
Math 291-1: Midterm 1 Solutions
Northwestern University, Fall 2015

1. Determine whether each of the following statements is true or false. If it is true, explain why;
if it is false, give a counterexample.

(a) A linear system of 3 equations with 2 variables cannot have infinitely many solutions.
(b) If A,B are 2 × 2 matrices such that the set solutions of Ax = 0 is spanned by ( 1

1 ) and
the set of solutions of Bx = 0 is spanned by ( 2

2 ) and
(−1
−1

)
, then A and B have the same reduced

row-echelon form.

Solution. (a) This is false. For instance, the linear system

x + y = 0

x + y = 0

x + y = 0

has infinitely many solutions. More generally, any system whose augmented matrix has a reduced
echelon form with a single pivot will serve as a counterexample.

(b) This is true. Note that since ( 2
2 ) and

(−1
−1

)
are both multiples of ( 1

1 ) and ( 1
1 ) is a multiple

of either of these, the set of solutions of both Ax = 0 and Bx = 0 are spanned by ( 1
1 ), and hence

these equations have the same solutions, which implies A and B have the same reduced echelon
form.

2. Consider the linear system with augmented matrix 1 −1 1 −1 | 0
2 −2 3 −5 | −1
−3 3 −6 12 | 3

 .

The vector

x0 =


−3
−2
2
1


gives a solution. Find two vectors v1,v2 ∈ R4 with the property that any solution of the system
above can be written as

x0 + c1v1 + c2v2

for some c1, c2 ∈ R. Justify the reason why you’re claimed vectors work.

Solution. Let

A =

 1 −1 1 −1
2 −2 3 −5
−3 3 −6 12


and consider the corresponding homogeneous equation Ax = 0. Row reducing the augmented
matrix of the homogeneous equation gives: 1 −1 1 −1 | 0

2 −2 3 −5 | −1
−3 3 −6 12 | 3

→
1 −1 1 −1 | 0

0 0 1 −3 | 0
0 0 −3 9 | 0

→
1 −1 0 2 | 0

0 0 1 −3 | 0
0 0 0 0 | 0

 .



Thus the solutions of Ax = 0 are given by
x1
x2
x3
x4

 =


x2 − 2x4

x2
3x4
x4

 = x2


1
1
0
0

+ x4


−2
0
3
1

 .

Let

v1 =


1
1
0
0

 and v2 =


−2
0
3
1

 .

The solutions of an inhomogeneous equation Ax = b are obtained by adding to a particular solution
the solutions of Ax = 0 (as we showed in the Warm-Up of Lecture 12), so we conclude that any
solution of the given system is of the form

x = x0 + c1v1 + c2v2

as desired.

3. Suppose that v1, . . . ,vk ∈ Rn are linearly independent but that for some w ∈ Rn, the vectors

v1 + w, . . . ,vk + w

obtained by adding w to each vi are linearly dependent. Show that w ∈ span {v1, . . . ,vk}.

Proof. Since v1 + w, . . . ,vk + w are linearly dependent there exist scalars a1, . . . , ak ∈ R, at least
one of which is nonzero, such that

a1(v1 + w) + · · ·+ ak(vk + w) = 0.

Rearranging this gives
a1v1 + · · ·+ akvk = −(a1 + · · ·+ ak)w.

If a1 + · · · + ak = 0, this equation becomes a1v1 + · · · + akvk = 0, which, since at least one ai is
nonzero, contradicts the linear independence of v1, . . . ,vk. Hence we must have a1 + · · ·+ ak 6= 0,
so we get

w = − a1
a1 + · · ·+ ak

v1 − · · · −
ak

a1 + · · ·+ ak
vk

and thus w ∈ span {v1, . . . ,vk} as claimed.

4. Prove that
a(v1 + · · ·+ vn) = av1 + · · ·+ avn

for any complex scalar a ∈ C and n ≥ 2 complex vectors v1, . . . ,vn ∈ C2. You cannot take it for
granted that multiplication of complex numbers is distributive; you must prove this if you need it.

Proof. First we show that
a(z + w) = az + aw

holds for complete numbers a, z, w ∈ C. Write each of these in terms of their real and imaginary
parts as:

a = c + id, z = p + iq, w = m + in
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where c, d, p, q,m, n ∈ R. Then:

a(z + w) = (c + id)[(p + m) + i(q + n)] = c(p + m)− d(q + n) + i[c(q + n) + d(p + m)]

and

az + aw = (c + id)(p + iq) + (c + id)(m + in) = (cp− dq) + i(cq + dp) + (cm + nd) + i(cn + md).

Comparing these last two expressions we see that they are equal, so

a(z + w) = az + aw

as claimed.
We now proceed by induction. For two vectors

v1 =

(
z1
w1

)
, vw =

(
z2
w2

)
∈ C2,

and a scalar a ∈ C, we have

a(v1 + v2) = a

(
z1 + z2
w1 + w2

)
=

(
a(z1 + z2)
a(w1 + w2)

)
=

(
az1 + az2
aw1 + aw2

)
=

(
az1
aw1

)
+

(
az2
aw2

)
= av1 + av2,

so the claimed equality holds for the base case of n = 2. Suppose it holds for any k vectors and let
v1, . . . , vk+1 be any k + 1 vectors in C2. Then

a(v1 + · · ·+ vk+1) = a([v1 + · · ·+ vk] + vk+1)

= a(v1 + · · ·+ vk) + avk+1

= av1 + · · ·+ avk + avk+1

where in the second line we have used the base case and in the third the induction hypothesis. We
conclude by induction that

a(v! + · · ·+ vn) = av1 + · · ·+ avn

for any n ≥ 2 vectors.

5. Suppose that the vectors v1,v2,v3,v4 ∈ R4 span R4. Let A be the 4 × 4 matrix having
v1,v2,v3,v4 as columns. If x,y ∈ R4 are vectors such that Ax = Ay, show that x = y. Hint: Of
which equation is x− y a solution?

Proof. Since v1,v2,v3,v4 span R4, the row reduced echelon form of A must be the identity matrix,
which in turn implies that the only solution of Az = 0 is z = 0. If Ax = Ay, then A(x − y) = 0
so x− y is a solution of Az = 0. Since the only solution of this is z = 0, we must have x− y = 0
so x = y as claimed.

Phrased in terms of newer language, this says that if the columns of a 4×4 matrix A span R4, A
defines an injective transformation, which is simply a part of the Amazingly Awesome Theorem.
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