
=

󰀕
1/

√
2 −1/

√
2

1/
√
2 1/

√
2

󰀖󰀕√
2 cos t√
2 sin t

󰀖
.

The parametric equations x =
√
2 cos t, y =

√
2 sin t describe the circle of radius 2 centered at the

origin, and multiplying this by the given matrix (which is the matrix of a rotation by π/4) does
not change the shape of the circle. (Note, however, that the starting points at t = 0 for these two
sets of parametric equations of the circle of radius

√
2 are different.)

Lines. Consider the curve with parametric equations
󰀻
󰁁󰀿

󰁁󰀽

x = 1 + t

y = 5 + 2t

z = 3t.

We claim that this is a line in R3. Indeed, we can rewrite this set of equations in vector form as
󰀳

󰁃
x
y
z

󰀴

󰁄 =

󰀳

󰁃
1
5
0

󰀴

󰁄+ t

󰀳

󰁃
1
2
3

󰀴

󰁄 ,
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which shows that this is the line parallel to the one spanned by
󰀓

1
2
3

󰀔
only it is translated by

󰀓
1
5
0

󰀔
.

Taking t = 0 shows that (1, 5, 0) is on this line, and t = 1 gives (2, 7, 3) as another point on
this line. The vector (1, 2, 3) (from now on we write vectors as either rows or columns depending
on which notation is more useful for the task at hand) giving the direction of the line is precisely
the vector from (1, 5, 0) to (2, 7, 3):

end point − start point = (2, 7, 3)− (1, 5, 0) = (1, 2, 3).

So, we can describe this line as the line in R3 passing through (1, 5, 0) and (2, 7, 3), or as the line
through (1, 5, 0) which is parallel to the vector (1, 2, 3).

Important. Given a point (x0, y0, z0) on a line and a vector (a, b, c) parallel to the line, the
equation of the line is given in vector form by

r(t) = b+ ta,

where r = (x, y, z),b = (x0, y0, z0) and a = (a, b, c). Working out the x, y, z-coordinates of this, the
parametric equations for this line are

󰀻
󰁁󰀿

󰁁󰀽

x = x0 + at

y = y0 + bt

z = z0 + ct.

Similar equations hold in 2-dimensions.

Example. We find parametric equations for the line in R2 passing through (3,−1) and perpendic-
ular to the line 󰀫

x = 1 + 5t

y = 2− 2t.

For this we need two things: a point on the line we want (which we are given) and a vector parallel
to the line we want. Now, the line whose equations are given is parallel to the vector (5,−2), so
in order to be perpendicular to this our line should be parallel to (2, 5). Thus the line we want is
given by

r(t) = (3,−1) + (2, 5)t,

or by 󰀫
x = 3 + 2t

y = −1 + 5t

in parametric form.

Lecture 9: Cross Products

Today we spoke about the cross product of vectors, which is a way of combining two vectors to get a
third which has really nice geometric properties. Most importantly, the cross product of two vectors
is always perpendicular to each of those vectors—a fact which will make certain constructions we
look at (both this quarter and next) simpler.

33



Warm-Up. We find the line L parallel to the line L′ given by the parametric equations

󰀻
󰁁󰀿

󰁁󰀽

x = 1 + t

y = 5 + 2t

z = 3t

and passing through the intersection of L′ with the plane 2x+y−z = 4. First, the vector a = (1, 2, 3)
is parallel to L′ and hence to L as well. Second, we need to find the point of intersection of L′

with the given plane, which should come from a point on the line which satisfies the equation of
the plane. Plugging in the given parametric equations into the plane gives:

2(1 + t) + (5 + 2t)− (3t) = 4, so t = −3.

This says that the intersection point we want occurs when t = −3 on the line L′, so at (−2,−1,−9).
Possible parametric equations for L are thus

󰀻
󰁁󰀿

󰁁󰀽

x = −2 + t

y = −1 + 2t

z = −9 + 3t.

Remark. Note that the line L from above is also given by the parametric equations

󰀻
󰁁󰀿

󰁁󰀽

x = −2 + t9

y = −1 + 2t9

z = −9 + 3t9

since as t ranges through all possible values, so does t9. The point is that parametric equations
for lines do not necessarily need to have only t to the first power, as long as the “ta” part of the
equation r(t) = b+ ta still gives all possible multiples of a.

Example. Say we want to find parametric equations for the line L which is perpendicular to both
of the lines 󰀻

󰁁󰀿

󰁁󰀽

x = 1 + 2t

y = 2− t

z = 3 + t

and

󰀻
󰁁󰀿

󰁁󰀽

x = 5− 3t

y = 5− t

z = −2 + 2t

and which passes through their point of intersection. First we find this point of intersection. Say
that it occurs along the first line when t = t1 and along the second when t = t2. Then we must
have

1 + 2t1 = 5− 3t2

2− t1 = 5− t2

3 + t1 = −2 + 2t2.

Solving this system of equations gives t1 = −1 and t2 = 2, so the intersection point is at (−1, 3, 2).
Thus L should pass through (−1, 3, 2).

Now we need a direction vector for L. This vector should be perpendicular to both lines given
above, and hence to their respective direction vectors (2,−1, 1) and (−3,−1, 2) as well. Thus all
we need to do is find a vector perpendicular to both of these. We can do this using linear algebra,
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either by applying Gram-Schmidt to these vectors together with a third linearly independent one,
or by solving the system of equations

2x− y + z = 0

−3x− y + 2z = 0

obtained by setting the dot product of our unknown vector with each of these vectors equal to 0.
Either of these methods will involve some work (especially the Gram-Schmidt method), but luckily
we have a more direct way of finding such a perpendicular vectors using cross products.

Cross products. The cross product of vectors u = (u1, u2, u3) and v = (v1, v2, v3) is the vector
defined by

u× v =

󰀏󰀏󰀏󰀏󰀏󰀏

i j k
u1 u2 u3
v1 v2 v3

󰀏󰀏󰀏󰀏󰀏󰀏
,

where i, j,k denote the standard basis vectors of R3 and we compute this determinant as we normally
would if i, j,k were actually numbers. Cross products have some nice geometric properties:

• u× v is always perpendicular to both u and v

• the direction of u×v is determined by the so-called right-hand rule: if you line up the fingers
of your right hand in the direction of u and curl them towards v, your thumb will point in
the direction of u× v

• as a consequence of the right hand rule, w × v = −v ×w

• 󰀂u× v󰀂 = 󰀂u󰀂 󰀂v󰀂 sin θ where θ is the angle between u and v, and thus 󰀂u× v󰀂 is the area
of the parallelogram with sides u and v

We’ll take a look next time at where these properties come from, and how it is that anyone ever
thought of creating the cross product in the first place.

Important. From now on, anytime you need to find a vector perpendicular to two given vectors,
use the cross product.

Back to Example. So now we have a direct way of finding a vector perpendicular to both (2,−1, 1)
and (−3,−1, 2): their cross product is

(2,−1, 1)× (−3,−1, 2) =

󰀏󰀏󰀏󰀏󰀏󰀏

i j k
2 −1 1
−3 −1 2

󰀏󰀏󰀏󰀏󰀏󰀏
= (−2 + 1)i− (4 + 3)j+ (−2− 3)j = −i− 7j− 5k,

which we can also write as (−1,−7,−5). Note that this is indeed perpendicular to both (2,−1, 1)
and (−3,−1, 2). Finishing off the Example, the line L we’re looking for should thus pass through
(−1, 3, 2) and be parallel to (−1,−7,−5), so it is given by

󰀻
󰁁󰀿

󰁁󰀽

x = −1− t

y = 3− 7t

z = 2− 5t.
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Final example. We find the line passing through (−3, 1, 5) which is perpendicular to the plane
x+ y+ z = 0. To find a direction vector of this line, we thus have to find a vector perpendicular to
this plane. We do this by finding two vectors on the plane, say (1,−1, 0) and (0, 1,−1), and taking
their cross product:

(1,−1, 0)× (0, 1,−1) =

󰀏󰀏󰀏󰀏󰀏󰀏

i j k
1 −1 0
0 1 −1

󰀏󰀏󰀏󰀏󰀏󰀏
= (1, 1, 1).

The line we want is then given by

r(t) = (−3 + t, 1 + t, 5 + t),

where we have written the parametric equations for the line in vector form.
(Note that the entries of the cross product we found are just the coefficients of the variables in

the equation of the plane; this is no accident, and we’ll come back to this next time.)

Lecture 10: Planes

Today we spoke about equations of planes, and using cross products to produce vectors perpendic-
ular to planes. In the calculus we’ll be doing planes will be the analogs of tangent lines, and will
be useful in visualizing what multivariable derivatives mean.

Warm-Up. We find parametric equations for the line perpendicular to the plane x− 3y+5z = 15
and passing through the point where this plane intersects the line with parametric equations x =
1− t, y = 2 + t, z = −2 + 2t. We need a direction vector for the line and a point on the line. The
point comes from the intersection of the plane with the given line, which occurs when

(1− t)− 3(2 + t) + 5(−2 + 2t) = 15, so when t = 5.

Thus the intersection point is (−4, 7, 8).
Now, the direction vector of the line comes from a vector perpendicular to the plane. To find

this we start with three points on the plane, say

(0, 0, 3), (0,−5, 0), and (15, 0, 0)

which come from setting two variables equal to zero in the equation of the plane. Then the vectors

(0,−5, 0)− (0, 0, 3) = (0,−5,−3) and (15, 0, 0)− (0, 0, 3) = (15, 0,−3)

are parallel to the plane, so their cross product is perpendicular to the plane. Hence

(0,−5,−3)× (15, 0,−3) =

󰀏󰀏󰀏󰀏󰀏󰀏

i j k
0 −5 −3
15 0 −3

󰀏󰀏󰀏󰀏󰀏󰀏
= (15,−45, 75)

is a direction vector for the line we want. The perpendicular line thus has parametric equations:

󰀻
󰁁󰀿

󰁁󰀽

x = −4 + 15t

y = 7− 45t

z = 8 + 75t.
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Note that the direction vector is parallel to the vector (1,−3, 5) obtained by taking the coefficients
of x, y, z in the equation of the plane; this is no accident as we’ll soon see.

Where do cross products come from? The formula for the cross product seems pretty mys-
terious and begs the question: how anyone would have ever thought of it in the first place? Let’s
give another definition for the cross product, which makes some of its properties clearer.

Take vectors u,v in R3 and define the linear transformation T from R3 to R by

T (x) = det

󰀳

󰁃
| | |
u v x
| | |

󰀴

󰁄 .

This is linear due to the fact that determinants are linear in each column, as we saw last quarter.
So, being linear, there should be a 1× 3 matrix A satisfying T (x) = Ax; but a 1× 3 matrix is just
the transpose of a (column) vector, so there is a vector b satisfying

T (x) = bTx, which is the same as T (x) = b · x.

This vector b is precisely the cross product u× v! So, the cross product arises as the 1× 3 matrix
representing T and thus satisfying:

det

󰀳

󰁃
| | |
u v x
| | |

󰀴

󰁄 = (u× v) · x.

Now the properties of cross products can be interpreted as follows: taking x = u or x = v gives
zero determinant on the left so the dot product on the right is zero, and hence u×v is perpendicular
to both u and v; the right hand rule is related to the geometric interpretation of the sign of the
determinant in that positive determinant means “orientation-preserving” (i.e. “right-hand rule”-
preserving) and negative determinant means the opposite; and finally the fact that the length of a
cross product gives the area of a parallelogram reflects the interpretation of determinants in terms
of areas and volumes.

Planes. In order to describe a plane we need to know two things: a point (x0, y0, z0) on the plane
a vector n perpendicular to the plane. (We say that n is normal to the plane.) Given these, the
equation of the plane in vector form is:

n · (r− r0) = 0

where r0 = (x0, y0, z0) contains the given point and r = (x, y, z) encodes any other point on the
plane. This equation says the following: for a point (x, y, z) to be on the plane, the vector r − r0
between it and the point (x0, y0, z0) on the plane must itself be on the plane and hence should be
perpendicular to the given normal vector. If n = (a, b, c), working out this dot product gives the
scalar equation of the plane:

a(x− x0) + b(y − y0) + c(z − z0) = 0.

Note that the coefficients of x, y, z indeed give the entries of the normal vector, as we’ve alluded to
earlier.
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Example 1. We find an equation for the plane containing the points (1, 3, 2), (−4, 2, 1), and
(0, 2, 3). To find a normal vector to the plane, we use a cross product: the vectors

(−4, 2, 1)− (1, 3, 2) = (−5,−1,−1) and (0, 2, 3)− (1, 3, 2) = (−1,−1, 1)

are on the plane, so their cross product

(−5,−1,−1)× (−1,−1, 1) = (−2, 6, 4)

is normal to it. Thus with n = (−2, 6, 4) and r0 = (1, 3, 2) we get

(−2, 6, 4) · [(x, y, z)− (1, 3, 2)] = 0

or
−2(x− 1) + 6(y − 3) + 4(z − 2) = 0

as the equation of the plane. After simplifying we can also write this as

−2x+ 6y + 4z = 24.

There is one more way of expressing this, which is in terms of parametric equations for the plane.
These are equations for the x, y, z coordinates of points on the plane in terms of two parameters
s, t. (In general, parametric equations with one parameter describe lines, and those with two
parameters describe surfaces.) These parametric equations come from thinking of the plane as
given by expressions of the form:

r0 + su+ tv

where r0 = (x0, y0, z0) encodes a point on the plane and u,v are vectors parallel to the plane. The
point is that the linear combinations su + tv give a plane through the origin which is parallel to
our plane, and then adding r0 translates this parallel plane onto our plane.

To find u and v we consider the plane parallel to ours but passing through the origin, which is
given by

−2x+ 6y + 4z = 0.

We find vectors spanning this plane; one possibility is u = (−5,−1,−1) and v = (−1,−1, 1). Then
our plane can be expressed as

r0 + su+ tv =

󰀳

󰁃
1
3
2

󰀴

󰁄+ s

󰀳

󰁃
−5
−1
−1

󰀴

󰁄+ t

󰀳

󰁃
−1
−1
1

󰀴

󰁄 .

Combining the right side and taking the equations for the x, y, z coordinates gives

󰀻
󰁁󰀿

󰁁󰀽

x = 1− 5s− t

y = 3− s− t

z = 2− s+ t

as parametric equations for this plane.

Important. The plane containing (x0, y0, z0) and normal to n = (a, b, c) is given by the equation

n · (r− r0) = 0
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where r = (x, y, z) and r0 = (x0, y0, z0), which is the same as the equation

a(x− x0) + b(y − y0) + c(z − z0) = 0.

Given vectors u and v parallel to this plane, parametric equations for the plane are obtained by
taking x, y, z coordinates in the vector sum

r0 + su+ tv

describing an arbitrary point on the plane.

Example 2. We find parametric equations for the line of intersection of the planes

−3x+ 2y − z = 1 and 2x− y + 2z = −8.

Technically we can already do this using linear algebra: view this as a system of two linear equations
and solve for x, y, z using row operations; we will get one free variable, which will play the role of
the parameter we need in our parametric equations. But we can also do this using new material as
follows.

First we need a point on the line of intersection, so a point one both planes simultaneously.
Instead of solving the system given by both planes fully, we can look for an intersection point with
z = 0, so we only need to find x, y satisfying

−3x+ 2y = 1 and 2x− y = −8.

This gives x = −15, y = −22, so (−15,−22, 0) is on the line of intersection.
Second we need a direction vector for this line. Since this line is on the first plane, its direction

vector should be perpendicular to the normal vector (−3, 2,−1) of that first plane, and similarly
the direction vector of the line should also be perpendicular to the normal vector (2,−1, 2) of the
second plane. Thus to get a direction vector for the line of intersection we just need a vector
perpendicular to both (−3, 2,−1) and (2,−1, 2), so their cross product works! We get

(−3, 2,−1)× (2,−1, 2) = (3, 4,−1)

as a direction vector for the line, so the line of intersection has parametric equations

󰀻
󰁁󰀿

󰁁󰀽

x = −15 + 3t

y = −22 + 4t

z = −t.

Lecture 11: Polar/Cylindrical Coordinates

Today we spoke about polar and cylindrical coordinates, which give us a new (and often simpler)
way of describing curves and surfaces in 2 and 3 dimensions.

Warm-Up 1. We first ask if there is a plane parallel to 5x − 3y + 2z = 10 which contains the
line x = t + 4, y = 3t − 2, z = 5 − 2t. If so, the direction vector for this line would have to be
perpendicular to the normal vector of the plane, which is not true in this case: the direction vector
is (1, 3,−2) and the normal vector is (5,−3, 2), and (1, 3,−2) · (5,−3, 2) ∕= 0. So, no such plane
exists.
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Instead let us change the z coordinate on the line to z = 5 + 2t, and ask for a plane parallel
to 5x − 3y + 2z = 10 containing this line instead. (Here the direction vector is perpendicular to
the normal vector, so such a plane does exist.) The plane we want should also have normal vector
(5,−3, 2) if we want it to be parallel to 5x−3y+2 = 10, so we only need a point on this new plane.
Any point on the line we’re looking at will be our plane, so for instance (4,−2, 5) (when t = 0 in
the line) is on the plane we want. Our plane thus has equation

5(x− 4)− 3(y + 2)− 2(z − 5) = 0,

which is the same as 5x− 3y − 2z = 16.

Warm-Up 2. We find the distance between the planes 5x− 3y+2z = 10 and 10x− 6y+4z = 30.
Note that these planes are parallel (since their normal vectors are parallel) so it makes sense to talk
about the distance between them. As a nice picture in the book shows (look it up!), this distance
can be obtained by orthogonally projecting a vector from a point P on the first plane to a point Q
on the second plane onto the normal vector of either plane. Taking P = (2, 0, 0) on the first plane
and Q = (0,−5, 0) on the second, we will project

−−→
PQ = (0,−5, 0)− (2, 0, 0) = (−2,−5, 0).

With normal vector n = (5,−3, 2), we compute:

projn
−−→
PQ =

5

38
(5,−3, 2).

The distance between the planes is then the length of this, which is:

󰀐󰀐󰀐projn
−−→
PQ

󰀐󰀐󰀐 =
5

38

√
38 =

5√
38

.

There are other distance formulas in the book which might be good to look at, but notice that
they all involve orthogonally projecting something onto something else.

Polar coordinates. The polar coordinates (r, θ) of a point (x, y) in R2 are defined as in the
following picture:

So, r is the distance from the point to the origin and θ is the angle you have to move counterclockwise
from the positive x-axis in order face the point. A negative value of r is interpreted as describing
a point in the direction opposite to θ; for instance, θ = π

2 points us in the positive y-direction and
r = −1 then gives the point (0,−1) on the negative y-axis.
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By looking at the appropriate right triangles we get the following relation between polar coor-
dinates (r, θ) and rectangular (or Cartesian) coordinates (x, y):

r2 = x2 + y2, tan θ =
y

x
, x = r cos θ, y = r sin θ.

We’ll see again and again that certain curves and regions in R2 are much simpler to describe in
polar coordinates than in rectangular coordinates.

Example 1. We sketch the curve with polar equation r = sin θ, meaning the curve consisting of
all points in R2 whose polar coordinates satisfy r = sin θ. For instance, when θ = 0 we get r = 0
so the origin (the only point with r value 0) is on this curve; when θ = π

2 we get r = 1 so the point
(0, 1) is on the this curve.

To visualize the entire curve we start with a graph of r in terms of θ:

First we focus on θ between 0 and π
2 , which corresponds to the first quadrant. As we move

counterclockwise in the first quadrant, r increases from 0 to 1, so we get a piece of the curve which
looks like:

The curve is in red, and the green lines indicate the increasing value of r (distance to the origin)
from 0 to 1 as θ moves counterclockwise. Now, for π

2 ≤ θ ≤ π (in the second quadrant) the value
of r should decrease from 1 to 0, so we get:
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Again the green lines in the second quadrant indicate the decreasing value of r from 1 to 0 as θ
moves from the positive y-axis to the negative x-axis. At θ = π, r = 0 we are back at the origin.

Now, notice that for π ≤ θ ≤ 3π
2 the value of r is negative, moving from 0 to −1. These values

of θ occur in the third quadrant, but the negative value of r means that the corresponding points
are actually drawn in the opposite (i.e. first) quadrant. For instance, at θ = 5π

4 we get the point
labeled below:

At θ = 3π
2 we get the point (0, 1) on the positive y-axis again, so for π ≤ θ ≤ 3π

2 we simply trace
out the same piece of the curve we did for 0 ≤ θ ≤ π

2 . For 3π
2 ≤ θ ≤ 2π a similar thing happens

and we trace out the same piece of the curve we did for π
2 ≤ θ ≤ π. Thus the full curve is the red

circle above the x-axis in the previous picture.
Note that we can also see this by finding the Cartesian equation of the curve. Multiplying the

polar equation by r gives
r2 = r sin θ

and converting to rectangular coordinates gives

x2 + y2 = y.

After completing the square, this becomes x2 + (y − 1
2)

2 = 1
4 , which describes a circle of radius 1

2
centered at (0, 12), which is precisely what our picture suggests.
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Example 2. Now we sketch the curve with polar equation r = 1 + 2 sin θ. Again, we start with a
graph of r vs θ to see how r changes as θ increases:

As θ moves from 0 to π
2 , r increases from 1 to 3 so we get:

Then r decreases from 3 back to 1 as θ goes from π
2 to π in the second quadrant:

Now, at some angle between π and 3π
2 , r is zero at which point we’re back at the origin; up until

this angle the value of r decreases from 1 to 0 so we get:
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As θ moves from this angle to 3π
2 , r is negative so we actually get a piece of the curve in the first

quadrant, ending up at (0, 1) when θ = 3π
2 and r = −1:

At some angle between 3π
2 and 2π the value of r is zero again, so we’re at the origin, and up until

this angle we have negative values of r so we get a piece of the curve in the second quadrant; after
this point we’re back in the fourth quadrant with positive values of r increasing from 0 to 1 until
θ hits 2π:

Going beyond θ = 2π simply retraces the same curve.
Multiplying the polar equation of the curve through by r gives r2 = r + 2r sin θ, which in

rectangular coordinates becomes

x2 + y2 =
󰁳

x2 + y2 + 2y, or (x2 + y2 − 2y)2 = x2 + y2,
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and hopefully it is clear that it would be impossible to sketch this curve without magical powers
given only this Cartesian equation.

Cylindrical coordinates. Cylindrical coordinates are 3-dimensional analogs of polar coordinates,
and are defined as in the following picture:

So, r and θ are the polar coordinates of the point in the xy-plane lying below (x, y, z), and z is the
usual z-coordinate which gives height. Note that another way to interpret r is as the distance from
(x, y, z) to the z-axis. As the term cylindrical suggests, these coordinates will be especially useful
for describing surfaces “cylindrical” in shape such as cylinders or cones.

Since r and θ are the same as they were for polar coordinates, we have the same conversions
between rectangular and cylindrical coordinates as we did for polar coordinates.

Example 3. The cylindrical equation r = 1 describes the surface consisting of all points with r
value 1. Since r is distance to the z-axis, this is just a cylinder of radius 1 around the z-axis:

Here is another way to see this. In the xy-plane the polar equation r = 1 describes a circle of
radius 1. Now, in cylindrical coordinates r = 1 places no restriction on z, so taking this circle and
moving it up and down along the z-axis still gives points satisfying the cylindrical equation r = 1.
This traces out the cylinder described earlier, which has Cartesian equation x2 + y2 = 1.
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Example 4. Now we identity the surface with cylindrical equation z = r. At z = 0 we get r = 0,
which describes the origin in R3. At a height z = 1 we get r = 1 which is a circle of radius 1 in the
z = 1 plane. Similarly, at z = 2, r = 2 so we get a circle of radius 2, and so on: as z increases our
surface is traced out by circles of increasing radii, which all together give a cone:

This makes sense since z = r says that the height of a point should be the same as its distance to
the z-axis, which is what happens along this cone.

We can also see this as follows. First focus on what’s happening at θ = π
2 , so on the yz-plane in

the positive y-direction. On this plane, x = 0 so the value of r is the same as y. Thus z = r gives
the line z = y on the yz-plane. Now, the cylindrical equation z = r places no restriction on θ, so
taking this line and swinging it around the z-axis for all values of θ will sweep out the surface we
want, which indeed gives a cone.

For negative values of z we get negative values of r, which, using the same interpretation for
negative r as we had for polar coordinates, still give circles. Thus negative values of z give a cone
opening downward:

This entire surface is called a double cone. It should be made clear from context whether we want
to allow negative values of r or not.

Squaring the cylindrical equation z = r gives z2 = r2, which in rectangular coordinates becomes

z2 = x2 + y2.

This is the Cartesian equation of the double cone; taking square roots gives z =
󰁳

x2 + y2, which
is the top half of the double cone, or z = −

󰁳
x2 + y2, which is the bottom half.
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Lecture 12: Spherical Coordinates

Today we spoke about spherical coordinates, yet another new type of coordinate system. As with
cylindrical coordinates, spherical coordinates give us a simpler way of describing certain surfaces.

Warm-Up 1. We sketch the curve with polar equation r = 1 + cos 2θ. First, r vs θ looks like

As θ moves from 0 to π
2 counterclockwise, r decreases from 1 down to 0 so we start at (1, 0) and

moves towards the origin:

Now, for θ between π
2 and π the value of r is positive, going from 0 back to 1; this gives a piece of

the curve in the second quadrant which looks just like the piece in the first quadrant:

For θ between π and 3π
2 , r is positive and decreasing from 1 to 0 giving a piece in the third quadrant,

and finally r goes from 0 back to 1 as θ moves from 3π
2 to 2π, giving a piece of the curve in the

fourth quadrant:
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Using the trig identity cos 2θ = cos2 θ − sin2 θ, we can write the polar equation of the curve as

r = 1 + cos2 θ − sin2 θ.

In rectangular coordinates this becomes

󰁳
x2 + y2 = 1 +

󰀓x
r

󰀔2
−

󰀓y
r

󰀔2
= 1 +

x2 − y2

x2 + y2
,

with the point being that this does us no good in helping to visualize the curve.
Viewed as a cylindrical equation in R3, r = 1+cos 2θ describes the surface traced out by taking

the curve above and sliding it up and down along the z-axis, giving two cylinders which meet along
the z-axis.

Warm-Up 2. Now we sketch the intersection of the surface z = sin θ with the surface r = 1, which
is the set of points whose cylindrical coordinates satisfy both equations simultaneously. We’ve seen
before that the second surface is a cylinder, so our curve will lie on this cylinder.

At θ = 0 (positive x-axis direction) we have z = 0 (on the xy-plane) and r = 1, so we are at
(1, 0, 0); at θ = π

2 (positive y-axis direction) we have z = 1 and r = 1, placing us at (0, 1, 1). As θ
moves from 0 to π

2 from the positive x-axis towards the positive y-axis, we get a piece of the curve
moving upward and counterclockwise from (1, 0, 0) to (0, 1, 1):

Note that every point along this curve has distance r = 1 to the z-axis, so this curve lies directly
above the unit circle in the xy-plane, which is the dotted green curve in this picture.

As θ moves from π
2 to π in the direction of positive y-axis towards the negative x-axis, our curve

moves from a height of z = 1 back down to a height of z = 0, so we get:
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which again lies directly above the unit circle in the xy-plane. A similar thing happens for θ moving
from π to 2π, only that we have negative values of z = sin θ, meaning that our curve moves below
the xy-plane:

Overall, the intersection curve we’re looking at looks like a tilted circle (actually more like a tilted
ellipse) with the right half above the xy-plane and the left half below.

Now we consider the points satisfying

0 ≤ z ≤ sin θ and r = 1,

so we longer require that z be exactly equal to sin θ, only that it be smaller than that and nonneg-
ative. This rules out anything below the xy-plane, so let’s forget the left half of the curve above.
Now, we are looking at points (still distance r = 1 to the z-axis) which can start on the xy-plane
at z = 0 and move up to the curve z = sin θ; this thus includes all points below this curve and
above the xy-plane, so we get the following surface shaded in red:
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which is on the cylinder r = 1. Being able to describe surfaces using such inequalities will be crucial
when we talk about integration next quarter.

Spherical coordinates. The spherical coordinates of a point (x, y, z) are defined as in the following
picture:

So, ρ (pronounced “ro”) is the distance to the origin, φ (pronounced “fee” or “fie”) is the angle
which you have to move down from the positive z-axis in order to reach the point, and θ is the
same θ as in cylindrical coordinates. By considering various right triangles in this picture, we get
the following conversions between spherical and rectangular coordinates:

ρ2 = x2 + y2 + z2, x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ.

In particular, note that r in cylindrical coordinates (distance to z-axis) is ρ sinφ in spherical coordi-
nates, which explains the equations for x and y in spherical coordinates: they are simply x = r cos θ
and y = r sin θ with r = ρ sinφ. A negative value of ρ is interpreted in a similar way to negative
values of r in polar or cylindrical coordinates.

As the term “spherical” suggests, spherical coordinates are useful for describing surfaces and
regions related to spheres (and cones). In particular, the surface ρ = 1 is simply the unit sphere.

Example 1. The set of all points whose spherical coordinates satisfy φ = π
2 is the xy-plane.

Indeed, we move down π
2 from the positive z-axis, putting us on the xy-plane, and swing around

for all values of θ since φ = π
2 places no restriction on θ.

To surface φ = π
4 (assuming ρ ≥ 0, which we will often do) is a cone opening upward:
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Indeed, in the yz-plane swinging down π
4 from the positive z-axis puts us on the line y = z, and

then we swing this line around for all values of θ. Similarly, φ = 3π
4 describes a cone opening

downward since an angle 3π
4 from the positive z-axis places us below the xy-plane. The equation

φ = π describes the negative z-axis.
What about the equation φ = 5π

4 ? This would move us beyond the negative z-axis and in fact
will give the same cone as φ = 3π

4 . This illustrates something important: any point with an angle
φ > π can be described in another way by an angle φ < π by changing the value of θ. For instance,
ρ = 1, θ = π

2 ,φ = 3π
2 would put us at (0,−1, 0), but so would ρ = 1, θ = 3π

2 ,φ = π
2 . Thus, we will

usually always restrict values of φ in spherical coordinates to ones between 0 and π.
All together, the above equations thus describe the following:

Example 2. We determine the surface with spherical equation ρ = sinφ. Let us first focus on the
piece of this surface in the yz-plane. As φ moves from 0 in the direction of the positive z-axis to π

2
in the direction of the positive y-axis, ρ increases from 0 (at the origin) to 1:
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The green lines indicate the increasing radius from 0 to 1 as φ swings down. For 0 ≤ φ ≤ π we get
the bottom half with ρ decreasing from 1 to 0:

We’ve drawn this so far as a circle, and we can indeed verify that this makes sense: the spherical
equation ρ = sinφ becomes ρ2 = ρ sinφ after multiplying through by ρ, which in rectangular
coordinates is x2 + y2 + z2 =

󰁳
x2 + y2; on the yz-plane x = 0 so this becomes y2 + z2 = y, which

is a circle of radius 1
2 centered at (0, 12 , 0) after completing the square.

Now, to get the entire surface from this, note that ρ = sinφ places no restriction on θ, so taking
the circle in the yz-plane and swinging it around for all values of θ gives our surface, which is a
pinched torus:
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This will look like the surface of a donut (i.e. a “torus”) only without a complete hole in the middle
but rather a “pinching” along the z-axis towards the origin.

Lecture 13: Multivariable Functions

Today we started talking about functions of several variables, which will be our main object of
study the rest of this quarter and next. For now, the main goal is to develop a way of visualizing
the graphs of such functions, since this will make it geometrically clear what derivatives in this
multivariable setting mean.

Warm-Up. We describe the region above the surface 3z2 = x2 + y2 and below the surface
x2+y2+z2+4 using cylindrical and spherical coordinates. First we should have an idea as to what
this region looks like. In cylindrical coordinates, 3z2 = x2+y2 becomes 3z2 = r2, or

√
3z = r. This

is a cone around the z-axis; the difference between this cone and the cone z = r we saw last time
is the angle φ which it makes with the positive z-axis. In this case, φ (note that r is “opposite” φ
and z “adjacent”) satisfies

tanφ =
r

z
=

√
3z

z
=

√
3,

so φ = π
3 . Thus this cone is wider than the cone z = r, which makes an angle π

4 with the z-axis.
Now, x2 + y2 + z2 = 4 describes a sphere of radius 2, so the region we want should be above the
cone and below this sphere, so it looks like:

(Think of this as an ice cream cone with a scoop of ice cream on top!)
First let’s describe this region in spherical coordinates. To get all points in this region φ should

move from 0 along the positive z-axis down to π
3 along the cone, so we need

0 ≤ φ ≤ π

3
.

This region includes the origin, so we need ρ to start at 0; then moving at in any direction we need
ρ to increase all the way until we hit the sphere at ρ = 2, giving

0 ≤ ρ ≤ 2.

Finally, to get this entire region we need to consider all possible values of θ, so

0 ≤ θ ≤ 2π.

53



All together then, the given region in spherical coordinates is

0 ≤ φ ≤ π

3
, 0 ≤ ρ ≤ 2, 0 ≤ θ ≤ 2π.

Now we use cylindrical coordinates. Note that the equation of the sphere in cylindrical coordi-
nates is

r2 + z2 = 4.

Since the cylindrical coordinate θ is the same as the one in spherical coordinates, we again need
0 ≤ θ ≤ 2π. Now, the smallest which r has among point in this region is 0 for those points on
the z-axis, so we need 0 ≤ r. To determine an upper bound on r we must determine how far out
horizontally points in this region can move away from the z-axis, but notice that this depends on
where in the region we actually are: for certain points (those in the “cone” part of the ice cream
cone) it is the cone which is the farthest r can go out to but for other points (those in the “scoop”
part) it is the sphere:

Thus the upper bound on r is different for the “cone” piece and the “scoop” piece, so we need
different inequalities for each. To be precise, the transition from cone to sphere occurs at z = 1,
which we find by plugging the equation of the cone 3z2 = r2 into the equation of the sphere
r2 + z2 = 4 and solving for z. Thus for 0 ≤ z ≤ 1, the value of r goes out to the cone r =

√
3z,

while for 1 ≤ z ≤ 2, the value of r goes out to the sphere r =
√
4− z2. All together then, the

region we’re considering is described in cylindrical coordinates by

󰀻
󰁁󰀿

󰁁󰀽

0 ≤ θ ≤ 2π

0 ≤ z ≤ 1

0 ≤ r ≤
√
3z

and

󰀻
󰁁󰀿

󰁁󰀽

0 ≤ θ ≤ 2π

1 ≤ z ≤ 2

0 ≤ r ≤
√
4− z2.

As a consequence, this region is simpler to describe in cylindrical coordinates.

Functions of several variables. We consider functions f : Rn → Rm as we did in linear algebra,
only now there is no requirement that these be linear transformations. We will mainly be interested
in functions R2 → R and R3 → R, which are of two and three variables respectively. But, we’ve
actually already encountered functions of the form

R → R2, R → R3, R2 → R3
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previously; indeed, such functions are precisely what we use when describing curves and planes
using parametric equations.

For instance, consider the function γ : R → R3 defined by

γ(t) = (cos t, t, sin t).

The image of this function (the collection of all point you get as outputs) is the curve with para-
metric equations x = cos t, y = t, z = sin t. To see what this looks like, focus first on the x and
z-coordinates, which trace out a unit circle in the z and z directions. Then, the value of y in-
creases as this circle is being traced out for increasing t, so as we move around the circle in the
x, z-directions at the same time we move to the right along the positive y-axis; this gives a spiral:

better known as a helix.
For another example, take the function γ : R → R3 defined by

γ(t) = (t cos t, t, t sin t),

whose image is the curve with parametric equations x = t cos t, y = t, z = t sin t. This curve is
similar to the one above, only that as we move in a circular direction in terms of x and z the
“radius” should get larger because of the coefficient t in the equations for x and z. Thus we get
another spiral-shaped curve, only getting wider as we move along the positive y-axis:

For a function R2 → R3, we need something of the form

(s, t) 󰀁→ (x(s, t), y(s, t), z(s, t))
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where x, y, z coordinates all depend on two input parameters s and t, which are precisely the types
of things we saw when looking at parametric equations for planes. So, the upshot is that parametric
equations already give us examples of more general functions than just ones from R to R.

Level curves. Focusing now on functions f : R2 → R of two variables, we wish to be able to
visualize what their graphs look like since this is what will geometric meaning to the calculus we
will be doing. The graph of f is the surface of points (x, y, z) in R3 whose z-coordinate is f(x, y),
so it is the surface with equation z = f(x, y). To visualize this, we consider level curves, which
are the curves obtained when holding z = k fixed at some value. Geometrically, the level curve at
z = k is the intersection of the graph of f with the horizontal plane z = k at height k.

For instance, consider the function f(x, y) = 6x − 3y with graph z = 6x − 3y. This should be
the equation of a plane. Some level curves of this are:

6x− 3y = 0, or y = 2x at z = 0

6x− 3y = 1, or y = 2x− 1

3
at z = 1

6x− 3y = 2, or y = 2x− 2

3
at z = 2

6x− 3y = −1, or y = 2x+
1

3
at z = −1.

These are all lines, and indeed the general level curve at z = k is the lien k = 6x − 3y. We draw
these level curves on the xy-plane:

To visualize the graph of f , imagine these as lines occurring at the labeled heights: we start on
the xy-plane with 6x− 3y = 0, then as we move up for positive values of z we get the lines drawn
with negative y-intercept below, and as we move down for negative z we get lines with positive
y-intercepts. Moving the line at z = 0 up and down in this manner traces out the graph of f , which
is a plane as claimed.

Important. The level curves of a function f : R2 → R are the intersections of the graph of f with
horizontal planes at various heights. Visualizing these curves as moving up or down depending on
the z value give a way of visualizing the graph of f .

More examples. Now we sketch the function f(x, y) = x2 + y2. The level curve at z = 0 is
x2 + y2 = 0, which describes only the origin. For positive z = k, the level curves are circles
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x2+ y2 = k of increasing radii
√
k as z = k increases. Finally, there are no level curves for negative

z = k since x2+y2 can never be negative, meaning that the graph of f is never below the xy-plane.
These level curves thus look like:

To visualize the graph, imagine starting at the origin and then tracing out circles of increasing radii
as you move up:

This surface is a paraboloid, which is a 3-dimensional analog of a parabola.
Compare this with the graph of the function g(x, y) =

󰁳
x2 + y2, whose level curves for positive

z = k are also circles:
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The green curves are the level curves of g while the red ones are the level curves of f . The difference
is that here, the level curve at z = k is a circle of radius k, whereas in the paraboloid it was a circle
of radius

√
k. This has the consequence that in this case increasing the radius by 1 requires an

increase in height of 1 as well, whereas before increasing the radius by 1 caused a larger change in
height. So, we get a surface overall that does not slope up as steeply as the paraboloid, and indeed
has in a sense “constant slope”; this gives a cone:

The point is that it is the shape of the level curves together with the height they occur at that
contribute to seeing what the graph looks like.

One final thing to note: the cone as a “sharp” point at the origin, whereas the paraboloid is
“smooth” at the origin. This is reflected by the fact, which we will see later, that f(x, y) = x2+ y2

is differentiable at the origin but g(x, y) =
󰁳

x2 + y2 is not.

Lecture 14: Quadric Surfaces

Today we continued talking about visualizing surfaces in 3-dimensions, and looked at some examples
of quadric surfaces. These are not the graphs of functions, but the same ideas we used to visualize
graphs works just as well.

Warm-Up 1. We describe the graphs of the functions f(x, y) = xy and g(x, y) = x
y using level

curves. The level curves of f are of the form

xy = k,

which are hyperbolas for nonzero k and the x and y-axis for k = 0. For positive z = k, we get
hyperbolas in the first and third quadrants moving further away from the origin as k increases,
while for negative z = k we get hyperbolas in the second and fourth quadrants again moving further
away from the origin as k decreases:
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So, intersecting the graph of f (which has equation z = xy) with the xy-plane gives the two axes,
and as we move up or down we get hyperbolas (oriented differently) which are moving further away
from the origin; this sweeps out a hyperbolic paraboloid, which looks like the surface of a saddle:

Note that indeed, intersecting with horizontal planes above the xy-plane give hyperbolas in one
direction, and intersecting it with planes below the xy-plane give hyperbolas in another direction.

Now, the level curves of g have equations

x

y
= k.

(Note that y can’t be zero, so the graph of g never crosses the xz-plane.) These level curves are all
lines x = yk of varying slope:
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At z = k = 0 we have the y-axis, and as z = k increases we get lines of smaller and smaller slope
which approach (but never reach since y can’t be zero) the x-axis. For negative z = k we also get
lines which approach the x-axis, but to make the graph simpler to visualize only the level curves for
z = k ≥ 0 are drawn above. So what does the graph of g with equation z = x

y look like? Starting
at z = 0 we have the y-axis, and then as z increases this line swings clockwise towards the x-axis,
tracing out a kind of “spiraled” surface which tilts more and more steeply as it moves clockwise:

A similar picture works for negative values of z.

Warm-Up 2. Now we describe the level surfaces of h(x, y, z) = x2 + y2 + z2, which are the
analogs of level curves for functions of three variables. Since h is a three variable function, to fully
visualize its graph w = x2 + y2 + z2 we would need to work in 4-dimensional space, with one axis
for each input variable and a fourth for the output variable. Of course, we cannot do this in our
3-dimensional world, but analogously to using level curves to visualize the graph of a two-variable
function, level surfaces give a way to “visualize” the graph of h.

At w = 0 we get 0 = x2 + y2 + z2, which only the origin satisfies. There are no level surfaces
for negative values of w, and for positive w = k we get spheres:

k = x2 + y2 + z2

of increasing radii:

Recall that for level curves we visualized the graph by imaging the curves moving up or down as z
changed—a similar idea applies here: the graph of h is “traced out” by these spheres of increasing
radii. Again, this does not give us a complete picture of the graph of h, but it is enough for our
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purposes. In particular, we can tell whether h is increasing or decreasing based on the size of the
spheres: h increases in the direction of larger spheres and decreases in the direction of smaller
spheres.

Quadric surfaces. Now we consider more general surfaces which are not necessarily the graphs
of functions. In particular, we look at quadric surfaces, which are the analogs of “conic sections”
in 3-dimensions; essentially, a quadric surface is one whose equation invovles variables squared. To
visualze these, we can look at intersections of the surface with planes z = k, which we call sections
of the surface. (We don’t call these level curves since that term is usually reserved for graphs of
functions.)

But the point is that we can do the same with the other variables: we can look at intersections
of the surface with vertical planes x = k or y = k. By looking at all these various sections from
different directions, we can piece together what the surface must look like.

The book list all types of quadric surfaces—ellipsoides, paraboloids, cones, hyperboloids, and
hyperbolic paraboloids—at the end of Section 2.1 together with the equations which give rise to
them. To get similar surfaces only centered around the x or y-axes (as opposed to the z-axis which
is used in the book) we just have to exchange the roles of x, y, z in the equations. I would suggest
that it’d be nice to be able to just look at an equation and have a sense for what the corresponding
surface looks like, but that memorizing all types of quadric surfaces is probably not necessary; more
important is that you can use sections to reconstruct what the surface looks like by hand.

Important. The sections of a surface at planes x = k, y = k, or z = k are the intersections of the
surface with these planes. By imaging how these intersections change as x, y, z increase of decrease
we can see how the surface is being traced out.

Example 1. We sketch the quadric surface x2 + y2 − z2 = 1. First we consider sections at planes
z = k, which are given by the curves

x2 + y2 − k2 = 1, or x2 + y2 = 1 + k2.

These curves are all circles since the right side is always positive. The smallest circle of radius 1
occurs on the xy-plane at k = 0. Then, as z = k increases or decreases we get circles of larger and
larger radii:

This is already enough to determine what the entire surface looks like: take the unit circle on the
xy-plane, and as you move up make it larger, and as you move down make it larger. We get a
tubular type of surface which is thinnest in the middle, called a hyperboloid of one sheet :
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For good measure, let’s determine the sections at x = k as well. Here we get curves in the
yz-plane given by

k2 + y2 − z2 = 1, or y2 − z2 = 1− k2.

These are (almost all) hyperbolas, changing orientation depending on k. Indeed, for −1 < k < 1
the right side is positive so we have hyperbolas crossing the y-axis (since z can be zero), while for
k < −1 or k > 1 the right side is negative, so we get hyperbolas crossing the z-axis (since y can be
zero). The only exceptions occur at k = ±1, where we get y2 − z2 = 0, or y = ±z:

The point is that you can see these sections on the 3-dimensional hyperboloid itself; for instance,
intersecting the hyperboloid with the plane x = 2 gives:

which is a hyperbola in the z-direction, just as the section at x = 2 in the yz-plane drawing above
suggested. You can see visually that intersecting the hyperboloid with vertical planes at x = 1 or
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x = 0 results in something different, which accounts for the difference in the sections we found at
these values.

Example 2. Now we sketch the quadric surface −x2 + y2 − z2 = 1. The sections at z = k have
equations

−x2 + y2 − k2 = 1, or − x2 + y2 = 1 + k2.

The right side is always positive, so these are all hyperbolas crossing the y-axis:

Using these alone it might be kind of tough to see what the surface looks like, so let’s look at
sections at y = k as well. These have equations

−x2 + k2 − z2 = 1, or x2 + z2 = k2 − 1.

For k = ±1 we just get the origin, while for k > 1 or k < −1 we get circles:

Note that for −1 < k < 1, k2 − 1 < 0 so there are no points satisfying x2 + z2 = k2 − 1, meaning
that no piece of our surface lies between y = −1 and y = 1. Thus, starting with a point at y = 1
our surface is traced out by larger and larger circles as we move to the right, and starting with a
point at y = −1 by larger and larger circles as we move to the left; this gives a hyperboloid of two
sheets
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As expected, there is no piece of this hyperboloid in the region where −1 < y < 1.
Note that now that we have this picture, the sections at z = k we found earler make sense since

intersecting this two-sheeted hyperboloid with horizontal planes always gives hyperbolas:

Example 3. Returning to the surface z = xy we had in the first Warm-Up, we have another way
of seeing what this looks like. The point is that the right-hand side is actually a quadratic form in
terms of x and y, so by diagonalizing this form we can find a simpler equation for this surface with
respect to some rotated axes. The quadratic form q(x, y) = xy has matrix

󰀕
0 1/2

1/2 0

󰀖
.

After orthogonally diagonalizing and taking coordinates with respect to an orthonormal eigenbasis,
this quadratic form becomes q(x, y) = 1

2c
2
1 − 1

2c
2
2, so our surface becomes

z =
1

2
c21 −

1

2
c22.

This equation looks similar to the quadric surface z = x2 − y2, which as the book shows is a
hyperbolic paraboloid (i.e. saddle). So, our surface looks like this (as we saw in the Warm-Up),
only with the x and y-axes (but not the z-axis!) rotated by some amount.

Lecture 15: Limits

Today we spoke about limits of multivariable functions. The intuitive idea is similar to what you
would have seen before for single variable functions, with the new twist being that you can approach
a point from multiple directions.
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Warm-Up 1. We describe the surface given by the equation

6x2 + 2y2 + 3z2 + 4xz = 1.

The left-hand side is a quadratic form with matrix

󰀳

󰁃
6 0 2
0 2 0
2 0 3

󰀴

󰁄 ,

which has eigenvalues 2, 2, 7. Taking coordinates c1, c2, c3 relative to an orthonormal eigenbasis,
the equation for our surface becomes

2c21 + 2c22 + 7c23 = 1.

This is an ellipsoid with respect to the c1, c2, c3-axes, so a rotated version of a usual ellipsoid.

Warm-Up 2. Now we describe the surface given by

z = −x2 + 2x− 2y2 + 8y − 8.

First we complete squares on the right-hand side:

z = −(x2 − 2x)− 2(y2 − 4y)− 8

= −(x− 1)2 + 1− 2(y − 2)2 + 8− 8

= −(x− 1)2 − 2(y − 2)2 + 1.

Compare this with the surface z = −x2 − 2y2 + 1, which is a paraboloid opening downward with
highest point at (0, 0, 1). Our surface is a translation of this, so a paraboloid opening downward
with highest point at (1, 2, 1).

Limits. Suppose that f is a function of two variables. Intuitively, the limit of f as (x, y) approaches
(a, b), denoted lim(x,y)→(a,b) f(x, y), is the value (if any) which the height z = f(x, y) approaches
on the graph of f as we consider points (x, y) getting closer to (a, b). The precise definition is in
terms of so-called “󰂃’s and δ’s”, and is left for a course in real analysis. For us the intuitive idea
behind limits will be enough. Limits of function with more variables have a similar interpretation.

Example 1. Consider the function f(x, y) = x2y + exy. This is continuous (intuitively, its graph
has no “jumps”) since it is made up by multiplying and adding continuous things. Thus the limit
of f as we approach a point is simply the value of f at that points; for instance

lim
(x,y)→(1,2)

(x2y + exy) = 12 · 2 + e1·2 = 2 + e2.

This property, that the limit is just the value of the function at the point we’re approaching, is
one way of defining what it means for a function to be continuous:

A function f of two variables is continuous at (a, b) if lim(x,y)→(a,b) f(x, y) = f(a, b).
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So, for continuous functions, limits are easy to compute. An analogous definition holds for functions
of any number of variables.

Example 2. Now we consider

lim
(x,y)→(0,0)

x+ y

2x+ y
.

This limit does not actually exist, and the key to seeing why lies in the fact that in order for a
limit to exist, it must exist and be the same no matter how we choose to approach the point we’re
approaching. In this case, note that approaching (0, 0) along the x-axis or y-axis gives different
answers:

along y = 0 we have: lim
(x,0)→(0,0)

x+ 0

2x+ 0
= lim

(x,0)→(0,0)

1

2
=

1

2

along x = 0 we have: lim
(0,y)→(0,0)

0 + y

0 + y
= lim

(0,y)→(0,0)
1 = 1.

Since approaching (0, 0) in different ways can give different values, the limit in question does not
exist.

Important. In order for lim(x,y)→(a,b) f(x, y) to exist, we should obtain the same value no matter
which curve we choose to approach (a, b) along. Thus, if two different curves give different values
for the limit, the limit does not exist.

Example 3. Now we look at

lim
(x,y)→(0,0)

xy

x2 + y2
.

In this case, approaching along the x and y-axes gives the same value:

along y = 0: lim
(x,0)→(0,0)

0

x2
= 0

along x = 0: lim
(0,y)→(0,0)

0

y2
= 0.

Of course, this is not enough to say that the limit in question exists, since there are many other
possible ways in which we can approach (0, 0). In particular, along y = x we have:

lim
(x,x)→(0,0)

x2

x2 + x2
=

1

2
.

Thus again, since approaching (0, 0) along different curves can different values for the the limit, the
overall limit does not exist.

Example 4. Finally let’s look at

lim
(x,y)→(0,0)

x4y4

(x2 + y4)3
.

Approaching the origin along the x or y-axis gives the value 0, and indeed approaching along any
line y = mx also gives 0;

lim
(x,mx)→(0,0)

mx8

(x2 +m4x4)3
= lim

(x,mx)→(0,0)

mx2

(1 +m4x2)3
=

0

1
= 0,

66



where in the second step we factored x6 out of the denominator.
But the point is that we don’t necessarily have to approach (0, 0) along lines. Approaching

along x = y2 (which does pass through the origin) gives:

lim
(y2,y)→(0,0)

y12

(y4 + y4)3
= lim

(y2,y)→(0,0)

y12

8y12
=

1

8
.

Thus again the limit in question does not exist. If you look at the graph of this function on a
computer you can see the limiting behavior changing depending on how you approach the origin;
here is a picture giving the rough idea:

Limits in other coordinates. Limits can also be computed by switching to either polar co-
ordinates in the two-variable case or cylindrical/spherical coordinates in the three-variable case.
The only thing to keep in mind is that we have to describe the point being approached in new
coordinates when describing the resulting limti.

Example 5. Consider

lim
(x,y)→(0,0)

x+ y󰁳
x2 + y2

.

The form of the denominator suggests that converting to polar coordinates might be useful. In
polar coordinates, the given function becomes

x+ y󰁳
x2 + y2

=
r cos θ + r sin θ

r
= cos θ + sin θ,

so our limit becomes

lim
(x,y)→(0,0)

x+ y󰁳
x2 + y2

= lim
(r,θ)→(0,θ0)

(cos θ + sin θ),

where we approach (0, θ0) since the origin has r = 0 but any possible value of θ. However, now
in this form we see that the limit does not exist, since the value depends on which θ-direction
we choose to approach the origin in: along θ0 = 0 gives cos 0 + sin 0 = 1 but along θ0 = π

2 gives
cos π

2 + sinπ2 = 1.
Instead if we had

lim
(x,y)→(0,0)

x2 + y2󰁳
x2 + y2

,

then in polar coordinates this would become

lim
(r,θ)→(0,θ0)

r2(cos θ + sin θ)

r
= lim

(r,θ)→(0,θ0)
r(cos θ + sin θ).
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In this case, the specific way in which we choose to approach the origin does not matter since the
r in front forces the entire expression to go to 0 as r → 0. Thus the limit in question exists and
equals 0.

Example 6. The limit

lim
(x,y,z)→(0,0,0)

xz

x2 + y2 + z2

does not exist. In spherical coordinates this becomes

lim
(ρ,φ,θ)→(0,φ0,θ0)

ρ sinφ cos θρ cosφ

ρ2
,

where again φ and θ can approach any fixed values φ0 and θ0 since ρ approaching 0 guarantees
that we approach the origin. This simplifies to

lim
(ρ,φ,θ)→(0,φ0,θ0)

sinφ cos θ cosφ,

which does not exist since the value depends on exactly what φ0 and θ0 we use.

Lecture 16: Partial Derivatives

Today we starting talking about partial derivatives of multivariable functions. These are relatively
straightforward to compute using the differentiation techniques we all know and love, and have a
nice geometric interpretation as well.

Warm-Up 1. We want to know whether the function f defined by

f(x, y) =

󰀫
x ln y
y−x−1 if (x, y) is not on y = x+ 1

0 otherwise

is continuous at (0, 1). Recall that to be continuous at a point means that the limit as you approach
that point should be the value of the function there, so we want to know whether

lim
(x,y)→(0,1)

f(x, y) = f(0, 1) = 0.

However, this limit does not exist. Indeed, approaching (0, 1) along the y-axis gives:

lim
(0,y)→(0,1)

f(0, y) = lim
(0,y)→(0,1)

0

y − 1
= 0

where we use the fact that point on the y-axis are not on y = x+ 1 in order to say that f(0, y) =
0 ln y
y−0−1 for these points. On the other hand, approaching along the curve y = ex (which indeed
passes through (0, 1) gives:

lim
(x,ex)→(0,1)

x ln ex

ex − x− 1
= lim

(x,ex)→(0,1)

x2

ex − x− 1
.

After substituting y = ex we are left with a single-variable limit, so any technique we know for such
limits applies. In particular, since the numerator and denominator here both go to 0 as x → 0,
L’Hopital’s rule says that:

lim
x→0

x2

ex − x− 1
= lim

x→0

2x

ex − 1
.
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The numerator and denominator here still go to 0 as x → 0 so applying L’Hopital’s rule once more
gives:

lim
x→0

2x

ex − 1
= lim

x→0

2

ex
= 2.

Since approaching (0, 1) along y = ex gave a limit value of 2 but approaching along the y-axis
gave a value of 0, the limit in question does not exist. Hence f is not continuous at (0, 1).

Warm-Up 2. We determine the value of c which makes

f(x, y, z) =

󰀫
x4−y4

x2+y2+z2
if (x, y, z) ∕= (0, 0, 0)

c if (x, y, z) = (0, 0, 0)

continuous at the origin. This value should be

c = f(0, 0, 0) = lim
(x,y,z)→(0,0,0)

f(x, y, z).

To compute this limit, we switch to spherical coordinates:

lim
(x,y,z)→(0,0,0)

f(x, y, z) = lim
(ρ,φ,θ)→(0,φ0,θ0)

ρ4 sin4 φ(cos4 θ − sin4 θ)

ρ2

= lim
(ρ,φ,θ)→(0,φ0,θ0)

ρ2 sin4 φ(cos4 θ − sin4 θ)

= 0.

Note that this is zero since the ρ2 terms causes the entire expression to go to 0 regardless of what’s
happening to φ and θ. Thus c = 0 will make f continuous at (0, 0, 0).

Partial derivatives. Given a function of two variables f , the partial derivative of f with respect
to x is computed by thinking of the variable y as a constant and differentiating with respect to x
as normal. Notations for the partial derivative of f with respect to x are:

∂f

∂x
or fx.

For instance, if f(x, y) = x2y + ex sinxy, then

∂f

∂x
= 2xy + ex sinxy + yex cosxy.

Similarly, the partial derivative of f with respect to y (denoted ∂f
∂y or fy) is computed by thinking

of x as constant and differentiating with respect to y as normal. For the function f(x, y) =
x2y + ex sinxy, we have

∂f

∂y
= x2 + xex cosxy.

We can evaluate either of these partial derivatives at a point (a, b), which we denote using one of

∂f

∂x
(a, b), fx(a, b),

∂f

∂y
(a, b), fy(a, b).

Geometric interpretation. Recalling the definition of a single-variable derivative as a limit,
partial derivatives are concretely defined by:

∂f

∂x
(a, b) = lim

x→a

f(x, b)− f(a, b)

x− a
and

∂f

∂y
(a, b) = lim

y→b

f(a, y)− f(a, b)

y − b
.
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Note that in the first expression we hold y constant at y = b and in the second we hold x constant
at x = a, which is why the method we described earlier for computing partial derivatives (thinking
of one variable as constant) works.

But now, recall that these limit definitions in the single-variable case show that derivatives
are certain slopes, and indeed the same is true here: fx(a, b) is the “slope” (or rate of change) of
z = f(x, y) in the x-direction at (a, b), and fy(a, b) is the “slope” (or rate of change) of z = f(x, y)
in the y-direction. To make this clear, when holding y = b constant and varying the value of x we
trace out a curve on the graph of f in the x-direction passing through (a, b, f(a, b)), and fx(a, b) is
the slope of this curve; a similar explanation works for fy(a, b):

Here, the green and blue lines through (a, b) in the xy-plane indicate the direction you get when
holding one variable fixed and changing the other, and the green and blue curves above the xy-plane
are the corresponding curves traced out on the graph of f .

Example. Let f(x, y) = x2 + y2. Then fx = 2x and fy = 2y, so

fx(0, 1) = 0 and fy(0, 1) = 2.

This makes sense geometrically: the graph of f is a paraboloid and the point (0, 1, 1) is on the
right edge of it; moving a bit either way in the x-direction at this point traces out a parabola (in
green below) and moving a bit either way in the y-direction also traces out a piece of a parabola
(in blue):

The difference is that (0, 1, 1) is at the minimum of the parabola in the x-direction but the parabola
in the y-direction is increasing through (0, 1, 1), so fx(0, 1) should be zero and fy(0, 1) should be
positive.
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Important. Partial derivatives gives slopes or rates of change in the direction of one of the
variables. To compute partial derivatives, think of the other variables as constant and differentiate
as you normally would.

Tangent planes. With partial derivatives at our disposal we can now compute tangent lines.
The tangent line in the x-direction to the graph of f(x, y) at (a, b) should only come out in the
x-direction, so should have direction vector with y-component equal to 0, say (x0, 0, z0). The slope
z0
x0

of this tangent line should be fx(a, b), so we get that

(1, 0, fx(a, b))

is a possible direction vector for the tangent line in the x-direction. Thus this tangent line is

r(t) = (a, b, f(a, b)) + t(1, 0, fx(a, b)).

Similarly, the tangent line in the y-direction has

(0, 1, fy(a, b))

as a possible direction vector, so the tangent line in the y-direction is

r(t) = (a, b, f(a, b)) + t(0, 1, fy(a, b)).

Now, these two tangent lines should lie on the tangent plane to the graph of f at (a, b), so the
cross product of the direction vectors of these lines gives a normal vector to the tangent plane:

n =

󰀏󰀏󰀏󰀏󰀏󰀏

i j k
1 0 fx(a, b)
0 1 fy(a, b)

󰀏󰀏󰀏󰀏󰀏󰀏
= (−fx(a, b),−fy(a, b), 1).

Thus, the tangent plane is given by

−fx(a, b)(x− a)− fy(a, b)(y − b) + (z − f(a, b)),

which after rearranging terms becomes

z = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b).

You should view this is analogous to the expression for the tangent line to the graph of a function
of one variable.

Back to previous example. The paraboloid z = x2 + y2 has tangent plane at (0, 1) given by

z = 1 + 0(x− 0) + 2(y − 1) = −1 + 2y,

using the partial derivatives computed previously. This makes sense: this tangent plane is obtained
by taking the line z = −1 + 2y in the yz-plane, which looks like it should be tangent to the right
edge of the paraboloid, and sliding it out in the x-direction.

Another example. Say that g(x, y) = xy. Then gx = y and gy = x, so

gx(2, 3) = 3 and gy(2, 3) = 2.

Thus the tangent plane to the graph of g at (2, 3) is

z = 6 + 3(x− 2) + 2(y − 3) = 3x+ 2y − 6.

Important. The tangent plane to the graph of a two-variable function f at (a, b) is

z = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b).

This tangent plane is supposed to provide the best “linear approximation” to f at (a, b).
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Lecture 17: Differentiability

Today we spoke about what it means for a function of two variables to be differentiable, which
requires more than simply saying that partial derivatives exist. This is a distinction which does
not show up with single-variable functions, but is important in many applications of multivariable
calculus.

Warm-Up 1. Consider a function f with some level curves drawn below:

We determine the signs of the partial derivatives of f at P and at Q. First let’s look at the point
P . In this case, when moving horizontally through P the height z changes from 2, to 1, to 0, so
z = f(x, y) is decreasing in the x-direction at P :

∂f

∂x
(P ) < 0.

When moving vertically through P , z increases from 0, to 1, to 2, so

∂f

∂y
(P ) > 0.

Now we move to the point Q. First, note that Q is on the level curve at z = 0. As we move only
in the y-direction through Q (indicated by the vertical blue line), the height z remains unchanged
at z = 0, so the rate of change of f in the y-direction at Q is zero:

∂f

∂y
(Q) = 0.

Now, imagine moving in the x-direction (indicated by the horizontal green line) through Q. To the
left of Q the value of z decreases from 2, to 1, to 0, while to the right of Q the value of z increases
from 0, to 1, to 2. So, plotting the change in z with respect to x we get something like:
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Note that in the first picture, the horizontal distance to move from z = 2 to z = 1 to the left of
Q looks to be about the same as the horizontal distance to move from z = 1 to z = 2 to the right
of Q, and similarly the distance to move from z = 1 to z = 0 to the left of Q is the same as the
distance to move from z = 0 to z = 1 to the right of Q, which is why we’re getting a parabola-like
curve in the second picture. The point Q sits at the bottom of this parabola, so the rate of change
in the value of z = f(x, y) in the x-direction at Q is zero! That is, ∂f

∂x switches from being negative
to being positive at Q itself, so the rate of change at Q itself is zero:

∂f

∂x
(Q) = 0.

So, both partial derivatives at Q are zero, but for different reasons.

Warm-Up 2. Let f(x, y) = sin(x2y). We find an equation for the line through (
√
π
2 , 1,

√
2
2 ) which

is perpendicular to the tangent plane to the graph of f at that point. For this, we need a direction
vector for the line, which is given by the normal vector to the tangent plane. We have

fx = 2xy cos(x2y) and fy = x2 cos(x2y),

so

fx

󰀕√
π

2
, 1

󰀖
=

√
2π

2
and fy

󰀕√
π

2
, 1

󰀖
=

π
√
2

8
.

Hence the tangent plane to the graph of f at the given point is

z = f(
√
π/2, 1) + fx(

√
π/2, 1)(x−

√
π/2) + f(

√
π/2, 1)(y − 1)

=

√
2

2
+

√
2π

2

󰀕
x−

√
π

2

󰀖
+

π
√
2

8
(y − 1).

Writing this in the form ax+ by + cz = d by moving z to the right side, we see that

n =

󰀣√
2π

2
,
π
√
2

8
,−1

󰀤

is normal to the tangent plane. Thus the line though the given point which is perpendicular to the
tangent plane at that point is

r(t) =

󰀣√
π

2
, 1,

√
2

2

󰀤
+ t

󰀣√
2π

2
,
π
√
2

8
,−1

󰀤
.

Example. Let f be the function defined by

f(x, y) =

󰀫
x if |y| < |x|
−x otherwise.

We claim that the partial derivatives of f at the origin both exist. The partial with respect to x is
given by:

∂f

∂x
(0, 0) = lim

x→0

f(x, 0)− f(0, 0)

x− 0
= lim

x→0

x− 0

x− 0
= 1,
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where f(x, 0) = x since points (x, 0) along the x-axis are in the region where |y| < |x|. The partial
with respect to y is:

∂f

∂y
(0, 0) = lim

y→0

f(0, y)− f(0, 0)

y − 0
= lim

y→0

0− 0

y − 0
= 0.

Here, points (0, y) on the y-axis are in the region where f(x, y) = −x, so f(0, y) = −0 = 0.
With these two partial derivatives, we can write down the (candidate) tangent plane at the

origin:
z = f(0, 0) + fx(0, 0)(x− 0) + fy(0, 0)(y − 0) = x.

However, it turns out that this is actually not the tangent plane to the graph of f at the origin,
and indeed no such tangent plane actually exists. The problem is that this f is not differentiable
at (0, 0).

Differentiability. As a motivation, recall the definition of a single-variable derivative:

f ′(a) = lim
x→a

f(x)− f(a)

x− a
.

This can be rewritten as

lim
x→a

f(x)− f(a)− f ′(a)(x− a)

x− a
= 0.

But y = f(a) + f ′(a)(x− a) is the equation of the tangent line to the graph of f at x = a, so this
limit says that

lim
x→a

f(x)− (tangent line at a)

x− a
= 0,

which intuitively says that the numerator approaches 0 faster than the denominator, so the tangent
line “approximates” f better and better the closer you get to x = a. Thus, the tangent line really
is the tangent line. Note that the denominator above is simply the distance between x and the
point we’re approaching.

Now we state the same thing in the two-variable setting. Given a function f of two variables
whose partial derivatives at (a, b) both exist, we can construct a candidate tangent plane using the
equation we’ve seen previously. Then we say that f is differentiable at (a, b) if

lim
(x,y)→(a,b)

f(x, y)− (tangent plane at (a, b))

󰀂(x, y)− (a, b)󰀂 = 0.

As in the single-variable setting, intuitively this says that the candidate tangent plane provides a
better and better approximation to f as we approach (a, b), so that the candidate tangent plane
really is the tangent plane.

Back to example. We claimed that the function f from the previous example is not differentiable
at the origin. We found the candidate tangent plane to be z = x, so in order to be differentiable
we would need

lim
(x,y)→(0,0)

f(x, y)− x󰁳
x2 + y2

= 0.

However, approaching the origin along y = 1
2x (where f(x, y) = x) gives

lim
(x, 1

2
x)→(0,0)

x− x󰁴
x2 + (12x)

2
= 0
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but approaching along y = 2x (where f(x, y) = −x) gives

lim
(x,2x)→(0,0)

−x− x√
x2 + 4x2

= lim
(x,2x)→(0,0)

−2x

5x
= −2

5
.

Hence

lim
(x,y)→(0,0)

f(x, y)− x󰁳
x2 + y2

does not exist, so it certainly does not equal 0, and thus f is not differentiable at (0, 0). In other
words, the candidate tangent plane z = x we found really isn’t a tangent plane after all.

We can see this geometrically, which hints at what differentiability really means. The graph of
f contains the following two lines:

The green line z = x is the piece of the graph lying above the x-axis and the blue line z = 0 is the
piece of the graph lying on the y-axis. Note that these two intersect at the origin in a “corner”
instead of at a smoothed-out point: this “sharp” point on the graph of f is what prevents f from
being differentiable at the origin, and is what prevents there from actually being a tangent plane.

Important. A function f(x, y) is differentiable at (a, b) if

lim
(x,y)→(a,b)

f(x, y)− [f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)]󰁳
(x− a)2 + (y − b)2

= 0.

Geometrically, this means that the graph of f has a “smooth” instead of a “sharp” point at (a, b),
which means that the candidate tangent plane z = f(a, b) + fx(a, b)(x − a) + fy(a, b)(y − b) is a
tangent plane after all.

Other examples. The functions

f(x, y) =

󰀫
−2x3+3y4

x2+y2
if (x, y) ∕= (0, 0)

0 if (x, y) = (0, 0)
and g(x, y) = ||x|− |y||− |x|− |y|

are also not differentiable at the origin even though both have partial derivatives at the origin. The
graph of the second function is in the book, where you can see the sharpness of the graph at (0, 0),
which is geometrically what non-differentiable means.

Our saving grace. Clearly, checking this definition of differentiable every single time we work
with a function is tedious, and in particular the limit we need to compute might be quite difficult.
However, the following fact is what tells us that for most purposes, we never actually have to worry
about it:
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If f has continuous partial derivatives at (a, b), then f is differentiable at (a, b).

So, as long as our function has continuous partial derivatives (which will be the case for the vast
majority of functions we consider in this class), we don’t have to check differentiability separately.

Final example. Take our standard paraboloid f(x, y) = x2 + y2. The partial derivatives of f :

fx = 2x and fy = 2y

are continuous everywhere, so f is automatically differentiable everywhere. Still, let’s work out the
limit definition of differentiable anyway, just to see how it would work.

The candidate tangent plane at (0, 1) is z = −1 + 2y. We compute:

lim
(x,y)→(0,1)

f(x, y)− [tangent plane at (0, 1)]

󰀂(x, y)− (0, 1)󰀂 = lim
(x,y)→(0,1)

x2 + y2 − [−1 + 2y]󰁳
x2 + (y − 1)2

= lim
(x,y)→(0,1)

x2 + y2 − 2y + 1󰁳
x2 + (y − 1)2

= lim
(x,y)→(0,1)

x2 + (y − 1)2󰁳
x2 + (y − 1)2

= lim
(x,y)→(0,1)

󰁳
x2 + (y − 1)2

= 0.

Thus, as expected since the partial derivatives are continuous at the origin, f is differentiable at
the origin.

Lecture 18: Jacobians and Second Derivatives

Today we spoke about derivatives of functions between higher-dimensional spaces (which are ex-
pressed in terms so-called Jacobian matrices), and about second derivatives. Both of these topics
extend what you already know about single-variable functions to the multivariable setting, but as
usual there are some twists which weren’t apparent before.

Warm-Up. We show that the function f : R2 → R defined by

f(x, y) =

󰀻
󰀿

󰀽

x3+y3√
x2+y2

if (x, y) ∕= (0, 0)

0 if (x, y) = (0, 0)

is differentiable at the origin. For this we first need a candidate for the tangent plane at the origin,
so we need the partial derivatives of f at the origin. We have

∂f

∂x
(0, 0) = lim

x→0

f(x, 0)− f(0, 0)

x− 0
= lim

x→0

x3
√
x2

− 0

x− 0
= lim

x→0

x2

|x| = 0

and

∂f

∂y
(0, 0) = lim

y→0

f(0, y)− f(0, 0)

y − 0
= lim

y→0

y3√
y2

− 0

y − 0
= lim

y→0

y2

|y| = 0.
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Note that the aboslute values came from the fact that
√
x2 = |x| and similarly for y. (Or, to avoid

using absolute values, you can instead look at what happens if you approach 0 from the left or
right separately.)

Thus the candidate tangent plane to the graph of f at the origin is

z = f(0, 0) + fx(0, 0)(x− 0) + fy(0, 0)(y − 0) = 0,

or in other words the xy-plane. In order for f to be differentiable at the origin we need

lim
(x,y)→(0,0)

f(x, y)− [tangent plane]󰁳
x2 + y2

= 0.

In our case we get:

lim
(x,y)→(0,0)

x3+y3√
x2+y2

− 0
󰁳

x2 + y2
= lim

(x,y)→(0,0)

x3 + y3

x2 + y2
.

After converting to polar coordinates, this becomes

lim
(r,θ)→(0,θ0)

r3 cos3 θ + r3 sin3 θ

r2
= lim

(r,θ)→(0,θ0)
r(cos3 θ + sin3 θ) = 0,

so f is indeed differentiable at (0, 0).
If you plot the graph of f on a computer you should be able to see that the graph is smooth at

the origin instead of “sharp” there, which is geometrically what it means to be differentiable.

Gradients and Jacobians. The equation for a tangent plane (with a = (a, b) and x = (x, y))
can be written as

z = f(a) + fx(a)(x− a) + fy(a)(y − b) = f(a) + (fx(a), fy(a)) · (x− a, y − b).

The vector (fx(a), fy(a)) which shows up here is important enough that we give it its own name:
it is called the gradient of f at the point a = (a, b), and we denote it by ∇f(a, b):

∇f(a, b) = (fx(a, b), fy(a, b)).

(We’ll see next week the amazing properties this vector has.) So, with this notation, the equation
for a tangent plane is

z = f(a) +∇f(a) · (x− a).

Compare this to the equation for a tangent line in single-variable calculus:

y = f(a) + f ′(a)(x− a),

and note that the gradient ∇f(a) in the tangent plane equation plays the same role as the usual
derivative f ′(a) does in the tangent line equation. The condition for f to be differentiable at a is
thus:

lim
x→a

f(x)− [f(a) +∇f(a) · (x− a)]

󰀂x− a󰀂 = 0.

Now we see how to generalize all this to functions between spaces of arbitrary dimension, say
f : Rm → Rn. The gradient ∇f is replaced by the Jacobian of f , denoted Df , which is the matrix
of partial derivatives of f ; that is, if f looks like

f(x1, . . . , xm) = (f1(x), . . . , fn(x),
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then the Jacobian is the n×mmatrix encoding the partial derivatives of all the component functions
f1, . . . , fn:

Df =

󰀳

󰁅󰁅󰁅󰁅󰁃

∂f1
∂x1

· · · ∂f1
∂xm

∂f2
∂x1

· · · ∂f2
∂xm

...
...

∂fm
∂x1

· · · ∂fm
∂xn

󰀴

󰁆󰁆󰁆󰁆󰁄
.

The pattern is that as we move along a row we change the variable we differentiate with respect
to, and as we move down a column we change which component function we differentiate. Note
that for a function f : R2 → R, the Jacobian is the 1 × 2 matrix

󰀃
fx fy

󰀄
, which is precisely the

gradient ∇f . Then, the expression

f(a) +∇f(a) · (x− a)

showing up in the equation of a tangent plane when f goes from R2 to R gets replaced by

f(a) +Df(a)(x− a),

where Df(a) is the Jacobian evaluated at a and Df(a)(x − a) is the usual matrix multiplication
of the matrix Df(a) with the vector (written as a column) x− a.

So, Df(a) plays the same role which the usual derivative does in the tangent line equation,
and in this sense the Jacobian of f should really be thought of as the derivative of f . In the
single-variable case, the tangent line provides the best “linear approximation” to f at x = a, in the
R2 → R case the tangent plane provides the best “linear approximation” to f at (x, y) = (a, b),
and in general the function

g(x) = f(a) +Df(a)(x− a)

provides the best linear approximation to f at x = a, where g is “linear“ in the sense that the
formula for g only involves linear terms, as we’ll see in an explicit example in a bit. Finally, to say
that f : Rm → Rn is differentiable at a means that a certain limit should be zero, namely the limit
you get when you take the definition of differentiable for a two-variable function expressed using
a gradient and replace the gradient with a Jacobian. Now, this general definition of differentiable
is not something we’ll ever actually work with since pretty much all functions we consider will
have continuous partial derivatives, in which case the differentiability condition is automatically
satisfied.

Important. The Jacobian of a function f : Rm → Rn is the n×m matrix Df of partial derivatives
of f . In the case of a function f : Rm → R, the Jacobian (which is a row vector) is called the
gradient of f and is denoted ∇f . Given a point a, the function

g(x) = f(a) +Df(a)(x− a)

provides the best linear approximation to f near a. In the case of a function f : R2 → R, this
linear approximation g is just the tangent plane to the graph of f at a.

Example 1. This seems like a lot of new material, but let’s work out an example to see that it all
essentially boils down to computing partial derivatives. Let f : R3 → R2 be the function

f(x, y, z) = (xy2z + zey, z + sin(xyz)).
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We want to determine the best “linear approximation” to f at the point (1, 1, 1). First we need
the Jacobian of f . The first row of the Jacobian is what you get when you differentiate the first
component function of f , which is f1(x, y, z) = xy2z + zey, with respect to x, y, z:

∂f1
∂x

= y2z,
∂f1
∂y

= 2xyz + zey,
∂f1
∂z

= xy2 + ey.

The second row of the Jacobian is doing the same thing with the second component of f , which is
f2(x, y, z) = z + sin(xyz), so in the end the Jacobian of f is

Df =

󰀕
y2z 2xyz + zey xy2 + ey

yz cos(xyz) xz cos(xyz) 1 + xy cos(xyz)

󰀖
.

To get the linear approximation we need we evaluate this Jacobian at the given point (1, 1, 1):

Df(1, 1, 1) =

󰀕
1 2 + e 1 + e

cos 1 cos 1 1 + cos 1

󰀖
.

Then the linear approximation we want is given by the function (where x = (x, y, z), a = (1, 1, 1),
and we now write vectors as columns):

g(x) = f(a) +Df(a)(x− a)

=

󰀕
1 + e

1 + sin 1

󰀖
+

󰀕
1 2 + e 1 + e

cos 1 cos 1 1 + cos 1

󰀖󰀳

󰁃
x− 1
y − 1
z − 1

󰀴

󰁄

=

󰀕
1 + e

1 + sin 1

󰀖
+

󰀕
(x− 1) + (2 + e)(y − 1) + (1 + e)(z − 1)

(cos 1)(x− 1) + (cos 1)(y − 1) + (1 + cos 1)(z − 1)

󰀖

=

󰀕
1 + e+ (x− 1) + (2 + e)(y − 1) + (1 + e)(z − 1)

1 + sin 1 + (cos 1)(x− 1) + (cos 1)(y − 1) + (1 + cos 1)(z − 1)

󰀖
.

As mentioned earlier, this function g : R3 → R2 is linear since it only involves x, y, z appearing to
the first power, and the point is that it is supposed to be the linear function which best approximates
f close to (1, 1, 1) among all possible linear functions. Again, this function g is the analog of a
tangent line or a tangent plane now in this higher-dimensional setting.

Second derivatives. Say that we have a two-variable function f(x, y). Then there are two first
partial derivatives fx and fy. Now, we can differentiate each of these also in two ways, either
with respect to x or y, and the four resulting expressions are the second partial derivatives of f .
Notation-wise, fxx denotes the result of differentiating with respect to x and then with respect to
x again, fxy the result of differentiating with respect to x and then with respect to y, and so on.

Alternate notations, analogous to ∂f
∂x for first partial derivatives, include:

∂2f

∂x2
for fxx,

∂2f

∂y∂x
for fxy, and so on.

Note that in this alternate notation, the order in which you write the variables you are differentiating
with respect to is different than in the previous notation; this comes from thinking about a second
partial derivative like fxy as “differentiate with respect to y the function fx”, which symbolically
is:

∂

∂y

󰀕
∂f

∂x

󰀖
,
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and is why we write fxy as ∂2f
∂y∂x . A function of three variables would have nine second partial

derivatives, although as we’ll see in a second a lot of these second partials turn out to be the same.

Example 2. We compute the second partial derivatives of f(x, y) = xy2 + exy. We have:

∂f

∂x
= fx = y2 + yexy and

∂f

∂y
= fy = 2xy + xexy.

The second partials are thus:

∂2f

∂x2
=

∂

∂x

󰀕
∂f

∂x

󰀖
= fxx = y2exy

∂2f

∂y∂x
=

∂

∂y

󰀕
∂f

∂x

󰀖
= fxy = 2y + xyexy

∂2f

∂x∂y
=

∂

∂x

󰀕
∂f

∂y

󰀖
= fyx = 2y + xyexy

∂2f

∂y2
=

∂

∂y

󰀕
∂f

∂y

󰀖
= fyy = 2x+ x2exy.

It should immediately jump out at you that the “mixed partials” fxy and fyx are the same in this
case; this is no accident:

Clairaut’s Theorem. If a multivariable function f(x1, x2, . . . , xn) has continuous first and second-
order partial derivatives, then the order in which we differentiate with respect to two variables does
not matter: fxixj = fxjxi .

Example 3. Let g(x, y, z) = xy2z3 + ez cos(xz). The first-order partials with respect to x and z
are:

gx = y2z3 − zez sin(xz) and gz = 3xy2z2 + ez cos(xz)− xez sin(xz).

Then
gxz = 3y2z2 − (ez + zez) sin(xz)− xzez cos(xz)

and
gzx = 3y2z2 − zex sin(xz)− ez sin(xz)− xzez cos(xz),

so gxz = gzx as predicted by Clairaut’s Theorem.

Hessians. Finally, if we should think of the Jacobian of f as the derivative of f , what should
we think of as the second derivative of f? The answer is given by the Hessian of f , which is a
square matrix Hf encoding all second-order partial derivatives of f . For a function of two variables
f(x, y), the Hessian is

Hf =

󰀣
∂2f
∂x2

∂2f
∂y∂x

∂2

∂x∂y
∂2f
∂y2

󰀤
.

For instance, the function from Example 2 has Hessian:

Hf =

󰀕
y2exy 2y + xyexy

2y + xyexy 2x+ x2exy

󰀖
.

A function of three variables will have a 3× 3 Hessian.
As a consequence of Clairaut’s Theorem, the Hessian of a function is symmetric(!), so all the

great things we learned about symmetric matrices will apply, as yet another example of how linear
algebra shows up in multivariable calculus. We’ll return to this later.
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Lecture 19: Chain Rule

Today we spoke about the chain rule for multivariable derivatives, which applies whenever we have
a function depending on variables which themselves depend on additional parameters. There are
two ways of expressing this chain rule, and the version in terms of Jacobians is the most versatile.

Warm-Up 1. Suppose we are given level curves of a function f as follows:

We want to determine the signs of some second partial derivatives. First we consider fxx(R), which
is

∂

∂x

󰀕
∂f

∂x

󰀖
(R).

This gives the rate of change in the x-direction of ∂f
∂x , so in other words the rate of change in the

x-direction of the slope in the x-direction. Imagine moving horizontally through the point R. The
slope in the x-direction at R is negative since z decreases moving horizontally through R, and the
same is true a bit to the left of R and a bit to the right. Now, the equal spacing between the level
curves tells us that the negative slope at the point R is the same as the negative slope a bit to the
left and the same as the negative slope a bit to the right, so the slope in the x-direction ∂f

∂x stays
constant as we move through R in the x-direction. Thus

fxx(R) =
∂2

∂x2
(R) =

∂

∂x

󰀕
∂f

∂x

󰀖
(R) = 0

since ∂f
∂x does not change with respect to x. Geometrically, the graph of f in the x-direction at R

looks like a straight line, so it has zero concavity.
Next we look at fyy(Q), which is the rate of change in the y-direction of the slope in the y-

direction. At Q the slope in the y-direction is negative since z is decreasing vertically through Q,
and the slope in the y-direction is also negative a bit below Q as well as a bit above Q. However,
the level curves here are not equally spaces: below Q is takes a longer distance to decrease by a
height of 1 than it does at Q, so the slope in the y-direction below Q is a little less negative than
it is at Q itself. Similarly, above Q the slope in the y-direction is even more negative than it is at
Q since it takes a shorter distance to decrease by a height of 1. Thus moving vertically through Q,
the slope in the y-direction gets more and more negative, so ∂f

∂y is decreasing with respect to y at
Q, meaning that

fyy(Q) =
∂2

∂y2
(Q) =

∂

∂y

󰀕
∂f

∂y

󰀖
(Q) < 0.
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Geometrically, the graph of f at Q in the y-direction is concave down since the downward slope
gets steeper and steeper.

Finally we look at fxy(P ), which is the rate of change in the y-direction of the slope in the x-
direction. At P the slope in the x-direction is positive since z increases when moving horizontally
through P . Now, a bit below P the slope in the x-direction is also positive but not has positive as
it is at P since it takes a longer distance to increase the height than it does at P . A bit above P
it takes an even shorter distance to increase the height in the x-direction, so ∂f

∂x is larger above P

than it is at P . Hence the slope ∂f
∂x in the x-direction is increasing (getting more and more positive)

as you move through P in the y-direction, so

fxy(P ) =
∂2

∂y∂x
(P ) =

∂

∂y

󰀕
∂f

∂x

󰀖
(P ) > 0.

Then by Clairaut’s Theorem, fyx(P ) is also positive.

Important. For a function f of two variables, fxx measures the concavity of the graph of f in the
x-direction (concave up if positive, concave down if negative), fyy measures the concavity of the
graph in the y-direction, and fxy = fyx measures the rate of change of the slope in the x-direction
as you move in the y-direction, or equivalently the rate of change of the slope in the y-direction as
you move in the x-direction.

Warm-Up 2. We use a linear approximation to approximate the (x, y)-coordinates of the point
with polar coordinates r = 2.1 and θ = π

3 − 0.1. Consider the function f : R2 → R2 which sends
the polar coordinates of a point to the corresponding rectangular coordinates:

f(r, θ) = (r cos θ, r sin θ).

The Jacobian of f (with x = r cos θ and y = r sin θ) is

Df =

󰀕∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

󰀖
=

󰀕
cos θ −r sin θ
sin θ r cos θ

󰀖
.

Now consider the point with polar coordinates a = (2, π3 ). The rectangular coordinates of this
point are

f(a) = f(2,
π

3
) = (1,

√
3).

The Jacbian of f at a is

Df(a) =

󰀕
1/2 −

√
3√

3/2 1

󰀖
.

The linear approximation to f at a is given by the function

g(r) = f(a) +Df(a)(r− a) =

󰀕
1√
3

󰀖
+

󰀕
1/2 −

√
3√

3/2 1

󰀖󰀕
r − 2
θ − π

3

󰀖
,

where r = ( rθ ) and we write vectors as columns. The approximation we want is the value when

r =
󰀓

2.1
π/3−0.1

󰀔
, which is

g
󰀓

2.1
π/3−0.1

󰀔
=

󰀕
1√
3

󰀖
+

󰀕
1/2 −

√
3√

3/2 1

󰀖󰀕
0.1
−0.1

󰀖
=

󰀣
1 + 1

20 +
√
3

10√
3 +

√
3

20 − 1
10

󰀤
.
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These values are approximately ( 1.221.72 ), which are indeed pretty close to the actual values of the x
and y coordinates of the point with polar coordinates (2.1, π3 − 0.1).

Example 1. Suppose that f(x, y) = x2y, and that x and y themselves depend on variables s and
t as follows:

x = st y = est.

Then we can express f in terms of s and t as

f(s, t) = (st)2est.

Using this we can compute the partial derivatives of f with respect to s and t. However, there is
a way to do this without substituting in for x and y, and this is the chain rule.

Chain rule, Version I. For a function f(x, y) of variables x and y, with x = x(s, t) and y = y(s, t)
themselves depending on s and t, we have:

∂f

∂s
=

∂f

∂x

∂x

∂s
+

∂f

∂y

∂y

∂s

∂f

∂t
=

∂f

∂x

∂x

∂t
+

∂f

∂y

∂y

∂t
.

To get a feel for the expression for ∂f
∂s which the chain rule gives us, compare it to the usual

single-variable chain rule. In that case we have a function g(y) of a single variable y = f(x) which
in turn depends on a single variable x. Then the chain rule says that the derivative of g(f(x)) with
respect to x is

dg

dx
=

dg

dy

dy

dx
= g′(y)f ′(x) = g′(f(x))f ′(x).

The multivarible chain rules gives a sum of the same type of terms, with one such term for each
variable our original function depends on. We can visualize this dependence via a “tree“ diagram:

where each thing depends on the things below it. In this case f depends on x and y and x, y
themselves each depend on s and t. To get the expression for ∂f

∂s we look at all ways of getting from

f down to s: doing this through x gives the ∂f
∂x

∂x
∂s term in the chain rule and doing this through y

gives the ∂f
∂y

∂y
∂s term.

Back to Example 1. In this example we thus get:

∂f

∂s
= 2xyt+ x2test = 2(st)(est)t+ (st)2test

∂f

∂t
= 2xys+ x2sest = 2(st)(est)t+ (st2)sest,
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which are the same things we would get by differentiating the expression

f(s, t) = (st)2est

found above.

Example 2. Consider a cylinder made out of wax, melting at a rate of 3 in3/sec. (The units aren’t
important.) Suppose that at some instant the radius and height of the cylinder both happen to
be 1 in and that at this instant the radius is decreasing at a rate of 1 in/sec. How quickly is the
height changing at this instant?

Here, the volume V depends on the radius r and height h of the cylinder, each of which depend
on time t. Since the volume is V = πr2h, the chain rule gives

∂V

∂t
=

∂V

∂r

∂r

∂t
+

∂V

∂h

∂h

∂t
= 2πrh

∂r

∂t
+ πr2

∂h

∂t
.

At the instant we’re interested in, ∂V
∂t = −3 (since the volume is decreasing), ∂r

∂t = −1, and
r = h = 1, giving

−3 = 2π(1)(1)(−1) + π(1)2
∂h

∂t
,

so
∂h

∂t
=

−3 + 2π

π
.

Thus the height is changing a rate of 2π−3
π in/sec.

(As pointed out by one of your fellow students, this is not very realistic since it says that the
height increases as the cylinder melts, whoops! The problem is that I did not choose realistic values
for the various things involved. The math is still sound however!)

Example 3. Suppose that g(x, y, z) = xy2z3 and that x = st, y = s+ t, and z = s2t. In this case
the chain rule gives three terms making up ∂g

∂s , since g depends on three things:

∂g

∂s
=

∂g

∂x

∂x

∂s
+

∂g

∂y

∂y

∂s
+

∂g

∂z

∂z

∂s

where we used the tree diagram:

Similarly, ∂g
∂t will be made up of three terms as well. Concretely, we get:

∂g

∂s
= y2z3t+ 2xyz3 + 3xy2z22st,

which we can then write solely in terms of s and t by substituing in for x, y, z.
Suppose further that s = s(u) and t(u) themselves depend on an additonal parameter u. Then

g depends on x, y, z, which depend on s, t, which depend on u, so working out the chain rule using
the corresponding tree diagram
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gives:
∂g

∂u
=

∂g

∂x

∂x

∂s

∂s

∂u
+

∂g

∂x

∂x

∂t

∂t

∂u
+ similar terms involving

∂g

∂y
and

∂g

∂z
,

which has six terms in total since there are six ways to get from g down to u in the tree.

Chain rule, Version II. Going back to the type of setup in Example 1, where we have f(x, y)
depending on x, y and x = x(s, t), y = y(s, t) depending on s, t, what is really going on is the
following. First, f is a function f : R2 → R. We can package the expression for x, y in terms of s, t
as a function g : R2 → R2 defined by

g(s, t) = (x(s, t), y(s, t)).

Then thinking of f in terms of s and t as f(x(s, t), (y(s, t)) means we are considering the composition
f ◦ g. The chain rule gives us a way of computing the derivatives of this composition, but there is
a better way of thinking about this.

As a motivation, consider again the single variable chain rule. In that case the function f(g(x))
is a composition of g : R → R followed by f : R → R, and the chain rule says that

derivative of f ◦ g = (derivative of f)(derivative of g).

But now, notice that we can make sense of this kind of statement even when f, g are functions
between higher-dimensional spaces as long as we interpret “derivative” as “Jacobian”! In this
version, the chain rule says that

Jacobian of f ◦ g = (Jacobian of f)(Jacobian of g)

where the multiplication on the right is just matrix multiplication.

Back to Example 1 again. As stated above, the setup in Example 1 is really about the compo-
sition f ◦ g where g : R2 → R2 and f : R2 → R. The version of the chain rule stated in terms of
Jacobians says that

D(f ◦ g) = Df ·Dg.

We have

Df =
󰀓
∂f
∂x

∂f
∂y

󰀔
and Dg =

󰀕∂x
∂s

∂x
∂t

∂y
∂s

∂t
∂s

󰀖
,

so

D(f ◦ g) =
󰀓
∂f
∂x

∂f
∂y

󰀔󰀕∂x
∂s

∂x
∂t

∂y
∂s

∂t
∂s

󰀖
=

󰀓
∂f
∂x

∂x
∂s + ∂f

∂y
∂y
∂s

∂f
∂x

∂x
∂t +

∂f
∂y

∂y
∂t

󰀔
.

On the other hand, with f ◦ g written as f(x(s, t), y(s, t)) we have

D(f ◦ g) =
󰀃
∂f
∂s

∂f
∂t

󰀄
,
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and so comparing entries in these two expressions for D(f ◦ g) gives

∂f

∂s
=

∂f

∂x

∂x

∂s
+

∂f

∂y

∂y

∂s

∂f

∂t
=

∂f

∂x

∂x

∂t
+

∂f

∂y

∂y

∂t
.

These are precisely the expressions given for ∂f
∂s and ∂f

∂t in the first version of the chain rule, and
the point is that this is just a special case of the more general version of the chain rule stated in
terms of Jacobians.

Important. Given functions g : Rm → Rn and f : Rn → Rk, the Jacobian of f ◦ g : Rm → Rk is
the product of the Jacobian of f with the Jacobian of g:

D(f ◦ g) = Df ·Dg.

So, the chain rule is nothing but an instance of matrix multiplication, a fact you’ll only see in
MENU ;).

Lecture 20: Directional Derivatives

Today we spoke about directional derivatives, which give the rate of change of a function (or the
slope of its graph) in arbitrary directions. In particular, here we start to see some of the amazing
and unexpected properties which gradients have.

Warm-Up 1. Suppose we have a rectangle moving through space on a rocket, with length ℓ and
width w changing with respect to time t according to

ℓ = 1 + 3t and w = e2t.

But now an added twist: according to Eintein’s theory of special relativity, time is not absolute but
itself depends on the speed v with which something is traveling. (Don’t worry about the physics
involved here, the application of the chain rule we’ll see is what’s important. But, yes, if you’ve
never seen this before it is indeed true that objects moving at different velocities experience time
differently, strange as it may seem.) To be precise suppose that time t depends on speed v according
to

t =
1󰁴

1− v2

c2

where c is the speed of light.
We determine the rate of change of the area A of the rectangle with respect to speed v. We

have the dependence diagram:
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Following the ways to get from A to v gives according to the chain rule:

∂A

∂v
=

∂A

∂ℓ

∂ℓ

∂t

∂t

∂v
+

∂A

∂w

∂w

∂t

∂t

∂v
.

Since area A = ℓw, we get

∂A

∂v
= w(3)(−1

2
(1− v2

c2
)−3/2)(−2v

c2
) + ℓ(2e2t)(−1

2
(1− v2

c2
)−3/2)(−2v

c2
)

=
3vw + 2ℓve2t

c2
1

(1− v2

c2
)3/2

If desired, you could now substitute in for ℓ, w, and t in terms of v to express everything in terms
of v.

Warm-Up 2. Suppose that h(x, y, z) = (xyz, x+ y) and x = st, y = s+ t, z = s2 − t2. Substiting
these expressions in for x, y, z in h will give an expression for h in terms of s, t; we want to compute
the Jacobian of this. To be clear, viewing the expressions for x, y, z in terms of s, t as defining a
function f : R2 → R3:

f(s, t) = (st, s+ t, s2 − t2),

we are looking for the Jacobian of h◦f . According to the Jacobian version of the chain rule this is:

D(h ◦ f) = Dh ·Df =

󰀕
yz xz xy
1 1 0

󰀖󰀳

󰁃
t s
1 1
2s −2t

󰀴

󰁄 =

󰀕
yzt+ xz + 2sxy syz + xz − 2xyt

t+ 1 s+ t

󰀖
.

To find the Jacobian specially at (s, t) = (3, 3), we could then find the values of x, y, z at s = 3, t = 3
and substitute these all into this matrix.

But the chain rule already gives us a way to evalute the Jacobian of h ◦ f at a specified point,
using:

D(h ◦ f)(a) = Dh(f(a)) ·Df(a).

Note that it is not a itself we plug into the Jacobian of h but rather f(a), analogous to the fact
that the single-variable derivative of g(f(x)) is not g′(x)f ′(x) but rather g′(f(x))f ′(x). In our case,
we have

D(h ◦ f)(3, 3) = Dh(f(3, 3))Df(3, 3)

= Dh(9, 6, 0)Df(3, 3)

=

󰀕
0 0 54
1 1 0

󰀖󰀳

󰁃
3 3
1 1
6 −6

󰀴

󰁄

=

󰀕
324 −324
4 4

󰀖
.

Directional derivatives. Given a function f of two variables, we know already that the partial
derivatives at a point give the rate of the change of f in the x and y-directions, or geometrically
the slope of the graph of f in the x and y-directions. But what about the rate of change or slope
in other directions? This is what directional derivatives give us.

The setup is as follows. Take a point (x0, y0) in the xy-plane and a line going through it with
direction given by a vector u. Plugging points along this line into f gives a curve up on the graph of
f passing through (x0, y0, f(x0, y0)), and the directional derivative of f at (x0, y0) in the direction
of the vector u is the slope of this curve:
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The notation we use for this directional derivative is

Duf(x0, y0),

and we also call it the rate of change of f at (x0, y0) in the direction of u. In fact, partial derivatives
are special cases of this: taking u = i gives the directional derivative in the direction of i, which is
the same as the derivative in the x-direction

Dif(x0, y0) =
∂f

∂x
(x0, y0),

and similarly the directional derivative in the direction of j is the rate of change in the y-direction:

Djf(x0, y0) =
∂f

∂y
(x0, y0).

To compute a general directional derivative, we proceed as follows. The line through (x0, y0) in
the direction of u = (a, b) has parametric equations

x(t) = x0 + at and y(t) = y0 + bt.

The values of f for points along this line are given by f(x(t), y(t)), and we want the derivative of
this as we move along the line, so the derivative of f with respect to t. The chain rule tells us that
this equals:

∂f

∂t
=

∂f

∂x

∂x

∂t
+

∂f

∂y

∂y

∂t
=

∂f

∂x
· a+

∂f

∂y
· b.

And now the point is that this can rewritten as the gradient of f dot the direction vector u:

Duf(x0, y0) =
∂f

∂x
(x0, y0)a+

∂f

∂y
(x0, y0)b = ∇f(x0, y0) · u,

which gives us our final formula. Thus to compute a directional dervative at a point we just need
to take the dot product of the gradient at that point with the vector given us the direction we’re
interested in.

One final thing to note: the value of the directional derivative should not depend on the length
of the vector we are using to specify the direction, but the formula we derived above does depend
on whether we use u, or 2u, or 3u, etc. For this reason we always take unit vectors when specifhing
directions.

Important. The directional derivative of f at (x0, y0) in the direction of the unit vector u is
Duf(x0, y0) = ∇f(x0, y0) · u.
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Example. Take the function f(x, y) = xyey. We want the directional derivative of f at (3, 1) in the
direction of (1, 2). Geometrically, standing at the point (3, 1, 3e) on the graph of f corresponding
to (3, 1) and facing in the direction of the vector (1, 2), this directional derivative gives us the slope
of the graph in the direction we’re facing.

We first take a unit vector in the direction we want: u = ( 1√
5
, 2√

5
). The gradient of f in general

is
∇f = (yey, xey + xyey),

so at (3, 1) it is ∇f(3, 1) = (e, 6e). The directional derivative we want is thus

Duf(3, 1) = ∇f(3, 1) · u− (e, 6e) · ( 1√
5
,
2√
5
) =

13e√
5
.

This is positive, so the graph of f slopes upward at the point (3, 1, 3e) in the direction of (1, 2).

Geometric interpretation of gradients. We can also express a directional derivative as:

Duf(x0, y0) = ∇f(x0, y0) · u = 󰀂∇f(x0, y0)󰀂 󰀂u󰀂 cos θ

where θ is the angle between ∇f(x0, y0) and the direction vector u. Since u is taken to be a unit
vector, this just becomes

Duf(x0, y0) = 󰀂∇f(x0, y0)󰀂 cos θ,

so that as expected the directional derivative only depends on the function f and the direction
we’re facing (determined by θ) and not on which specific vector we use in a given direction.

But now note the following: 󰀂∇f(x0, y0)󰀂 cos θ is maximized when cos θ = 1, so when θ = 0.
In other words, the direction in which the directional derivative at a point is as large as possible is
precisely the direction given by the gradient at that point! Then in this direction, when cos θ = 1,
we get that the value of the directional derivative itself is 󰀂∇f(x0, y0)󰀂. Thus the gradient at a
point has an important geometric interpretation: it points in the direction where the graph of f has
the steepest positive slope (i.e. the directional of maximum rate of change of f , or the maximum
directional derivative), and its length is the value of the slope in that steepest direction. This is
kind of unexpected given the definition of a gradient as a vector made out of partial derivatives,
but it key to understanding what gradients mean on a deeper level.

Back to example. Going back to the function f(x, y) = xyexy, we want the direction of the
maximum rate of change of f at the point (3, 1), which geometrically is the direction in which the
graph of f has largest positive slope. As determined above, this is the direction determined by the
gradient of f at (3, 1):

∇f(3, 1) = (e, 6e).

(Of course, the same direction is also given by (1, 6), or by any positive multiple of this.) The rate
of change of f in this direction (i.e. the maximum rate of change of f at (3, 1)) is

󰀂∇f(3, 1)󰀂 = 󰀂(e, 6e)󰀂 =
√
37e2.

Geometrically this is the slope in the direction where the upward slope is the steepest it can be.
Say instead we want to the direction of the minimum rate of change of f , or in other words the

direction of steepest downward slope. This is obtained when

Duf(3, 1) = ∇f(3, 1) · u = 󰀂∇f(3, 1)󰀂 cos θ
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is as small as possible, so when cos θ = −1 and θ = π. Thus the direction opposite the gradient
points in the direction of steepest negative slope:

−∇f(3, 1) = −(e, 6e) = (−e,−6e).

The steepest negative slope at (3, 1) itself is then −󰀂∇f(3, 1)󰀂 = −
√
37e2.

Finally, there are two directions in which f has no rate of change at all at the point (3, 1); these
are the directions which make the directional derivative

Duf(3, 1) = ∇f(3, 1) · u

zero, so the directions perpendicular to the gradient:

(−6e, e) and (6e,−e).

Geometrically, the graph of f at the point (3, 1, 3e) has zero slope in these directions.

Important. At a point (x0, y0), the gradient∇f(x0, y0) points in the direction where f is increasing
most rapidly and this rate of most rapid increase is 󰀂∇f(x0, y0)󰀂. The direction in which f decreases
most rapidly is −∇f(x0, y0), and this rate of most rapid decrease is −󰀂∇f(x0, y0)󰀂. The rate of
change of f at (x0, y0) is zero in directions perpendicular to ∇f(x0, y0).

Lecture 21: Gradients

Today we spoke more about properties of gradients, in particular the fact they are always perpen-
dicular to level sets. This gives a nice way of finding tangent planes to arbitrary surfaces, not just
ones which arise as the graphs of functions.

Warm-Up 1. Let f be the function f(x, y) = xy. We want to determine the direction in which
the rate of increase of f at the point (1, 1) is half the value of the largest rate of increase at this
same point; in other words, if at the point (1, 1) the largest rate of increase of f is some number
M , we want the direction in which the rate of increase at (1, 1) is M

2 .
Before doing this, let’s look at a related question. The gradient of f at a point is ∇f = (y, x),

so the gradient at (1, 1) is
∇f(1, 1) = (1, 1).

Thus if we are standing on the graph of f (which is a hyperbolic paraboloid) at the point (1, 1, 1),
then the largest positive slope of the graph occurs in the direction of the vector (1, 1). The value
of this largest positive slope itself is

󰀂∇f(1, 1)󰀂 =
√
2.

To be sure, if we look at the directional derivative in some other direction, say (3, 1), we should get
a value smaller than

√
2. The direction derivative of f in the direction of (3, 1) at (1, 1) is (using

u = ( 3
10 ,

1
10) as a unit vector in the direction we want):

Duf(1, 1) = ∇f(1, 1) · u = (1, 1) · ( 3
10

,
1

10
) =

4

10
,

which is indeed less than
√
2.

Now back to our actual question. We want the direction in which the rate of increase of f at

(1, 1) is 1
2 󰀂∇f(1, 1)󰀂 =

√
2
2 . Using

Duf(1, 1) = ∇f(1, 1) · u = 󰀂∇f(1, 1)󰀂 cos θ
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where θ is the angle between u and ∇f(1, 1), we are thus looking for directions such that cos θ = 1
2 ,

so direction vectors making an angle π
3 with ∇f(1, 1) = (1, 1). These are obtained by rotating

(1, 1) by π
3 either counterclockwise or clockwise, and so (recalling the formulas from last quarter

for rotation matrices) are

󰀕
1/2 −

√
3/2√

3/2 1/2

󰀖󰀕
1
1

󰀖
=

󰀣
1−

√
3

2
1+

√
3

2

󰀤
and

󰀕
1/2

√
3/2

−
√
3/2 1/2

󰀖󰀕
1
1

󰀖
=

󰀣
1+

√
3

2
1−

√
3

2

󰀤
.

Hence, at the point (1, 1), the slope of the graph of f is half the value of its largest possible slope
at this point in the directions of ([1−

√
3]/2, [1 +

√
3]/2) and ([1 +

√
3]/2, [1−

√
3]/2).

Note that there is nothing here which is specific to this particular function and this particular
point: for any function f and at any point (x, y), the directional derivative is half its largest
possible value in directions making an angle π/3 with ∇f(x, y), just like the directional derivative
is 0 in directions perpendicular to ∇f(x, y) and is as small as possible in directions opposite that
of ∇f(x, y). So, the gradient ∇f(x, y) really does control everything that’s happening.

Warm-Up 2. Say we have a function f(x, y) with level curves looking like:

We want to sketch the gradients of f at the given points P and Q.
First we consider ∇f(P ). This should point in the direction at P where f increases most

rapidly. In particular, it should point in a direction where f actually increases which rules out
the possibility that it can point in a direction to the left of the drawn level curve, or in the same
direction as the level curve itself. So, ∇f(P ) must point to the right side of the given level curve.
The precise direction is determined by looking at the shortest way to get from the level curve at
z = 2 to the one at z = 3.

Similarly, ∇f(Q) should point to the left side of the level curve passing through Q since this is
the direction in which f increases. Again, the precise direction is determined by the shortest way
to get from the level curve at z = −1 to the one at z = 0. These two gradients thus look like:
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The final thing to make sure is that these gradient vectors have appropriate lengths. Recall
that the length of the gradient at a point gives the value of the maximum positive slope at that
point, and in this case the maximum slope at Q is larger than that at P since it takes a shorter
distance at Q to increase by a height of 1 than it does at P . Thus ∇f(Q) should be longer than
∇f(P ), which is true in the drawing above.

Gradients are perpendicular to level sets. The gradients drawn in the second Warm-Up seem
to have another interesting property: they look to be perpendicular to the level curves themselves.
In fact, this is true in general, for the following reason. The level curve of a function f(x, y) at
z = k has equation

f(x, y) = k.

Imagine that we have some parametric equations r(t) = (x(t), y(t)) for this curve, so that these
equations satisfy

f(x(t), y(t)) = k.

Differentiating both sides with respect to t gives

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
= 0,

where the left-hand side comes from the chain rule. This can be rewritten as

(
∂f

∂x
,
∂f

∂y
) · (x′(t), y′(t)) = 0, or ∇f(x, y) · r′(t) = 0

where r′(t) = (x′(t), y′(t)). Geometrically r′(t) describes the tangent vector to the curve at a given
point, so we find that the gradient ∇f(x, y) at a point is perpendicular to this tangent vector,
meaning that it is perpendicular to the level curve containing (x, y) itself. So, it is no accident that
the gradients we drew in the second Warm-Up look like they are perpendicular to the given level
sets. Together with the fact that gradients should point in the direction of maximum increase, this
gives us a complete way of visualizing what gradient vectors look like in general.

An analogous thing is true in 3-dimensions, where the statement is that the gradient of a three
variable function at a point is perpendicular to the level surface of that function containing the
given point.

Important. For a function f of two variables, ∇f(x0, y0) is perpendicular to the level curve of f
containing (x0, y0). For a function g of three variables, ∇g(x0, y0, z0) is perpendicular to the level
surface of g containing (x0, y0, z0).
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Example 1. Consider the curve in the xy-plane with equation

xy − y2exy = 2− e2.

We want to find parametric equations for the tangent line to this curve at the point (2, 1). (Note
that this point indeed satisfies the equation of the curve, which is why I needed to use 2 − e2 on
the right side.) We need two things to describe this tangent line: a point on it, which we have, and
a vector giving its direction. To find this direction we proceed as follows.

Let f be the function f(x, y) = xy − y2exy. Then the curve in question is precisely the level
curve of this function at z = 2− e2. Hence ∇f(2, 1) should be a vector perpendicular to the given
curve at the point (2, 1). We have

∇f = (y − y3exy, x− 2yexy − xy2exy),

so ∇f(2, 1) = (1 − e2, 2 − 4e2). The tangent line we want is perpendicular to this vector, so a
possible direction vector for the line is

v = (2− 4e2,−1 + e2),

or any other vector perpendicular to (1− e2, 2− 4e2). Hence the tangent line has equation

x0 + tv = (2, 1) + t(2− 4e2,−1 + e2),

and so has parametric equations x = 2 + t(2− 4e2) and y = 1 + t(e2 − 1).

Example 2. We find an equation for the tangent plane to the unit sphere x2 + y2 + z2 = 1 at the
point ( 1√

3
, 1√

3
, 1√

3
). Now, we can do this using older material by using the equation

z = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

for the tangent plane to the graph of a function f(x, y) at (a, b). However, to do this we need to
express our surface as the graph of a function, and there is no way to do this for the entire sphere
at once. What we can do is solve for z in the equation of the sphere:

z = ±
󰁳

1− x2 − y2

to obtain equations for the top and bottom half separately. Our points lies on the top half, so we
would use

f(x, y) =
󰁳

1− x2 − y2

as the function in the equation of the tangent plane given above. This is doable, but notice that
things get a little messy when working out

∂f

∂x
(
1√
3
,
1√
3
) and

∂f

∂y
(
1√
3
,
1√
3
)

since we end up with square roots in the denominator, which are things we usually want to avoid
if possible.

But there is another way to approach this which avoids having to identity our surface as the
graph of a function of two variables, where instead we think of it as a level surface of a three-variable
function! In particular, the unit sphere is the level surface at g(x, y, z) = 1 of

g(x, y, z) = x2 + y2 + z2.
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Then ∇g(x, y, z) = (2x, 2y, 2z) is perpendicular to the level surface at any point, so in particular

∇g(
1√
3
,
1√
3
,
1√
3
) = (

2√
3
,
2√
3
,
2√
3
)

is perpendicular to the unit sphere at ( 1√
3
, 1√

3
, 1√

3
), and so provides a normal vector to tangent

plane we’re looking for. Using this normal vector and the point we’re given, we get

2√
3

󰀕
x− 1√

3

󰀖
+

2√
3

󰀕
y − 1√

3

󰀖
+

2√
3

󰀕
z − 1√

3

󰀖
= 0

as the equation of the desired tangent plane. Note that this is less work than the method described
previously where we think of the top half of the sphere as the graph of the function f(x, y) =󰁳

1− x2 − y2.

Example 3. Consider the surface xyz = 8. We determine the points at which the tangent plane
to this surface is parallel to the plane x+2y+4z = 100. Two planes are parallel when their normal
vectors are parallel, so we’re looking for points at which the normal vector to the tangent plane is
parallel to (1, 2, 4), and for this we need a description of these normal vectors. One way to do this
is to express the given surface as the graph of the function

f(x, y) =
8

xy
,

which we get after solving for z, and then using the old tangent plane equation. This however
will involves taking derivatives of expressions with variables in the denominator, which we want to
avoid.

Instead, we can view the given surface as the level surface at 8 of the three variable function

g(x, y, z) = xyz.

Then the gradient of g at a point is perpendicular to such a level surface, and so gives a normal
vector to the tangent plane. We have

∇g(x, y, z) = (yz, xz, xy),

so in the end we’re looking for points where this normal vector is parallel to (1, 2, 4); that is, points
where

(yz, xz, xy) = λ(1, 2, 4)

for some scalar λ. Comparing components on both sides gives the equations

yz = λ

xz = 2λ

xy = 4λ

which points we’re looking for have to satisfy, in addition to the equation xyz = 8 of the surface
we’re looking at. Note that none of x, y, z can be zero since then they wouldn’t satisfying the
equation of the surface. From the first two equations above we get

xz = 2λ = 2yz, so x = 2y,
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and from the first and third we get

xy = 4λ = 4yz, so x = 4z.

(Note that here we’re using the fact that all of x, y, z are nonzero, which is why we cancel these
terms out of these equations.)

Thus the points we’re looking for must have y = x
2 and z = x

4 , so the equation of the surface
gives

xyz = x
󰀓x
2

󰀔󰀓x
4

󰀔
= 8.

Thus x3 = 64, so x = 4 in which case y = x
2 = 2 and z = x

4 = 1. Hence (4, 2, 1) is the only point
on the surface xyz = 8 at which the tangent plane is parallel to x+ 2y + 4z = 100.

Lecture 22: Taylor Polynomials

Today we spoke about Taylor polynomials of multivariable functions. These are incredibly useful
in approximation problems, but for us the main point is they will lead to a characterization of local
extrema points in optimization problems.

Warm-Up. We find the tangent plane to the surface 6x2+2y2+3z2+4xz = 1 at (1/
√
12, 1/2, 0).

Taking
f(x, y, z) = 6x2 + 2y2 + 3z2 + 4xz,

our surface is the level surface of f at 1. Since gradients are perpendicular to level sets, the gradient
of f at the given point will be perpendicular to our surface at that point, and hence gives a normal
vector for the tangent plane. We have

∇f = (12x+ 4z, 4y, 6z + 4x),

so ∇f(1/
√
12, 1/2, 0) = (

√
12, 2, 4/

√
12).

With this as a normal vector and (1/
√
12, 1/2, 0) as a point on the tangent plane, the tangent

plane to 6x2 + 2y2 + 3z2 + 4xz = 1 at (1/
√
12, 1/2, 0) is

1√
12

󰀕
x− 1√

12

󰀖
+ 2

󰀕
y − 1

2

󰀖
+

4√
12

z = 0.

Taylor polynomials. The Taylor polynomials of a function are polynomials which provide the
best polynomial approximations to that function. The question as to why this is true and in what
sense we mean by “best” are somewhat outside the scope of this course, and will be left to a course
in real analysis. (Math 320 for the win!)

Say that f is a function of two variables. The first-order Taylor polynomial of f at (a, b) is:

f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b),

which is just the polynomial describing the tangent plane at (a, b). The second-order Taylor poly-
nomial of f at (a, b) is:

f(a, b) + fx(a, b)(x− a)+fy(a, b)(y − b)

+
1

2

󰀅
fxx(a, b)(x− a)2 + 2fxy(a, b)(x− a)(y − b) + fyy(a, b)(y − b)2

󰀆
,
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which is the tangent plane together with some additional quadratic terms. Apart from the factor
of 1

2 (the reason why this is there is again left to a later course), the coefficients of the quadratic
terms just come from second-derivatives where the variables used to differentiate with respect to
correspond to the variables used in forming that quadratic piece. The (x − a)(y − b) term has an
extra 2 in front since this actually accounts for two terms:

fxy(a, b)(x− a)(y − b) and fyx(a, b)(y − b)(x− a),

which are of course equal since fxy = fyx.
Later we will see a much more compact way of writing this. A similar expression holds for

functions of three variables, where we just add on more quadratic terms involving z as well with
coefficients given by second-derivatives involving differentiation with respect to z.

Example 1. We find the first and second-order Taylor polynomials of f(x, y) = 3x − 2y + 1 at
(1, 1). We have

fx = 3 and fy = −2,

so the first-order Taylor polynomial is

2 + 3(x− 1)− 2(y − 1).

Since
fxx = 0, fxy = 0, fyy = 0,

The second-order Taylor polynomial is the same as the first-order Taylor polynomial.
This makes sense! Since f is already linear (it’s graph is a plane), it already provides the best

linear approximation and quadratic approximations to itself. In fact, note that the expression for
the first or second-order Taylor polynomials can be written as

2 + 3(x− 1)− 2(y − 1) = 3x− 2y + 1,

which is just f ; in other words, the tangent plane to a plane is that plane itself.

Example 2. Now let’s work out the first and second-order Taylor polynomials of f(x, y) =
e2x cos 3y at (0,π). We have

fx = 2e2x cos 3y and fy = −3e2x sin 3y.

Hence the first-order Taylor polynomial is

−1− 2(x− 0) + 0(y − π) = −1− 2x.

Next we have:

fxx = 4e2x cos 3y, fxy = −6e2x sin 3y = fyx, fyy = −9e2x cos 3y.

So the second-order Taylor polynomial is

−1− 2x+
1

2

󰀅
−4(x− 0)2 + 2(0)(x− 0)(y − π) + 9(y − π)2

󰀆
= −1− 2x− 2x2 +

9

2
(y − π)2.

Example 3. Finally, we find the first and second-order Taylor polynomials of the three variable
function f(x, y, z) = ye3x + ze2y at (0, 0, 2). First:

fx = 3ye3x, fy = e3x + 2ze2y, fz = e2y,
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so the first-order Taylor polynomial is

2 + 0(x− 0) + 5(y − 0) + 1(z − 2) = 2 + 5y + (z − 2).

Next:
fxx = 9ye3x, fyy = 4ze2y, fzz = 0

fxy = 3e3x = fxy, fxz = 0 = fzx, fyz = 2e2y = fzy,

so the second-order Taylor polynomial is

2+5y + (z − 2)

+
1

2

󰁫
0(x− 0)2 + 8(y − 0)2 + 0(z − 2)2 + 2(3)(x− 0)(y − 0)

+ 2(0)(x− 0)(z − 2) + 2(2)(y − 0)(z − 2)
󰁬

= 2 + 5y + (z − 2) + 4y2 + 3xy + 2y(z − 2).

Note again that the coefficients of the quadratic terms come from second derivatives, so for example
the coefficient of (x− a)(z − c) comes from fxz(a, b, c) times an extra 2 since the same term arises
from (z − c)(x− a) with coefficient fzx(a, b, c).

An alternate expression. Here’s a much better way of expressing the second-order Taylor
polynomial of a function f : Rn → R. First, recall that we can express the first-order Taylor
polynomial (i.e. the “linear approximation” of f) at a as

f(a) +Df(a)(x− a)

where Df(a) is the Jacobian evaluated at a and vectors are written as columns so that the matrix
multiplication Df(a)(x− a) makes sense. Then the second-order Taylor polynomial is:

f(a) +Df(a)(x− a) +
1

2
(x− a) ·Hf(a)(x− a)

where Hf(a) is the Hessian of f at a and · denotes dot product.
The point is that

1

2
(x− a) ·Hf(a)(x− a)

is a quadratic form (!!!) which reproduces all the second-order terms in the Taylor polynomial. For
instance, in the two variable f(x, y) case with a = (a, b) and x = (x, y), this Hessian term turns
out to be:

1

2
(x− a) ·Hf(a)(x− a) =

1

2

󰀕
x− a
y − b

󰀖
·
󰀕
fxx(a, b) fxy(a, b)
fyx(a, b) fyy(a, b)

󰀖󰀕
x− a
y − b

󰀖

=
1

2

󰀕
x− a
y − b

󰀖
·
󰀕
fxx(a, b)(x− a) + fxy(a, b)(y − b)
fyx(a, b)(x− a) + fyy(a, b)(y − b)

󰀖

=
1

2

󰀅
fxx(a, b)(x− a)2 + fxy(a, b)(x− a)(y − b) + and so on.

󰀆

Tongue-in-cheek comment: I wonder if all the things we learned about quadratic forms will be
somehow applicable to the quadratic form 1

2(x − a) · Hf(a)(x − a)? The answer is of course, as
we’ll see next time.

Important. For a function f : Rn → R, the second-order Taylor polynomial of f at a is given by

f(a) +Df(a)(x− a) +
1

2
(x− a) ·Hf(a)(x− a).

This provides the best quadratic approximation to f near a.
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Lecture 23: Local Extrema

Today we spoke about finding and classifying local extrema of multivariable functions, where we
see that the Hessian plays a big role in describing such points.

Warm-Up. We want to approximate the value of cos(π/4 − 0.1) sin(π/3 + 0.1). Of course, you
can just plug this into a calculator and see that the value is

0.7057427798...

or at least that’s how many decimal places my computer gave for this value. But, we can come
up with what this value should approximately be by hand using Taylor polynomials. The point is
that Taylor polynomials are what calculators and computers use to come up with such values in
the first place: your calculator has no idea what “sin” or “cos” mean, all it knows are the Taylor
polynomials approximating them which are stored into its memory.

We find the second-order Taylor polynomial of f(x, y) = cosx sin y at (π/4,π/3). We have

fx = − sinx sin y, fy = cosx cos y

and then
fxx = − cosx sin y, fxy = − sinx cos y = fyx, fyy = − cosx sin y.

Thus the Jacobian and Hessian at a = (π/4,π/3) respectively are:

Df(a) =
󰀓
−

√
6
4

√
2
4

󰀔
and Hf(a) =

󰀣
−

√
6
4 −

√
2
4

−
√
2
4 −

√
6
4

󰀤
.

Hence the second-order Taylor polynomial (in the more compact notation) is:

f(a) +Df(a)(x− a)+
1

2
(x− a) ·Hf(a)(x− a)

=

√
6

4
+
󰀓
−

√
6
4

√
2
4

󰀔󰀕
x− π

4
y − π

3

󰀖
+

1

2

󰀕
x− π

4
y − π

3

󰀖
·
󰀣
−

√
6
4 −

√
2
4

−
√
2
4 −

√
6
4

󰀤󰀕
x− π

4
y − π

3

󰀖
.

This should be a good approximation to f near (π/4,π/3), so plugging in x = π/4−0.1 and y =
π/3+0.1 should give the approximate value of f(π/4−0.1,π/3+0.1) = cos(π/4−0.1) sin(π/3+0.1).
We thus have:

f(π/4− 0.1,π/3 + 0.1) ≈
√
6

4
+

󰀓
−

√
6
4

√
2
4

󰀔󰀕
−0.1
0.1

󰀖
+

1

2

󰀕
−0.1
0.1

󰀖
·
󰀣
−

√
6
4 −

√
2
4

−
√
2
4 −

√
6
4

󰀤󰀕
−0.1
0.1

󰀖

=

√
6

4
+

√
6 +

√
2

40
+

1

2

󰀣
−
√
6 +

√
2

400
+

√
2−

√
6

400

󰀤
.

For comparison, this value is 0.7063768279... which is indeed pretty close to the actual value.
The first-order Taylor polynomial (stopping at the Jacobian term) would give 0.7089650184... as
the approximate value, so the second-order Taylor polynomial gives a better approximation. In
general, higher-order Taylor polynomials (involving higher-order derivatives) give better and better
approximations.

Critical points and extrema. The local extrema of a function, as the name suggests, are points
where the function has some sort of “extreme” behavior. In our case, we are interested in points
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where the function has a local maximum, a local minimum, or a saddle point. Saddle points have
no analogs in single-variable calculus, and are points which are local maximums in one direction
but local minimums in another, such as what happens on the surface of a saddle:

Note that in all of these cases, all partial derivatives at such points are zero so the gradient of
the function at such points is the zero vector. Points where ∇f(P ) = 0 are called critical points of
f and are the candidate points as to where a local maximum, local minimum, or saddle point can
occur.

Important. To find extrema points of a function f , first find the critical points where ∇f = 0,
and then determine whether these points give maximums, minimums, or saddle points.

Example 1. We find all local extrema of f(x, y) = 4x+ 6y − 12− x2 − y2. We have

∇f = (4− 2x, 6− 2y),

which is zero only when x = 2 and y = 3. Hence f has one critical point at (2, 3).
Now, to determine what type of critical point this is note that in this case we can rewrite f as

f(x, y) = −(x− 2)2 − (y − 3)2 + 1

after completing the square. The graph of this is a paraboloid opening downward with topmost
point at (2, 3, 1), so (2, 3) gives a maximum of f . However, this only worked because of the specific
form of the function f (namely that it is quadratic with no mixed xy terms) and is not a technique
which will generalize.

Instead, here’s a way to determine the nature of the critical point at (2, 3) which will generalize.
We use what’s called the differential df of f :

df =
∂f

∂x
dx+

∂f

∂y
dy

which we interpret as giving the “infinitesimal” change df in f given some infinitesimal change dx
in x and dy in y. In our case, the differential of f is

df = (4− 2x)dx+ (6− 2y)dy.

Consider points A,B,C,D near the critical point (2, 3) as follows:

99



The change in x at A (as measured from (2, 3)) is positive since A has larger x-coordinate than
(2, 3), so dx > 0, and since A has x-coordinate larger than 2 the coefficient 4−2x of dx is negative.
The change in y at A is negative, so dy < 0 and the coefficient 6− 2y of dy is positive since A has
y-coordinate smaller than 3. Thus the change in f at A is

df = (−)(+) + (+)(−) < 0,

so the value of f at A is smaller than that at (2, 3).
At B, dx < 0 and 4− 2x > 0, and dy < 0 with 6− 2y > 0, so the change in f at B is

df = (+)(−) + (+)(−) < 0,

which again means that f has a smaller value at B than at (2, 3). Continuing on, at C we have

df = (+)(−) + (−)(+) < 0

and at D we have
df = (−)(+) + (−)(+) < 0.

Thus no matter how we move away from (2, 3) the value of f will always decrease, so (2, 3) is indeed
a local minimum of f as claimed.

Example 2. Next we classify the local extrema of g(x, y) = x2 − 2y2 + 2x+ 3. We have

∇g = (2x+ 2,−4y),

which is 0 only at (−1, 0), so this is the only critical point. Consider points A,B,C,D as follows:
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At A we have dy = 0 since A has the same y-coordinate as (−1, 0), so

dg = (2x+ 2)dx− 4y dy = (+)(+) + 0 > 0.

At B we also have dy = 0 but dx < 0 so

dg = (−)(−) + 0 > 0.

Thus the change in g at either A or B as measured from (−1, 0) is positive, so g has larger value
at A and B than it does at (−1, 0). This suggests that (−1, 0) is sitting at a minimum in the
horizontal direction.

At C and D we have dx = 0 since both C and D have the same x-coordinate as does (−1, 0).
Then at C we have

dg = 0− (+)(+) < 0

and at D we have
dg = 0− (−)(−) < 0,

so g has a smaller value at C and D than it does at (−1, 0). Hence (−1, 0) is a maximum in the
vertical direction, so overall (−1, 0) is a saddle point of g.

Hessian criteria. The differential method is nice when it works, but most times it may be difficult
to determine how the function is changing as we move away from a critical point. For instance, it’s
hard to determine what dg is in the previous example for a point to the lower-right of (−1, 0), or
for a point in any diagonal direction away from (−1, 0). Fortunately we have an even better way
of determining the nature of critical points.

Consider the second-order Taylor polynomial of a function f at a point a:

f(a) +Df(a)(x− a) +
1

2
(x− a) ·Hf(a)(x− a),

which we’ve said before gives a good approximation to the behavior of f near a. If a is actually a
critical point of f , the Jacobian term is 0 so the Taylor polynomial becomes

f(a) +
1

2
(x− a) ·Hf(a)(x− a).

Thus near a the function f behaves in essentially the same way as the quadratic form

1

2
(x− a) ·Hf(a)(x− a).

After picking coordinates c1, c2 relative to an orthonormal eigenbasis, this quadratic form becomes

λ1(c1 − a)2 + λ2(c2 − b)2

where λ1,λ2 are the eigenvalues of the Hessian Hf(a). But the graphs of such functions are easy
to describe: we get a paraboloid opening upward when both eigenvalues are positive, a paraboloid
opening downward when both eigenvalues are negative, and a hyperbolic paraboloid (saddle) when
we have one positive and one negative eigenvalue.

But this is supposed to also be what the graph of f essentially looks like near a, so we find
that the critical point a of f is: a local minimum when Hf(a) has all positive eigenvalues (i.e.
is positive-definite), a local maximum when Hf(a) has all negative eigenvalues (i.e. is negative-
definite), and a saddle point when Hf(a) has eigenvalues of opposite signs (i.e. is indefinite). Thus
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the eigenvalues of the Hessian determine the nature of a critical point, as long as zero is not an
eigenvalue! (When zero is an eigenvalue, we have to fall back to the method using differentials or
something else.) All this works the same for functions of more than two variables.

Important. Say that a is a critical point of f . If Hf(a) does not have zero as an eigenvalue (i.e.
if Hf(a) is invertible), then a is a:

• local maximum if Hf(a) is negative definite,

• local minimum if Hf(a) is positive definite,

• saddle point if Hf(a) is indefinite.

More precisely, each positive eigenvalue gives axes (determined by the corresponding orthonormal
eigenvectors) along which f increases and each negative eigenvalue gives axes (determined by the
corresponding orthonormal eigenvectors) along which f decreases.

Back to examples. The function f from Example 1 has Hessian:

Hf =

󰀕
−2 0
0 −2

󰀖
,

which is negative definite at the critical point (2, 3). Hence this also shows that (2, 3) is a local
maximum of f . The function g from Example 2 has Hessian:

Hg =

󰀕
2 0
0 −4

󰀖
,

which is indefinite at the critical point (−1, 0), which is another way of showing that (−1, 0) is a
saddle point of g.

Example 3. Finally, we find and classify all local extrema of the three-variable function f(x, y, z) =
xy + xz + 2yz + 1

x . The gradient is

∇f = (y + z − 1

x2
, x+ 2z, x+ 2y).

Hence the critical points come from solutions of

y + z − 1

x2
= 0, x+ 2z = 0, x+ 2y = 0.

The second and third equations give

y = z = −x

2
,

and then substituting into the first equation gives

−x

2
− x

2
− 1

x2
= 0, so x3 = 1.

Hence there is one critical point with x = 1 and y = z = −1
2 .

The Hessian of f is

Hf =

󰀳

󰁃
2
x3 1 1
1 0 2
1 2 0

󰀴

󰁄 ,
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and evaluated at the critical point this becomes

Hf

󰀕
1,−1

2
,−1

2

󰀖
=

󰀳

󰁃
2 1 1
1 0 2
1 2 0

󰀴

󰁄 .

This has eigenvalues −2,−2, 2, so this is indefinite and hence (1,−1
2 ,−

1
2) is a saddle point of f .

Note that in this case, since we’re working with a function of three variables, using the differential
f to determine this will likely take a long time since we would have to essentially figure out what’s
happening at 8 different points away from the critical point. The point is that the Hessian method
should always be your first attempt, and most times it will work.

If we went ahead and found orthonormal eigenvectors, the claim more precisely is that f in-
creases in the direction of the axis corresponding to the eigenvalue 2 and decreases in the directions
of the two axes corresponding to −2.

Lecture 24: Absolute Extrema

Today we continued talking about extrema of multivariable functions, focusing on finding the
absolute maximums and minimums of a function restricted to some specific region.

Warm-Up. We classify the local extrema of f(x, y) = x2 − y3 − x2y + y. The gradient of f is

∇f = (2x− 2xy,−3y2 − x2 + 1).

The first component is zero when 2x− 2xy = 2x(1− y) = 0, so when x = 0 or y = 1. If x = 0, the
second component of ∇f becomes −3y2 + 1, which is zero when y = ± 1√

3
. Thus we get (0,± 1√

3
)

as critical points. If y = 1, the second component of ∇f becomes −3− x2 + 1, which can never be
zero. Hence y = 1 gives no additional critical points.

The Hessian of f is

Hf =

󰀕
2− 2y −2x
−2x −6y

󰀖
.

At the critical points, we get

Hf

󰀕
0,

1√
3

󰀖
=

󰀣
2− 2√

3
0

0 − 6√
3

󰀤
and Hf

󰀕
0,− 1√

3

󰀖
=

󰀣
2 + 2√

3
0

0 6√
3

󰀤
.

The first Hessian is indefinite, so (0, 1/
√
3) is a saddle point, and the second is positive definite, so

(0,−1/
√
3) is a local minimum.

When the Hessian doesn’t work. Consider f(x, y) = x4+2y4. The only critical point is (0, 0),
and the Hessian at (0, 0) is

Hf(0, 0) =

󰀕
0 0
0 0

󰀖
.

This is not invertible so here the Hessian tells us nothing about what type of critical point (0, 0) is.
In cases like this we have to think of something else. However, it should be clear from the function
itself that f is positive for any non-origin point and 0 at the origin, so (0, 0) is a minimum of f .

Or, in case determining this just be looking at the function is not easy, we can always use
differentials. The differential of f in this case is

df = 4x2 dx+ 8y3 dy,

103



and by consider points close to (0, 0) in any diagonal direction we should also be able to determine
that df > 0 everywhere away from the origin, so (0, 0) is indeed a minimum.

Morse theory (going off on a tangent here). Let me describe one nice application of some
of this stuff, going beyond standard course material, so not something which you’d be expected to
know about. Morse theory is concerned with the following question. Say we have some unknown
surface (or possible higher-dimensional geometric object) X and we have the data of some function
f : X → R. Then, using only information about the critical points of f , is it possible to determine
what X must actually look like? Such questions turn out to arise in many applications, from
computer graphics to biological models involve vision, and provide an interesting application of
multivariable extrema.

Morse theory tells us that using only information about critical points of some function on X
it is indeed possible to determine the basic shape which X must take. For instance, say we have
a function f : X → R which we know has exactly two critical points: one where the Hessian is
negative definite and the other where it is positive definite. Then near the negative definite point
X must look like a downward paraboloid and near the positive definite one it must look like an
upward paraboloid:

Now, we cannot have a piece of the surface between these looking like

since this would require more critical points. Thus, the only possibility is for the surface to look
like
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so in other words X must be an ellipsoid.
As another example, suppose that now we have a function f : X → R which has exactly four

critical points: one where the Hessian is negative definite, one where it is positive definite, and two
where it is indefinite:

It’s a little harder to visualize this, but it turns out the only way this could be possible is if X was
actually a torus (!), which looks like the surface of a donut:

More amazingly, the same kind of thing works in higher dimensions, which is where Morse theory
really shines.

Absolute extrema. Now we move away from the problem of finding the local extrema of a
function f to that of finding its absolute or global extrema, which are the largest and/or smallest
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values a function can have overall. To make matters more interesting, we are interested in finding
such values only over a restricted region D, meaning we ask for the absolute max/min values of f
among points of D.

We start the same way as before by finding points where f possibly has a local max or min (we
don’t care about saddle points here), which means finding the critical points of f . After finding
these critical points we can simply plug them into f to see which gives the largest value and which
gives the smallest. However, this method does not account for the fact that the absolute max/min
of f might actually occur along the boundary of D, since it is possible that a point on the boundary
might give the largest or smallest value overall and yet not be a critical point. For instance, for a
function and region looking like

we see that the maximum of f over D occurs on the boundary of D and not at the local maximum
in the interior of D; in this case the partial derivatives of f at the boundary point are not zero, so
the boundary point is not a critical point of f .

So, after finding critical points of f we still have to check for any possible maximums/minimums
on the boundary. Usually this means that we use the equation(s) of the boundary to come up with
a simplified version of f along the boundary, and optimize that simplified function instead. The
following examples show how this all works.

Example 1. We find the absolute extrema of f(x, y) = x2 + xy + y2 − 6y over the rectangle
described by −3 ≤ x ≤ 3 and 0 ≤ y ≤ 5, which looks like:

(Note: I botched this example in class, and even when I tried to correct it later I still
made a mistake. This version is (finally) correct!) First we find critical points. We have

∇f = (2x+ y, x+ 2y − 6),
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so critical points satisfy
2x+ y = 0 and x+ 2y − 6 = 0.

The first equation gives y = −2x and substituting into the second gives

x+ 2(−2x)− 6 = 0, so − 3x− 6 = 0.

Thus x = −2 and as a result y = −2x = 4, so (−2, 4) is the only critical point. Note that at this
point we can use the Hessian of f to determine that (−2, 4) is a local minimum, but this is not
necessary since at the end we’ll just test all points we find anyway to determine which give the
absolute max and min.

Now we check the boundary of the rectangle, which consists of four different line segments. The
bottom has equation y = 0, so the function f along the bottom edge becomes

f(x, 0) = x2.

This is now just a function of one variable, which we optimize using techniques from single variable
calculus. In this case the only (single-variable) critical point is at x = 0, giving (0, 0) as a candidate
point for the absolute max and min overall. The right edge has equation x = 3, so the function
becomes

f(3, y) = 9 + 3y + y2 − 6y = y2 − 3y + 9.

Then fy = 2y−3 along the right edge, so (3, 32) is a candidate max/min point along the right edge.
The top edge is y = 5 so f becomes

f(x, 5) = x2 + 5x− 5.

Then fx = 2x+ 5 along the top, so (−5
2 , 5) is another candidate max/min. Finally, the left edge is

x = −3, so f becomes
f(−3, y) = y2 − 9y + 9,

which gives (−3, 92) as another candidate.
To recap, so far we have

(−2, 4), (0, 0), (3,
3

2
), (−5

2
, 5), (−3,

9

2
)

as possible points where the absolute maximum and minimum occur. But these aren’t the only
possible points since checking each boundary edge does not take into account what happens at the
corners of the rectangle! For instance, along the right edge we had

f(3, y) = y2 − 3y + 9,

which has its maximum value along the right edge at the corner (3, 5), and yet this point is not
a critical point of the function f restricted to the right edge. In other words, for the same reason
why finding critical points of f(x, y) does not necessarily give candidate max/min point along the
boundary, finding critical points of f restricted to each boundary piece does not necessarily the
candidate max/min points which occur at the corners of each boundary piece. So, we have to
include the four corners

(3, 0), (3, 5), (−3, 5), (−3, 0)

among the candidate points for an absolute max/min.
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In total then we have nine points to test: the one critical point, the four points we found along
the boundary pieces, and the four corner points. Plugging all of these into the function gives:

f(−2, 4) = −12 f(0, 0) = 0 f(3, 3/2) = 6.75

f(−5/2, 5) = −11.25 f(−3, 9/2) = −11.25 f(3, 0) = 9

f(3, 5) = 19 f(−3, 5) = −11 f(−3, 0) = 9,

so the absolute maximum value of f is 19, which is attained at (3, 5), while the absolute minimum
value of f is −12, which is attained at (−2, 4).

Example 2. We find the absolute extrema of the function f(x, y) = x2y over the region described
by 3x2 + 4y2 ≤ 12, which is just the region enclosed by the ellipse 3x2 + 4y2 = 12. First,

∇f = (2xy, x2),

which is 0 only when x = 0. Thus points on the y-axis are the critical points of f . Now, the points
on the boundary satisfy 3x2 + 4y2 = 12, so x2 = 4− 4

3y
2. Hence along the boundary the function

f becomes

f(y) =

󰀕
4− 4

3
y2
󰀖
y = −4

3
y3 + 4y.

This has derivative −4y2 + 4, so only y = ±1 gives critical points. Then x2 = 4− 4
3y

2 = 4− 4
3 , so

x = ±
󰁴

8
3 . Hence the candidate max/min points along the boundary ellipse are

󰀣󰁵
8

3
, 1

󰀤
,

󰀣
−
󰁵

8

3
, 1

󰀤
,

󰀣
−
󰁵

8

3
,−1

󰀤
,

󰀣󰁵
8

3
,−1

󰀤
.

Note that there are no corner points to test in this case.
Plugging in these points together with the critical points on the y-axis, we find that the absolute

maximum value of f is 8
3 , which is attained at (

󰁳
8/3, 1) and (−

󰁳
8/3, 1), and the absolute minimum

value is −8
3 , which is attained at (−

󰁳
8/3,−1) and (

󰁳
8/3, 1).

Important. To find the absolute extrema of a function f restricted to a region D:

• Find any critical points of f which lie in D,

• Find any candidate extrema points along the boundary of D, which usually means to use
the equations describing the boundary to replace f by a function of one-variable along that
boundary, or to use Lagrange multipliers (next lecture!) on the boundary,

• Plug all points you found including any corner points into f to determine which give the
largest value and which give the smallest value.

Lecture 25: Lagrange Multipliers

Today we starting talking about the method of Lagrange multipliers, which gives a nice way of
optimizing a function subject to some constraint. Such optimization problems are ubiquitous in
applications, and indeed the method of Lagrange multipliers shows up all over the place in other
subject areas.
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Warm-Up. We find the absolute extrema of f(x, y) = xy over the region x2 + y2 ≤ 1, which is
the region enclosed by the unit circle. First, ∇f = (y, x) is 0 only when x = y = 0, so (0, 0) is the
only critical point of f .

Now we check for possible maximums and minimums along the boundary circle. There are a few
ways to do this. We can use the equation of the circle to replace y in the function by y = ±

√
1− x2,

and then find the maximums and minimums of the resulting single-variable function. This is not
impossible, but is a lot of work since we have to test the top and bottom halves of the boundary
separately (corresponding to taking the positive or negative square root in the expression for y),
and because we end up having to take derivatives of square roots, which is not so nice. Or, we can
argue that xy is at a maximum precisely when (xy)2 is, so the maximum of f occurs at the same
point as the maximum of g(x, y) = x2y2, and then do something similar for the minimum. This is
better since now substituting y2 = 1−x2 in for y2 in g(x, y) = x2y2 will avoid having to use square
roots, but this approach will still require some work.

Instead, we can check the boundary more easily by converting to polar coordinates, as was
suggested by one of your fellow classmates. The function f in polar coordinates is

f(r, θ) = r2 cos θ sin θ,

so on the boundary r = 1 this becomes

f(1, θ) = cos θ sin θ.

Thus on the boundary we have
fθ = − cos2 θ + sin2 θ,

which is zero when cos θ = ± sin θ. Hence we get candidate max/min points for θ = π
4 ,

3π
4 , 5π4 , 7π4 ,

which give the points

󰀕
1√
2
,
1√
2

󰀖
,

󰀕
− 1√

2
,
1√
2

󰀖
,

󰀕
− 1√

2
,− 1√

2

󰀖
,

󰀕
1√
2
,− 1√

2

󰀖
.

Finally, testing the critical point (0, 0) and the four points above shows that the absolute
maximum of f is 1

2 , which occurs at (1/
√
2, 1/

√
2) and (−1/

√
2,−1/

√
2), and the absolute minimum

value is −1
2 , which occurs at (−1/

√
2, 1/

√
2) and (1/

√
2,−1/

√
2).

Lagrange Multipliers. The goal of the method of Lagrange multipliers is to optimize (meaning
maximize or minimize) a function subject to a constraint, meaning that we want to optimize the
function only among points satisfying the given constraint. For instance, in the two-variable case
we have a function f(x, y) we want to optimize and the constraint is described by an equation of
the form

g(x, y) = k.

In the three-variable case, we have a three-variable function to optimize and the constraint will be
described by a three-function as well, and so on.

Here is the key geometric picture to have in mind, at least in the two-variable case. Say that
the level curves of f look like
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with the maximum of f among points satisfying the constraint occurring at the point P . The
question is: what does the constraint curve have to look like in relation to these level curves? It
should certainly pass through P if we are assuming P satisfies the constraint, but we can say more.
The constraint curve cannot look like

since this would lead to points satisfying the constraint curve which give a larger value for f than
P does, which is not possible if we are saying that P is where the maximum occurs. Thus, the
constraint curve can only look like

with the point being that at a maximum the constraint curve and level curve must be tangent to
each other. A similar reasoning shows that the same is true at a minimum.

Now, ∇f(P ) is perpendicular to the level curve of f containing P and ∇g(P ) is perpendicular
to the constraint curve at P , so since these two curves are tangent to each other, these two gradients
must be parallel to each other. Hence the conclusion is:
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At a point which gives the maximum or minimum value of f subject to the constraint
determined by a function g, ∇f = λ∇g for some scalar λ.

Thus, solving ∇f = λ∇g gives us the candidate points for the maximums/minimums of f subject
to the constraint g = k. All this works for three-variable optimization problems as well.

Important. To optimize a function f(x, y) subject to the constraint g(x, y) = k, first find the
points satisfying

∇f(x, y) = λ∇g(x, y) for some λ,

and then determine whether those points give maximums or minimums. The same applies to
three-variable functions with three-variable constraints.

Back to Warm-Up. Going back to the Warm-Up, after finding the critical points of f(x, y) = xy
inside the disk we were left with checking the boundary x2+y2 = 1. Now we can do this part using
Lagrange multipliers. The constraint is given by

g(x, y) = x2 + y2 = 1,

so the Lagrange multiplier equation ∇f = λ∇g becomes

(y, x) = λ(2x, 2y).

Comparing components on both sides gives y = λ2x and x = λ2y, so together with the constraint
we get the three equations:

y = 2λx

x = 2λy

x2 + y2 = 1

which must be satisfied by any point giving the max/min value of f along the circle x2 + y2 = 1.
To solve these, note that we can assume x and y are nonzero since if one of them is zero we

get the value 0 for f , and there are definitely points on the circle which give positive values for f
and points which give negative values, so 0 will be neither the max nor the min. We can then also
assume λ ∕= 0 since otherwise the first and second equations would give y = x = 0. Then dividing
first equation by the second gives

y

x
=

x

y
, so y2 = x2 and hence y = ±x.

Substituting into the constraint gives

x2 + x2 = 1, so x = ± 1√
2
.

Then finding the corresponding y-values gives the same points
󰀓
± 1√

2
,± 1√

2

󰀔
we found in the Warm-

Up for where the maximum and minimum of f can occur along the boundary.

Example 1. We want to find the largest possible product of three positive numbers x, y, z whose
sum is 100. That is, we want to maximize the function f(x, y, z) = xyz subject to the constraint
that g(x, y, z) = x+ y + z = 100. The Lagrange multiplier equation ∇f = λ∇g is

(yz, xz, xy) = λ(1, 1, 1).
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Equating components gives—together with the constraint–the equations

yz = λ

xz = λ

xy = λ

x+ y + z = 100.

All of our numbers are positive so λ cannot be zero and we can thus divide any equation by
any other. (Even if we had assumed our numbers were only nonnegative, if one were zero then
xyz would be 0, which is not going to be the maximum value we’re looking for.) Dividing the first
equation by the second shows that y = x and dividing the first by the third shows that x = z.
Then the constraint gives

x+ x+ x = 100, so x =
100

3
.

Thus the maximum value of f subject to the given constraint occurs when x = y = z = 100
3 and is

the value

f

󰀕
100

3
,
100

3
,
100

3

󰀖
=

1003

27
.

To be thorough, we should give a reason why the value we found is indeed a maximum value
and not a minimum value. After all, the method of Lagrange multipliers only gives us points where
we have either a max or min, and without having a second candidate point to compare our value
to we can’t say with certainty yet that we’ve actually found the maximum value. However, since
1, 1, and 98 also satisfy the constraint and

f(1, 1, 98) = 98 <
1003

27
,

the value we found cannot be a minimum and so must be the maximum as claimed.

Example 2. Consider an open rectangular box without a lid. We want to determine the dimension
of the box which result in the maximum possible volume among those boxes with surface area 100.
Denoting the dimensions by x, y, z (z is height) we thus want to maximize the volume function
f(x, y, z) = xyz subject to the constraint

g(x, y, z) = xy + 2yz + 2xz = 100,

which comes from figuring out the surface area of the box. (The xy term has no 2 in front since
the box has no lid.) Then ∇f = λ∇g becomes

(yz, xz, xy) = λ(y + 2z, x+ 2z, 2x+ 2y).

Equation components and including the constraint gives the equations

yz = λ(y + 2z)

xz = λ(x+ 2z)

xy = λ(2x+ 2y)

xy + 2yz + 2xz = 100.
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To solve these, note that the left sides of the first three equations are pretty similar and become
equal after multiplying the first equation through by x, the second by y, and the third by z:

xyz = λ(xy + 2xz)

xyz = λ(xy + 2yz)

xyz = λ(2xz + 2yz).

Then subtracting the first two equations gives

0 = 2λz(x− y).

None of the dimensions can be zero since this certainly wouldn’t give a maximum volume (we
wouldn’t even really have a box at all), and λ can’t be zero since this would imply that some of
the dimensions were zero. Thus we must have

x− y = 0, so x = y.

Subtracting the first and third equations from before gives

0 = λx(y − 2z) + 2λz(x− y) = λx(y − 2z)

since we already know that x = y. Again, λ and x are not zero so y − 2z = 0 and hence y = 2z.
Thus so far we know that the dimensions of the box we’re looking for will result in the same length
and width with the height being half the length.

Now we find the exact values of x.y.z. Substituting x = y and z = y
2 into the constraint gives

y2 + y2 + y2 = 100, so y =
10√
3
.

(We ignore the negative square root since y should be a positive width.) Hence we have

x =
10√
3
, y =

10√
3
, z =

5√
3
.

To show that these dimensions indeed give a maximum volume and not a minimum volume, we
argue as follows. Consider shrinking the height and width of the box but at the same time increasing
the length so that the surface area stays fixed at 100. Then the volume, because the height and
width are approaching 0, will approach zero as well. Since we can make the volume arbitrarily
small while keeping the surface area at 100, there is no minimum volume so the dimensions we
found must give a maximum volume.

(If we want to be really explicit, consider an open box with y = z and

x =
100− 2z2

3z
.

Then this box always has surface area 100 and the volume

xyz =

󰀕
100− 2z2

3z

󰀖
z2 =

󰀕
100− 2z2

3

󰀖
z

approaches 0 as z approaches 0. Note that in turn the length x gets larger and larger.)
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Lecture 26: More on Lagrange Multipliers

Last day of class! Today we continued talking about the method of Lagrange multipliers, finishing
the quarter by looking at some more examples. We also spoke about to generalize all this to
multiple constraint scenarios.

Warm-Up. We find the maximum value of f(x, y) = x2+y3−3y+10 over the region x2+(y−1)2 ≤
1, which is the region enclosed by the circle x2 + (y − 1)2 = 1. First:

∇f = (2x, 3y2 − 3)

is 0 only when x = 0 and y = ±1, so (0, 1) and (0,−1) are the only critical points of f . Of these,
only (0, 1) is the region we’re considering, so we forget about the other critical point.

Now, to test for possible maximums along the boundary of our region we use the method of
Lagrange multipliers; that is, we maximize f subject to the constraint g(x, y) = x2 + (y − 1)2 = 1.
The equation ∇f = λ∇g is

(2x, 3y2 − 3) = λ(2x, 2y − 2),

so the maximum point must satisfy the equations

2x = 2λx

3y2 − 3 = λ(2y − 2)

x2 + (y − 1)2 = 1.

The first equation can be written as 2x(λ − 1) = 0, so x = 0 or λ = 1, and we consider these
possibilities separately. When x = 0 then the constraint becomes

(y − 1)2 = 1, so y = 0 or 2.

Thus (0, 0) and (0, 2) are candidate points for the maximum. When λ = 1, the second equation
above becomes

3y2 − 3 = 2y − 2, so 3y2 − 2y − 1 = (3y + 1)(y − 1) = 0,

so y = −1
3 or 1; y = −1

3 gives a point which is not in our region so we ignore it, and when y = 1
the constraint gives x = ±1, so (1, 1) and (−1, 1) are also candidate for the maximum point.

Thus, all together, the maximum value of f over the given region must occur at one of

(0, 1), (0, 0), (0, 2), (1, 1), (−1, 1).

Plugging these all into f gives f(0, 2) = 12 as the maximum value over the given region.

Example 1. Suppose we are constructing an open (i.e. no lid) can in the shape of a cylinder,
where the material for the base costs $5/cm2 and the material for the upright side costs $2/cm2. We
determine the dimensions which minimize the cost of constructing the can if we want the volume
to be 40π cm3.

Letting r, h denote the radius and height, the total cost of making the can is

f(r, h) = 5πr2 + 4πrh,

which is obtained by multiplying the area of the base and side by the corresponding cost per unit
area. Thus we want to minimize f subject to the constraint g(r, g) = πr2h = 40π. Lagrange
multipliers gives the equation

(10πr + 4πh, 4πr) = λ(2πrh,πr2),
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so the dimensions we want must satisfy

10πr + 4πh = 2λπrh

4πr = λπr2

πr2h = 40π.

We can assume r and h are nonzero since otherwise the volume could not 40π, and hence we can
also assume λ ∕= 0 since otherwise the second equation above would give r = 0. The second equation
then gives

r =
4

λ
.

Substituting into the first equation gives

10π

󰀕
4

λ

󰀖
+ 4πh = 2λπ

󰀕
4

λ

󰀖
h,

which simplifies to h = 10
λ . Comparing r = 4

λ and h = 10
λ gives

h =
2

5
r,

and plugging this into the constraint gives

πr2
󰀕
2

5
r

󰀖
= 40π, so r3 = 16.

Hence r = 3
√
16 and h = 2

5
3
√
16 are the dimensions which minimize cost.

To be sure that this gives a minimum and not a maximum, note that we can increase r and
decrease h = 40

r2
accordingly to keep the volume at 40π, and this will lead to larger and larger costs

since increasing the area of the base has a greater effect on cost than decreasing the height. Thus
there can be no maximum cost, so the dimensions we found indeed give minimum cost.

Example 2. Suppose a business sells three products, with product i costing pi dollars per unit to
produce. If xi denotes the amount of product i produced, then the total cost of production is

C(x1, x2, x3) = x1p1 + x2p2 + x3p3.

Say that the “utility” (meaning monetary utility or some other measure of utility) derived from
producing such amounts is given by the utility function

U(x1, x2, x3) = x1x
2
2x

3
3.

We want to determine how to allocate our fixed amount of funds, say D dollars, to producing these
three products in order to maximize utility. Note that xipi is the total cost of producing product
i, so we want to determine how much of D each of x1p1, x2p2, and x3p3 should take up so that U
is maximized subject to the constraint C(x1, x2, x3) = D.

The Lagrange multipliers equation ∇U = λ∇C is

(x22x
3
3, 2x1x2x

3
3, 3x1x

2
2x

2
3) = λ(p1, p2, p3).

Together with the constraint this gives the equations

x22x
3
3 = λp1
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2x1x2x
3
3 = λp2

3x1x
2
2x

2
37 = λp3

x1p1 + x2p2 + x3p3 = D.

Note that multiplying the first equation through by 6x1, the second by 3x2, and the third by 2x3
gives

6x1x
2
2x

3
3 = λ6x1p1

6x1x
2
2x

3
3 = λ3x2p2

6x1x
2
2x

3
37 = λ2x3p3

with all left-hand sides being the same. Thus all right-hand sides are the same, and since we can
assume λ ∕= 0 (since otherwise we’d have some of the amounts xi being zero, in which case utility
would be 0), we have

6x1p1 = 3x2p2 = 2x3p3.

Thus x2p2 = 2x1p1 and x3p3 = 3x1p1, so the constraint becomes

6x1p1 = D, so x1p1 =
D

6
.

Thus x2p2 =
D
3 and x3p3 =

D
2 , meaning that to maximize utility we should devote half of our funds

to product 3, a third to product 2, and a sixth to product to 1. Note that it makes sense that
product 3 should have the most funds dedicated to it since increasing x3 has a greater affect on the
utility function than increasing x1 or x2 do.

What is λ? Now we can give o partial to question: what does λ in the equation ∇f = λ∇g mean?
Remember that this equation came about from wanting ∇f and ∇g to be parallel, so at first glance
it seems that λ is just some random scalar, but it turns out that in many applications λ has a real
interpretation.

In general, λ is called a Lagrange multiplier of the optimization product. In the example above λ
actually describes what’s called marginal utility, and similarly in many other economics or financial
applications the multipliers often related to marginal cost, marginal price, and so on. In general, the
multipliers in a sense describe the “change in f with respect to the constraint variables”, whatever
that means. (Left for future courses.)

Two constraint example. Finally, let us finish with an example of a Lagrange multiplier setup
with two constraints. Say we want to find the point on the line of intersection of the planes
x− 2y + 3z = 8 and 2z − y = 3 which is closest to the point (2, 5,−1). In other words, we want to
maximize the function

f(x, y, z) =
󰁳

(x− 2)2 + (y − 5)2 + (z + 1)2

describing the distance from a point to (2, 5,−1) subject to the constraints that (x, y, z) should
satisfy

x− 2y + 3z = 8 and 2z − y = 3.

As a simplification, note that distance is minimized precisely when the term under the square
root is minimized, so instead we will minimize

f(x, y, z) = (x− 2)2 + (y − 5)2 + (z + 1)2,
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which avoids having to work with square roots. With the constraint functions

g1(x, y, z) = x− 2y + 3z and g2(x, y, z) = 2z − y,

the method of Lagrange multipliers with two constraints says that the extrema occur at points
where

∇f = λ1∇g1 + λ2∇g2,

which is similar to the single-constraint Lagrange multiplier equation only with an additional gra-
dient term added in. In general, more constraints would lead to more gradient terms.

In our case, this equation is

(2x− 4, 2y − 10, 2z + 2) = λ1(1,−2, 3) + λ2(0,−1, 2),

which together with the two constraints gives the equations:

2x− 4 = λ1

2y − 10 = −2λ1 − λ2

2z + 2 = 3λ1 + 2λ2

x− 2y + 3z = 8

−y + 2z = 3

which must be satisfied by the point we’re looking for. One way to solve these is to rewrite them
as a system of five linear equations and then use row operations. Instead, from the first three
equations we have

x =
1

2
(λ1 + 4), y =

1

2
(10− 2λ1 − λ2), z =

1

2
(−2 + 3λ1 + 2λ2),

and plugging these into the constraints results in

14λ1 + 8λ2 = 38

8λ1 + 5λ2 = 20.

Solving these two linear equations gives λ1 = 5 and λ2 = −4, and plugging these back into the
expressions for x, y, z above gives (92 , 2,

5
2) as the point on the line of intersection of the two planes

which is closest to (2, 5,−1). To guarantee that is a “closest” point and not a furthest point, note
that the line of intersection extends nonstop in either of its directions, and moving along on such
nonstop direction gives points further and further away from (2, 5,−1), so the point we found must
give a minimum distance to this point.
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