
Math 291-1: Final Exam Solutions
Northwestern University, Fall 2015

1. Determine, with justification, whether each of the following is true or false.
(a) If A and B are 2×2 matrices in reduced row-echelon form with the same image, then A = B.
(b) There exists a 2× 2 matrix B such that ( 1 1

1 1 )B = ( 1 2
3 4 ).

(c) Any 5-dimensional real vector space has a 3-dimensional subspace.

Solution. (a) This is false. For instance,

A =

(
1 0
0 0

)
and B =

(
1 1
0 0

)
are both in reduced row-echelon form and have image equal to the x-axis, but are not equal.

(b) This is false. The matrix ( 1 2
3 4 ) is invertible, and if the product of two square matrices is

invertible then each matrix must be invertible as well, but ( 1 1
1 1 ) is not invertible.

(c) This is true. If V is 5-dimensional and v1, v2, v3, v4, v5 is a basis of V , then span {v1, v2, v3}
will be a 3-dimensional subspace of V .

2. Let A be an m × n matrix and b ∈ Rm. Show that rank(A) = rank(A | b) if and only if
b ∈ imA, where (A | b) denotes an augmented matrix.

Proof. The equality rank(A) = rank(A | b) is true if and only if the final column of the reduced
row-echelon form of (A | b) does not have a pivot since all pivots in this reduced form would already
be accounted for in the portion corresponding to A. This is true if and only if rref(A | b) does not
contain a row of the form (

0 · · · 0 | 1
)
,

which is true if and only if Ax = b has a solution, which is just another way of saying that
b imA.

3. Show that if A and B are n× n matrices such that AB = I, then A and B are invertible. Hint:
First show that B is invertible using some portion of the Amazingly Awesome Theorem.

Proof 1. Suppose x ∈ Rn satisfies Bx = 0. Then ABx = 0 so x = 0 since AB = I. Thus the only
solution of Bx = 0 is x = 0, so B is invertible. Hence B−1 exists, so AB = I gives

ABB−1 = IB−1 and hence A = B−1.

Since the inverse of an invertible matrix is invertible, A is invertible as well.

Proof 2. We know rank(AB) ≤ rankB (as shown on the practice problems) and rank(AB) ≤ rankA
(as shown on the homework). Thus since AB = I, rank(AB) = n so n ≤ rankB and n rankA. But
each of these ranks is also at most n, so rankB = n and rankA = n, which means that both A and
B are invertible.

4. Let p1(x), p2(x), p3(x) be the polynomials

p1(x) = 1− x2, p2(x) = 2 + x, p3(x) = 8 + 3x− 2x2.

Show that q(x) = a + bx + cx2 is in span {p1(x), p2(x), p3(x)} if and only if a − 2b + c = 0, and
determine the dimension of this span.



Proof. We have that q(x) is in the span of the given polynomials if and only if there exists scalars
c1, c2, c3 such that

c1p1(x) + c2p2(x) + c3p3(x) = a + bx + cx2,

which after plugging in for p1, p2, p3 and regrouping gives

(c1 + 2c2 + 8c3) + (c2 + 3c3)x + (−c1 − 2c3)x
2 = a + bx + cx2.

Thus a, b, c must have the property that the linear system

c1 + 2c2 + 8c3 = a

c2 + 3c3 = b

−c1 − 2c3 = c

has a solution. Row operations give: 1 2 8 | a
0 1 3 | b
−1 0 −2 | c

→
1 2 8 | a

0 1 3 | b
0 0 0 | a + c− 2b

 ,

so the given system has a solution if and only if a + c− 2b = 0 as claimed.
Under the isomorphism P2(R)→ R3 given by

a + bx + cx2 7→

a
b
c

 ,

the span of the given polynomials corresponds to the span of 1
0
−1

 ,

2
1
0

 ,

 8
3
−2

 .

Based on the row operations above, this span of these three vectors is 2-dimensional since the
reduced echelon form will have 2 pivots, so span {p1(x), p2(x), p3(x)} is 2-dimensional as well.

5. Let W be an affine subspace of R2 and let b ∈W . Show that

U = {w − b | w ∈W}

is a linear subspace of R2. You cannot just simply quote the homework problem which says this is
true—you must work it out in this special case.

Proof 1. This proof just repeats the proof of the more general situation given in the homework.
First, since b ∈W we have

b− b = 0 ∈ U,

so U contains the zero vector. If w1 − b,w1 − b ∈ U with w1,w2 ∈W , then

(w1 − b) + (w1 − b) = (w1 + w2 − b)− b ∈ U

since w1 + w2 − b ∈ W given that W is closed under affine combinations; this shows that U is
closed under addition. Finally, if w − b ∈W and a ∈ R, then

a(w − b) = aw − ab = aw + (1− a)b− b ∈ U

since aw+(1−a)b ∈W given that W is closed under affine combinations. Hence U is closed under
scalar multiplication, so it is a subspace of R2.
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Proof 2. In the case of R2 there is another proof we can give which since we know what all affine
subspaces of R2 must look like. If W = {b} consists of a single point, then the only thing in U
is b − b = 0, and U = {0} is a linear subspace of R2. If W = R2, then U is still all of R2 since
subtracting b from points of R2 still results in all possible points of R2. Hence in this case U is
also a linear subspace of R2.

Finally, if W is a line ax + by = c, passing through the origin or not, then b = ( x0
y0 ) on this

satisfies ax0 + by0 = c. Thus if w = ( x
y ) is any other point on this line,

w − b =

(
x− x0
y − y0

)
,

which satisfies a(x − x0) + b(y − y0) = 0. Thus U in this case is the line ax + by = 0, which does
pass through the origin and is thus a linear subspace of R2.

6. Suppose V is a vector space over K and that T : V → V is a linear transformation. If v ∈ V
has the property that T 2(v) 6= 0 but T 3(v) = 0, show that v, T (v), T 2(v) are linearly independent.

Proof. Suppose c1, c2, c3 ∈ K satisfy

c1v + c2T (v) + c3T
2(v) = 0.

Applying T to both sides gives

c1T (v) + c2T
2(v) + c3T

3(v) = T (0),

which becomes
c1T (v) + c2T

2(v) = 0

since T 3(v) = 0 and T (0) = 0. Applying T to this new equation gives

c1T
2(v) = 0.

Since T 2(v) 6= 0, this means that c1 = 0, which then turns the previous equation into

c2T
2(v) = 0.

Again since T 2(v) 6= 0, this means c2 = 0, which turns the original equation into

c3T
2(v) = 0,

which gives c3 = 0. Thus c1v + c2T (v) + c3T
2(v) = 0 implies c1 = c2 = c3 = 0, so v, T (v), T 2(v)

are linearly independent.

Remark. Here is a nice use of this fact. The claim is that if A is a 2 × 2 matrix for which
A3 = 0, then A2 = 0. Indeed, if A2 6= 0, there is a vector v such that A2v 6= 0. Since A3 = 0, so
A3v = 0 and hence the result of this problem shows that v,Av,A2v are linearly independent, which
is nonsense since these are vectors in K2 and you can’t have more linearly independent vectors than
the dimension of your space. A generalization of this problem can be used to show that if A is
n× n and satisfies Ak = 0 for some k, then in fact An = 0.

7. Consider the function T : M2(C)→M2(C) defined by

T (A) = A + A∗ for any A ∈M2(C),

where A∗ denotes the conjugate trancspose of A. This is a linear transformation over R, meaning
a linear transformation when considering M2(C) as a real vector space. Determine the dimension
of the image of T .
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Proof 1. Here is a rank-nullity approach. Set

A =

(
a + ib c + id
e + if g + ih

)
.

Then A ∈ kerT if and only if A∗ = −A (such an A is called skew-Hermitian), which requires(
a− ib e− if
c− id g − ih

)
=

(
−a− ib −c− id
−e− if −g − ih

)
.

Comparing coefficients gives a = 0, g = 0, e = −c, f = d, so a matrix in the kernel is of the form(
ib c + id

−c + id ih

)
= b

(
i 0
0 0

)
+ c

(
0 1
−1 0

)
+ d

(
0 i
i 0

)
+ h

(
0 0
0 i

)
.

The four matrices on the right form a basis for kerT , so dim(kerT ) = 4. Since dimM2(C) = 8 as
a vector space over R, rank-nullity gives dim(imT ) = 4.

Proof 2. We can also determine a basis for the image explicitly. (The image is actually the space
of all 2× 2 Hermitian matrices, which is a consequence of this problem.)

Using the same notation as before, an element of the image looks like

A + A∗ =

(
a + ib c + id
e + if g + ih

)
+

(
a− ib e− if
c− id g − ih

)
=

(
2a (c + e) + i(d− f)

(e + c) + i(f − d) 2g

)
.

Breaking this up gives(
2a (c + e) + i(d− f)

(e + c) + i(f − d) 2g

)
= 2a

(
1 0
0 0

)
+(c+e)

(
0 1
1 0

)
+(d−f)

(
0 i
−i 0

)
+2g

(
0 0
0 1

)
,

so the four matrices on the right give a basis for imT , which is thus 4-dimensional. (Note that
these four matrices also span the space of 2× 2 Hermitian matrices as we saw on a homework, so
the image is the space of Hermitian matrices.)
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