Math 291-1: Final Exam Solutions Northwestern University, Fall 2015

1. Determine, with justification, whether each of the following is true or false.

- (a) If A and B are 2×2 matrices in reduced row-echelon form with the same image, then A = B.
- (b) There exists a 2×2 matrix B such that $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.
- (c) Any 5-dimensional real vector space has a 3-dimensional subspace.

Solution. (a) This is false. For instance,

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

are both in reduced row-echelon form and have image equal to the x-axis, but are not equal.

(b) This is false. The matrix $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ is invertible, and if the product of two square matrices is invertible then each matrix must be invertible as well, but $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ is not invertible.

(c) This is true. If V is 5-dimensional and v_1, v_2, v_3, v_4, v_5 is a basis of V, then span $\{v_1, v_2, v_3\}$ will be a 3-dimensional subspace of V.

2. Let A be an $m \times n$ matrix and $\mathbf{b} \in \mathbb{R}^m$. Show that $\operatorname{rank}(A) = \operatorname{rank}(A \mid \mathbf{b})$ if and only if $\mathbf{b} \in \operatorname{im} A$, where $(A \mid \mathbf{b})$ denotes an augmented matrix.

Proof. The equality $\operatorname{rank}(A) = \operatorname{rank}(A \mid \mathbf{b})$ is true if and only if the final column of the reduced row-echelon form of $(A \mid \mathbf{b})$ does not have a pivot since all pivots in this reduced form would already be accounted for in the portion corresponding to A. This is true if and only if $\operatorname{rref}(A \mid \mathbf{b})$ does not contain a row of the form

$$(0 \cdots 0 \mid 1),$$

which is true if and only if $A\mathbf{x} = \mathbf{b}$ has a solution, which is just another way of saying that $\mathbf{b} \operatorname{im} A$.

3. Show that if A and B are $n \times n$ matrices such that AB = I, then A and B are invertible. Hint: First show that B is invertible using some portion of the Amazingly Awesome Theorem.

Proof 1. Suppose $\mathbf{x} \in \mathbb{R}^n$ satisfies $B\mathbf{x} = \mathbf{0}$. Then $AB\mathbf{x} = \mathbf{0}$ so $\mathbf{x} = \mathbf{0}$ since AB = I. Thus the only solution of $B\mathbf{x} = \mathbf{0}$ is $\mathbf{x} = \mathbf{0}$, so B is invertible. Hence B^{-1} exists, so AB = I gives

$$ABB^{-1} = IB^{-1}$$
 and hence $A = B^{-1}$.

Since the inverse of an invertible matrix is invertible, A is invertible as well.

Proof 2. We know rank $(AB) \leq \operatorname{rank} B$ (as shown on the practice problems) and rank $(AB) \leq \operatorname{rank} A$ (as shown on the homework). Thus since AB = I, rank(AB) = n so $n \leq \operatorname{rank} B$ and $n \operatorname{rank} A$. But each of these ranks is also at most n, so rank B = n and rank A = n, which means that both A and B are invertible.

4. Let $p_1(x), p_2(x), p_3(x)$ be the polynomials

$$p_1(x) = 1 - x^2$$
, $p_2(x) = 2 + x$, $p_3(x) = 8 + 3x - 2x^2$.

Show that $q(x) = a + bx + cx^2$ is in span $\{p_1(x), p_2(x), p_3(x)\}$ if and only if a - 2b + c = 0, and determine the dimension of this span.

Proof. We have that q(x) is in the span of the given polynomials if and only if there exists scalars c_1, c_2, c_3 such that

$$c_1p_1(x) + c_2p_2(x) + c_3p_3(x) = a + bx + cx^2,$$

which after plugging in for p_1, p_2, p_3 and regrouping gives

$$(c_1 + 2c_2 + 8c_3) + (c_2 + 3c_3)x + (-c_1 - 2c_3)x^2 = a + bx + cx^2.$$

Thus a, b, c must have the property that the linear system

$$c_1 + 2c_2 + 8c_3 = a$$
$$c_2 + 3c_3 = b$$
$$-c_1 \qquad -2c_3 = c$$

has a solution. Row operations give:

$$\begin{pmatrix} 1 & 2 & 8 & | & a \\ 0 & 1 & 3 & | & b \\ -1 & 0 & -2 & | & c \end{pmatrix} \to \begin{pmatrix} 1 & 2 & 8 & | & a \\ 0 & 1 & 3 & | & b \\ 0 & 0 & 0 & | & a+c-2b \end{pmatrix},$$

so the given system has a solution if and only if a + c - 2b = 0 as claimed.

Under the isomorphism $P_2(\mathbb{R}) \to \mathbb{R}^3$ given by

$$a + bx + cx^2 \mapsto \begin{pmatrix} a \\ b \\ c \end{pmatrix},$$

the span of the given polynomials corresponds to the span of

$$\begin{pmatrix} 1\\0\\-1 \end{pmatrix}, \begin{pmatrix} 2\\1\\0 \end{pmatrix}, \begin{pmatrix} 8\\3\\-2 \end{pmatrix}$$

Based on the row operations above, this span of these three vectors is 2-dimensional since the reduced echelon form will have 2 pivots, so span $\{p_1(x), p_2(x), p_3(x)\}$ is 2-dimensional as well. \Box

5. Let W be an affine subspace of \mathbb{R}^2 and let $\mathbf{b} \in W$. Show that

$$U = \{\mathbf{w} - \mathbf{b} \mid \mathbf{w} \in W\}$$

is a linear subspace of \mathbb{R}^2 . You cannot just simply quote the homework problem which says this is true—you must work it out in this special case.

Proof 1. This proof just repeats the proof of the more general situation given in the homework. First, since $\mathbf{b} \in W$ we have

$$\mathbf{b} - \mathbf{b} = \mathbf{0} \in U,$$

so U contains the zero vector. If $\mathbf{w}_1 - \mathbf{b}, \mathbf{w}_1 - \mathbf{b} \in U$ with $\mathbf{w}_1, \mathbf{w}_2 \in W$, then

$$(\mathbf{w}_1 - \mathbf{b}) + (\mathbf{w}_1 - b) = (\mathbf{w}_1 + \mathbf{w}_2 - \mathbf{b}) - \mathbf{b} \in U$$

since $\mathbf{w}_1 + \mathbf{w}_2 - \mathbf{b} \in W$ given that W is closed under affine combinations; this shows that U is closed under addition. Finally, if $\mathbf{w} - \mathbf{b} \in W$ and $a \in \mathbb{R}$, then

$$a(\mathbf{w} - \mathbf{b}) = a\mathbf{w} - a\mathbf{b} = a\mathbf{w} + (1 - a)\mathbf{b} - \mathbf{b} \in U$$

since $a\mathbf{w} + (1-a)\mathbf{b} \in W$ given that W is closed under affine combinations. Hence U is closed under scalar multiplication, so it is a subspace of \mathbb{R}^2 .

Proof 2. In the case of \mathbb{R}^2 there is another proof we can give which since we know what all affine subspaces of \mathbb{R}^2 must look like. If $W = \{\mathbf{b}\}$ consists of a single point, then the only thing in U is $\mathbf{b} - \mathbf{b} = \mathbf{0}$, and $U = \{\mathbf{0}\}$ is a linear subspace of \mathbb{R}^2 . If $W = \mathbb{R}^2$, then U is still all of \mathbb{R}^2 since subtracting \mathbf{b} from points of \mathbb{R}^2 still results in all possible points of \mathbb{R}^2 . Hence in this case U is also a linear subspace of \mathbb{R}^2 .

Finally, if W is a line ax + by = c, passing through the origin or not, then $\mathbf{b} = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$ on this satisfies $ax_0 + by_0 = c$. Thus if $\mathbf{w} = \begin{pmatrix} x \\ y \end{pmatrix}$ is any other point on this line,

$$\mathbf{w} - \mathbf{b} = \begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix},$$

which satisfies $a(x - x_0) + b(y - y_0) = 0$. Thus U in this case is the line ax + by = 0, which does pass through the origin and is thus a linear subspace of \mathbb{R}^2 .

6. Suppose V is a vector space over K and that $T: V \to V$ is a linear transformation. If $v \in V$ has the property that $T^2(v) \neq 0$ but $T^3(v) = 0$, show that $v, T(v), T^2(v)$ are linearly independent.

Proof. Suppose $c_1, c_2, c_3 \in \mathbb{K}$ satisfy

$$c_1v + c_2T(v) + c_3T^2(v) = 0.$$

Applying T to both sides gives

$$c_1T(v) + c_2T^2(v) + c_3T^3(v) = T(0),$$

which becomes

$$c_1 T(v) + c_2 T^2(v) = 0$$

since $T^{3}(v) = 0$ and T(0) = 0. Applying T to this new equation gives

$$c_1 T^2(v) = 0$$

Since $T^2(v) \neq 0$, this means that $c_1 = 0$, which then turns the previous equation into

$$c_2 T^2(v) = 0.$$

Again since $T^2(v) \neq 0$, this means $c_2 = 0$, which turns the original equation into

$$c_3 T^2(v) = 0,$$

which gives $c_3 = 0$. Thus $c_1v + c_2T(v) + c_3T^2(v) = 0$ implies $c_1 = c_2 = c_3 = 0$, so $v, T(v), T^2(v)$ are linearly independent.

Remark. Here is a nice use of this fact. The claim is that if A is a 2×2 matrix for which $A^3 = 0$, then $A^2 = 0$. Indeed, if $A^2 \neq 0$, there is a vector v such that $A^2v \neq 0$. Since $A^3 = 0$, so $A^3v = 0$ and hence the result of this problem shows that v, Av, A^2v are linearly independent, which is nonsense since these are vectors in \mathbb{K}^2 and you can't have more linearly independent vectors than the dimension of your space. A generalization of this problem can be used to show that if A is $n \times n$ and satisfies $A^k = 0$ for some k, then in fact $A^n = 0$.

7. Consider the function $T: M_2(\mathbb{C}) \to M_2(\mathbb{C})$ defined by

$$T(A) = A + A^*$$
 for any $A \in M_2(\mathbb{C})$,

where A^* denotes the conjugate transpose of A. This is a linear transformation over \mathbb{R} , meaning a linear transformation when considering $M_2(\mathbb{C})$ as a **real** vector space. Determine the dimension of the image of T. *Proof 1.* Here is a rank-nullity approach. Set

$$A = \begin{pmatrix} a+ib & c+id \\ e+if & g+ih \end{pmatrix}.$$

Then $A \in \ker T$ if and only if $A^* = -A$ (such an A is called *skew-Hermitian*), which requires

$$\begin{pmatrix} a-ib & e-if \\ c-id & g-ih \end{pmatrix} = \begin{pmatrix} -a-ib & -c-id \\ -e-if & -g-ih \end{pmatrix}.$$

Comparing coefficients gives a = 0, g = 0, e = -c, f = d, so a matrix in the kernel is of the form

$$\begin{pmatrix} ib & c+id \\ -c+id & ih \end{pmatrix} = b \begin{pmatrix} i & 0 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} + h \begin{pmatrix} 0 & 0 \\ 0 & i \end{pmatrix}.$$

The four matrices on the right form a basis for ker T, so dim(ker T) = 4. Since dim $M_2(\mathbb{C}) = 8$ as a vector space over \mathbb{R} , rank-nullity gives dim(im T) = 4.

Proof 2. We can also determine a basis for the image explicitly. (The image is actually the space of all 2×2 Hermitian matrices, which is a consequence of this problem.)

Using the same notation as before, an element of the image looks like

$$A + A^* = \begin{pmatrix} a+ib & c+id \\ e+if & g+ih \end{pmatrix} + \begin{pmatrix} a-ib & e-if \\ c-id & g-ih \end{pmatrix} = \begin{pmatrix} 2a & (c+e)+i(d-f) \\ (e+c)+i(f-d) & 2g \end{pmatrix}.$$

Breaking this up gives

$$\begin{pmatrix} 2a & (c+e)+i(d-f) \\ (e+c)+i(f-d) & 2g \end{pmatrix} = 2a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + (c+e) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + (d-f) \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix} + 2g \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} + 2g \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + 2g \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} + 2g \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + 2g \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + 2g \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + 2g \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + 2g \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + 2g \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + 2g \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + 2g \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + 2g \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + 2g \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + 2g \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + 2g \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + 2g \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + 2g \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + 2g \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + 2g \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + 2g \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + 2g \begin{pmatrix} 0 & 0 \\ 0$$

so the four matrices on the right give a basis for $\operatorname{im} T$, which is thus 4-dimensional. (Note that these four matrices also span the space of 2×2 Hermitian matrices as we saw on a homework, so the image is the space of Hermitian matrices.)