
Math 291-3: Final Exam Solutions
Northwestern University, Spring 2017

1. Determine whether each of the following statements is true or false. If it is true, explain why;
if it is false, give a counterexample.

(a) If f(x, y) is continuous everywhere except on the set of points satisfying x2 + 2y2 ≤ 1, then
f is integrable over the rectangle [−3, 3]× [−3, 3].

(b) If F is C1 on an open set U ⊆ R2 and curlF = 0 on U , then F is conservative on U .
(c) If S1 and S2 are oriented surfaces with the same boundary and which induce the same

orientation on that boundary, then
∫∫
S1

curlF · dS =
∫∫
S2

curlF · dS for any C1 vector field F.

Solution. (a) This is false. The set of points satisfying x2 + 2y2 ≤ 1 is the region enclosed by an
ellipse, so it has positive area and hence is not of measure zero.

(b) This is false. The field F = −y i+x j
x2+y2

on U the xy-plane with the origin removed has curl zero
but is not conservative on U .

(c) This is true. By Stokes’ Theorem, both surface integrals equal
∫
∂S1=∂S2

F · ds.

2. Consider the following iterated integral:∫ 1

0

∫ √1−y2

0

∫ −√x2+y2
−1

y2 dz dx dy.

(a) Rewrite this as an iterated integral in cylindrical coordinates.
(b) Rewrite this as an iterated integral in spherical coordinates.

Solution. The region of integration is the portion of the solid lying below the downward-opening
cone z = −

√
x2 + y2 and above the plane z = −1 which lies below the first quadrant of the

xy-plane. (So, where x and y are both nonnegative.)
(a) In cylindrical coordinates we have∫ π/2

0

∫ 1

0

∫ −r
−1

y2r dz dr dθ,

where we use the fact that the cone z = −
√
x2 + y2 becomes z = −r in cylindrical coordinates.

We could also write this with respect to the order dr dz dθ, in which case we get∫ π/2

0

∫ 0

−1

∫ −z
0

y2r dr dz dθ.

(b) In spherical coordinates the cone is given by φ = 3π/4, so we get∫ π/2

0

∫ π

3π/4

∫ −1/ cosφ
0

ρ2 sin2 φ sin2 θφ2 sinφdρ dφ dθ,

where we use the fact that the plane z = −1 becomes φ cosφ = −1 in spherical coordinates.

3. Suppose A is an invertible n×n matrix. Let D be a compact region in Rn such that the constant
function 1 is integrable over D and let A(D) denote the image of D under the linear transformation
Rn → Rn defined by A. Show that

VolA(D) = | detA|Vol(D).

(This is the geometric interpretation of the determinant as an expansion factor we first introduced
last quarter, but the point is to justify this using material from this quarter.)



Proof. We have

VolA(D) =

∫
A(D)

dx.

By the change of variables formula, this equals∫
D
| detDA| dx.

The linear transformation x 7→ Ax has Jacobian matrix A, so the integral above becomes∫
D
| detA| dx = | detA|

∫
D
dx = |detA|VolD.

Hence VolA(D) = |detA|VolD as claimed.

4. Let C be the curve where the cylinder y2 + z2 = 1 and the plane x = y intersect. Show that
C is smooth everywhere. (Recall that a curve is said to be smooth at the points where its tangent
vector is nonzero.)

Proof. We parametrize the given curve using

x(t) = (cos t, cos t, sin t), 0 ≤ t ≤ 2π,

which come from parametrizing the y, z directions from the cylinder and using the plane equation
to find x. We have

x′(t) = (− sin t,− sin t, cos t).

There are no values of t for which both cos t and − sin t are simultaneously zero, so x′(t) is never
zero and hence C is smooth.

5. Show that a C1 vector field F on Rn has path-independent line integrals if and only if its line
integral over any closed smooth C1 curve is zero. (Recall that F having path-independent line
integrals means that if C1 and C2 are smooth C1 curves which begin at the same point and end at
the same point, then

∫
C1

F · ds =
∫
C2

F · ds. You may not use the fact that both of these properties
are equivalent to F being conservative.)

Proof. This was the Warm-Up for Lecture 23 in the lecture notes, which then reference my Math
290-3 lecture notes for the actual proof. I’ll direct you to find the details there.

6. Compute the line integral∫
C

(x sin ex − xz) dx− 2xy dy + (z2 + y) dz

where C is the curve consisting of the line segment from (2, 0, 0) to (0, 2, 0), followed by the line
segment from (0, 2, 0) to (0, 0, 2), followed by the line segment from (0, 0, 2) to (2, 0, 0). Hint: C
lies on the plane x+ y + z = 2.

Solution. Let D be the region of the plane x+ y + z = 2 enclosed by C, so that C = ∂D. Stokes’
Theorem gives∫

∂D
(x sin ex − xz) dx− 2xy dy + (z2 + y) dz =

∫∫
D
d[(x sin ex − xz) dx− 2xy dy + (z2 + y) dz]
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where we orient D with upward-pointing normal vectors. The exterior derivative on the right side
is

dy ∧ dz − x dz ∧ dx− 2y dx ∧ dy.

Or, phrasing this all in terms of vector fields instead, the curl of the vector field

F = (x sin ex − xz,−2xy, z2 + y)

is
curlF = (1,−x,−2y).

Thus the required surface integral is ∫∫
D

(1,−x,−2y) dS.

We parametrize D using
X(x, y) = (x, y, 2− x− y), (x, y) ∈ D′

where D′ is the triangular region in the xy-plane bounded by the coordinate axes and the line
x+ y = 2. We get:

Xx ×Xy = (1, 0,−1)× (0, 1,−1) = (1, 1, 1),

so ∫∫
D

(1,−x,−2y) dS =

∫ 2

0

∫ 2−x

0
(1,−x,−2y) · (1, 1, 1) dy dx

=

∫ 2

0

∫ 2−x

0
(1− x− 2y) dy dx = −2.

Thus the given line integral has value −2.

7. Compute the surface integral
∫∫
S F · dS where

F = (3x− yecos z) i + (ex
10z8 − 2yz) j + (z2 + yex)k

where S is the portion of the cylinder x2 + y2 = 1 which lies between z = 0 and z = 1, oriented
with inward pointing normal vectors.

Solution. Let S1 be the unit disk in the plane z = 0 and S2 the unit disk in the plane z = 1. We
give S1 the upward orientation and S2 the downward orientation. Then S + S1 + S2 is a closed
surface with inward orientation enclosing a solid E, so Gauss’s Theorem gives∫∫

S+S1+S2

F · dS = −
∫∫∫

E
divF dV = −

∫∫∫
E

(3− 2z + 2z) dV = −3 Vol(E) = −3π.

Now, the integral we want is∫∫
S
F · dS =

∫∫
S+S1+S2

F · dS−
∫∫

S1

F · dS−
∫∫

S2

F · dS.

The integral over S1 is: ∫∫
S1

F · dS =

∫∫
S1

F · k dS =

∫∫
S1

yex dS
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where we use the fact that z = 0 on S1 to say that z2 + yex = yex. This integral is zero, since yex

is odd with respect to y and S1 is symmetric with respect to y.
The integral over S2 is:∫∫

S2

F · dS =

∫∫
S2

F · k dS =

∫∫
S2

(1 + yex) dS

where we use the fact that z = 1 on S2. The yex term integrates to zero for the same reason as
before, and the constant 1 integrates to the area of S2, which is π. Thus∫∫

S
F · dS = −3π − 0− π = −4π.
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