## Math 291-1: Final Exam Solutions Northwestern University, Fall 2017

1. Determine whether each of the following statements is true or false, and provide justification for your answer.
(a) There is a $3 \times 4$ matrix whose columns are linearly independent.
(b) The complex vector space $M_{3}(\mathbb{C})$ has a 6 -dimensional real subspace.
(c) The function $T: P_{3}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R})$ defined by $T(p(x))=\left(p^{\prime}(x)\right)^{2}$ is a linear transformation.

Solution. (a) This is false. The four columns of a $3 \times 4$ matrix are vectors in $\mathbb{R}^{3}$, and any four vectors in a 3-dimensional space must be linearly dependent.
(b) This is true. The set of matrices of the form

$$
\left[\begin{array}{lll}
a & b & c \\
d & f & g \\
0 & 0 & 0
\end{array}\right] \text { where } a, b, c, d, f, g \in \mathbb{R}
$$

is a 6 -dimensional real subspace of $M_{3}(\mathbb{C})$.
(c) This is false. Since $T(2 x)=(2)^{2}=4$ and $2 T(x)=2(1)^{2}=2$, we have $T(2 x) \neq 2 T(x)$ so $T$ does not preserve scalar multiplication.
2. Consider the linear system with augmented matrix

$$
\left[\begin{array}{cccc:c}
1 & -1 & 1 & -1 & 0 \\
2 & -2 & 3 & -5 & -1 \\
-3 & 3 & -6 & 12 & 3
\end{array}\right]
$$

Find two vectors $\mathbf{v}_{1}, \mathbf{v}_{2} \in \mathbb{R}^{4}$ with the property that any solution of the system above can be written as

$$
\left[\begin{array}{c}
-3 \\
-2 \\
2 \\
1
\end{array}\right]+c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}
$$

for some $c_{1}, c_{2} \in \mathbb{R}$. Justify the reason why the vectors you find work.
Proof. Row-reducing the augmented matrix for the corresponding homogeneous system results in the following:

$$
\left[\begin{array}{cccc|c}
1 & -1 & 1 & -1 & 0 \\
2 & -2 & 3 & -5 & 0 \\
-3 & 3 & -6 & 12 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc|c}
1 & -1 & 1 & -1 & 0 \\
0 & 0 & 1 & -3 & 0 \\
0 & 0 & -3 & 9 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc|c}
1 & -1 & 0 & 2 & 0 \\
0 & 0 & 1 & -3 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Thus the homogeneous system has solutions given by

$$
\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
x_{2}-2 x_{4} \\
x_{2} \\
3 x_{4} \\
x_{4}
\end{array}\right]=x_{2}\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-2 \\
0 \\
3 \\
1
\end{array}\right]
$$

so $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{c}-2 \\ 0 \\ 3 \\ 1\end{array}\right]$ span the space of solutions of the homogeneous system. Now, we have:

$$
\left[\begin{array}{cccc}
1 & -1 & 1 & -1 \\
2 & -2 & 3 & -5 \\
-3 & 3 & -6 & 12
\end{array}\right]\left[\begin{array}{c}
-3 \\
-2 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
-3+2+2-1 \\
-6+4+6-5 \\
9-6-12+12
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1 \\
3
\end{array}\right]
$$

so $\left[\begin{array}{c}-3 \\ -2 \\ 2 \\ 1\end{array}\right]$ is a particular solution of the given system. Since any solution can be obtained from this one by adding to it a solution of the homogeneous system, we conclude all solutions of the given system are of the form

$$
\mathbf{x}=\left[\begin{array}{c}
-3 \\
-2 \\
2 \\
1
\end{array}\right]+c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}
$$

for some $c_{1}, c_{2} \in \mathbb{R}$ where $\mathbf{v}_{1}, \mathbf{v}_{2}$ are the vectors above.
3. Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4} \in \mathbb{R}^{4}$ form a basis of $\mathbb{R}^{4}$ and that $A$ is a $4 \times 4$ matrix with the property that

$$
A \mathbf{v}_{1}=\mathbf{v}_{1}, A \mathbf{v}_{2}=\mathbf{v}_{1}, A \mathbf{v}_{3}=\mathbf{v}_{2}, A \mathbf{v}_{4}=\mathbf{v}_{3} .
$$

Show that the image of $A^{4}$ is the entire span of $\mathbf{v}_{1}$.
Proof. Let $\mathbf{x} \in \mathbb{R}^{n}$, and write it as a linear combination of the given basis vectors:

$$
\mathbf{x}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}+c_{4} \mathbf{v}_{4}
$$

for some $c_{1}, c_{2}, c_{3}, c_{4} \in \mathbb{R}$. Then we compute:

$$
\begin{aligned}
A \mathbf{x} & =c_{1} A \mathbf{v}_{1}+c_{2} A \mathbf{v}_{2}+c_{3} A \mathbf{v}_{3}+c_{4} A \mathbf{v}_{4}
\end{aligned}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{1}+c_{3} \mathbf{v}_{2}+c_{4} \mathbf{v}_{3}, ~\left(c_{3}\right)
$$

The vectors $A^{4} \mathbf{x}$ as $\mathbf{x} \in \mathbb{R}^{4}$ varies make up all of the image of $A^{4}$, so this shows that the image of $A^{4}$ is contained in the span of $\mathbf{v}_{1}$. But also for any $c \in \mathbb{R}$, we have $A\left(c \mathbf{v}_{1}\right)=c A \mathbf{v}_{1}=c \mathbf{v}_{1}$, so any vector in the span of $\mathbf{v}_{1}$ is contained in the image of $A^{4}$. Thus we conclude that im $A=\operatorname{span}\left(\mathbf{v}_{1}\right)$.
4. Suppose $A, B \in M_{n}(\mathbb{R})$. If $A B$ is invertible, show that $A$ and $B$ are each invertible.

Proof. Let $\mathbf{x} \in \mathbb{R}^{n}$ satisfy $B \mathbf{x}=\mathbf{0}$. Then $A(B \mathbf{x})=A \mathbf{0}=\mathbf{0}$, so $(A B) \mathbf{x}=\mathbf{0}$. Since $A B$ is invertible, this implies $\mathbf{x}=\mathbf{0}$ by the Amazingly Awesome Theorem, so the only solution of $B \mathbf{x}=\mathbf{0}$ is $\mathbf{x}=\mathbf{0}$, and hence $B$ is invertible as well. Then we can write $A$ as

$$
A=(A B) B^{-1} .
$$

The right side is invertible since it is a product of invertible matrices, so $A$ is invertible too.
5. Suppose $U$ and $W$ are subspaces of a vector space $V$ over $\mathbb{K}$ which have only the zero vector in common. If $u_{1}, \ldots, u_{k} \in U$ are linearly independent and $w_{1}, \ldots, w_{\ell} \in W$ are linearly independent, show that $u_{1}, \ldots, u_{k}, w_{1}, \ldots, w_{\ell}$ are linearly independent. (This is not true if $U$ and $W$ have more than the zero vector in common, so you will definitely have to make use of this fact.)

Proof. Suppose $a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{\ell} \in \mathbb{K}$ satisfy

$$
a_{1} u_{1}+\cdots+a_{k} u_{k}+b_{1} w_{1}+\cdots+b_{\ell} w_{\ell}=0 .
$$

Then

$$
a_{1} u_{1}+\cdots+a_{k} u_{k}=-b_{1} w_{1}-\cdots-b_{\ell} w_{\ell} .
$$

The left side is in $U$ since it is a linear combination of elements of $U$ and $U$ is a subspace of $V$, while the right side is in $W$ for a similar reason. Thus this is an element which $U$ and $W$ have in common, so it must be the zero vector by our assumptions. Thus

$$
a_{1} u_{1}+\cdots+a_{k} u_{k}=0 \quad \text { and }-b_{1} w_{1}-\cdots-b_{\ell} w_{\ell}=0 .
$$

Since $u_{1}, \ldots, u_{k}$ are linearly independent, we must then have $a_{1}=\cdots=a_{k}=0$, and since $w_{1}, \ldots, w_{\ell}$ are linearly independent, we have $b_{1}=\cdots=b_{\ell}=0$. We conclude that $u_{1}, \ldots, u_{k}, w_{1}, \ldots, w_{\ell}$ are indeed linearly independent.
6. The trace $\operatorname{tr} A$ of a square matrix $A$ is the sum of its diagonal entries:

$$
\operatorname{tr}\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right]:=a_{11}+a_{22}+\cdots+a_{n n} .
$$

Find a basis for the subspace $W$ of $M_{4}(\mathbb{R})$ consisting of symmetric matrices of trace zero:

$$
W:=\left\{A \in M_{4}(\mathbb{R}) \mid A^{T}=A \text { and } \operatorname{tr} A=0\right\} .
$$

Don't forget to justify the fact that your claimed basis is actually a basis.
Proof. In order for $A \in M_{4}(\mathbb{R})$ to satisfy $A^{T}=A$ it must have the form

$$
A=\left[\begin{array}{llll}
a & b & c & d \\
b & e & f & g \\
c & f & h & i \\
d & g & i & j
\end{array}\right]
$$

for some $a, b, c, d, e, f, g, h, i, j \in \mathbb{R}$. To satisfy $\operatorname{tr} A=0$ we also require that

$$
a+e+h+j=0 .
$$

Thus an element of $W$ concretely looks like:

$$
\begin{aligned}
A & =\left[\begin{array}{cccc}
-e-h-j & b & c & d \\
b & e & f & g \\
c & f & h & i \\
d & g & i & j
\end{array}\right] \\
& =b\left(E_{12}+E_{21}\right)+c\left(E_{13}+E_{31}\right)+d\left(E_{14}+E_{41}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +f\left(E_{23}+E_{32}\right)+g\left(E_{24}+E_{42}\right)+i\left(E_{34}+E_{43}\right) \\
& +e\left(-E_{11}+E_{22}\right)+h\left(-E_{11}+E_{33}\right)+j\left(-E_{11}+E_{44}\right)
\end{aligned}
$$

where $E_{i j}$ is the matrix with 1 in row $i$, column $j$ and zeroes elsewhere. Thus the 9 matrices

$$
E_{12}+E_{21}, E_{13}+E_{31}, E_{14}+E_{41}, E_{23}+E_{32}, E_{24}+E_{42}, E_{34}+E_{43},-E_{11}+E_{22},-E_{11}+E_{33},-E_{11}+E_{44}
$$

span $W$. These matrices are linearly independent since if a linear combination of them (with coefficients $b, c, d, f, g, i, e, h, j$ as above) results in the zero matrix, we have

$$
\left[\begin{array}{cccc}
-e-h-j & b & c & d \\
b & e & f & g \\
c & f & h & i \\
d & g & i & j
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right],
$$

which forces $b, c, d, f, g, i, e, h, j$ to all be zero. Hence these 9 matrices form a basis of $W$.
7. Let $U$ be the subspace of $P_{4}(\mathbb{R})$ consisting of all polynomials $p(x) \in P_{4}(\mathbb{R})$ satisfying both of the conditions

$$
p^{\prime \prime}(2)=p(1)-p(2) \text { and } p(5)=0 .
$$

Determine, with justification, the dimension of $U$.
Proof. Note first that $p^{\prime \prime}(2)=p(1)-p(2)$ is equivalent to $p^{\prime \prime}(2)-p(1)+p(2)=0$. Define the function $T: P_{4}(\mathbb{R}) \rightarrow \mathbb{R}^{2}$ by

$$
T(p(x))=\left[\begin{array}{c}
p^{\prime \prime}(2)-p(1)+p(2) \\
p(5)
\end{array}\right] .
$$

Then $T$ is linear, as we can verify directly:

$$
\begin{aligned}
T(p(x)+q(x)) & =\left[\begin{array}{c}
(p+q)^{\prime \prime}(2)-(p+q)(1)+(p+q)(2) \\
(p+q)(5)
\end{array}\right] \\
& =\left[\begin{array}{c}
p^{\prime \prime}(2)+q^{\prime \prime}(2)-p(1)-q(1)+p(2)+q(2) \\
p(5)+q(5)
\end{array}\right] \\
& =\left[\begin{array}{c}
p^{\prime \prime}(2)-p(1)+p(2) \\
p(5)
\end{array}\right]+\left[\begin{array}{c}
q^{\prime \prime}(2)-q(1)+q(2) \\
q(5)
\end{array}\right] \\
& =T(p(x))+T(q(x))
\end{aligned}
$$

and

$$
\begin{aligned}
T(c p(x)) & =\left[\begin{array}{c}
(c p)^{\prime \prime}(2)-(c p)(1)+(c p)(2) \\
(c p)(5)
\end{array}\right] \\
& =\left[\begin{array}{c}
c p^{\prime \prime}(2)-c p(1)+c p(2) \\
c p(5)
\end{array}\right] \\
& =c\left[\begin{array}{c}
p^{\prime \prime}(2)-p(1)+p(2) \\
p(5)
\end{array}\right] \\
& =c T(p(x)) .
\end{aligned}
$$

The Rank-Nullity Theorem then gives:

$$
\operatorname{dim} P_{4}(\mathbb{R})=\operatorname{dimim} T+\operatorname{dim} \operatorname{ker} T
$$

Now, $p(x) \in \operatorname{ker} T$ if and only if

$$
\left[\begin{array}{l}
0 \\
0
\end{array}\right]=T(p(x))=\left[\begin{array}{c}
p^{\prime \prime}(2)-p(1)+p(2) \\
p(5)
\end{array}\right],
$$

which is true if and only if $p^{\prime \prime}(2)-p(1)+p(2)=0$ and $p(5)=0$. Thus $p(x) \in \operatorname{ker} T$ if and only if $p(x) \in U$, so $U=\operatorname{ker} T$. Since

$$
T(1)=\left[\begin{array}{c}
0-1+1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \text { and } T(x)=\left[\begin{array}{c}
1-1+2 \\
5
\end{array}\right]=\left[\begin{array}{l}
2 \\
5
\end{array}\right]
$$

are both in $\operatorname{im} T$ and are linearly independent, $\operatorname{im} T$ must be at least 2-dimensional. But im $T$ is a subspace of $\mathbb{R}^{2}$, so in fact it must equal $\mathbb{R}^{2}$. Thus:

$$
\operatorname{dim} P_{4}(\mathbb{R})=\operatorname{dimim} T+\operatorname{dim} \operatorname{ker} T
$$

becomes $5=2+\operatorname{dim} \operatorname{ker} T$, so $\operatorname{dim} \operatorname{ker} T=3$, and hence $\operatorname{dim} U=2$.

$$
\operatorname{dim} u=3 .
$$

