
Math 291-3: Midterm 1 Solutions
Northwestern University, Spring 2016

1. Determine whether each of the following statements is true or false. If it is true, explain why;
if it is false, give a counterexample.

(a) Any Riemann sum of the function f(x, y) = x over [−1, 1]× [−1, 1] is positive.
(b) The function

f(x, y) =

{
x2 + y2 ‖(x, y)‖ ≤ 1

2
x2+y2

‖(x, y)‖ > 1

is integrable over the square [−1, 1]× [−1, 1].

Solution. (a) This is false. For one counterexample, take the partition consisting of all of [−1, 1]×
[−1, 1] itself, meaning that we do not divide it into smaller rectangles at all. Take (−1,−1) as a
sample point. Then the Riemann sum of f corresponding to this partition and this sample point is

f(−1,−1) area([−1, 1]× [−1, 1]) = −4,

which is not positive.
(b) This is true. First, the function x2 + y2 is continuous on the compact set ‖(x, y)‖ ≤ 1, so

it is bounded. Also, 2
x2+y2

is continuous on the compact set consisting of the part of the region

‖(x, y)‖ ≥ 1 within the square in question, so it is also bounded. Thus f is bounded over both
regions ‖(x, y)‖ ≤ 1 and ‖(x, y)‖ > 1, so it is bounded over the entire square. Moreover, f fails to
be continuous only on the unit circle ‖(x, y)‖ = 1, so since this has measure zero, we conclude that
f is integrable over the square [−1, 1]× [−1, 1].

2. An n-sided polygon with side lengths x1, . . . , xn has area

A =
√

(s− x1)(s− x2) · · · (s− xn)

where s is half the perimeter. Show that among all n-sided polygons with fixed perimeter P , there
is one with maximal area and determine the lengths of all its sides.

Proof. First we show that there is an n-sided polygon of perimeter P with maximal area. Since
x1 + · · ·+ xn = P and each xi is nonnegative, each xi must be between 0 and P , so the region in
Rn:

E := {(x1, . . . , xn) ∈ Rn | xi ≥ 0 and x1 + · · ·+ xn = P}

consisting of points (x1, . . . , xn) satisfying the constraints xi ≥ 0 and x1 + · · ·+ xn = P lies within
the box [0, P ] × · · · × [0, P ] and hence is bounded. This region is also closed since it is defined by
an equality x1 + · · ·+ xn = P , so it is compact. The function

A(x1, . . . , xn) =
√
s(s− x1) · · · (s− xn)

is continuous on E, and hence by the Extreme Value Theorem it has a maximum and a minimum.
Note that A is maximized when f = A2 is maximized.

Now, by the method of Lagrange multipliers, the values (x1, · · · , xn) which maximize f = A2

among points in E satisfy
∇f(x) = λ∇g(x)



for some λ where g(x) = x1 + · · ·+ xn. This gives

(−s(s− x2) · · · (s− xn), · · · ,−s(s− x1) · · · (s− xn−1)) = λ(1, · · · , 1),

so x1, · · · , xn satisfy

−s(s− x2) · · · (s− xn) = λ

−s(s− x1)(s− x3) · · · (s− xn) = λ

−s(s− x2) · · · (s− xn−1) = λ

x1 + · · ·+ xn = P.

Since P > 0, s = 1
2(x1 + · · ·+ xn) = 1

2P > 0 so the first two equations give the requirement that

(s− x2)(s− x3) · · · (s− xn) = (s− x1)(s− x3) · · · (s− xn).

If xi = s for any i, then A(x) = 0, which is not the maximum we are looking for since, for instance,
taking x1 = · · · = xn = 1

nP gives a positive value for A. Thus we may assume each xi 6= s. Then
the equation above gives

s− x2 = s− x1, so x1 = x2.

A similar argument using the other pairs of equations among the original ones give xi = xj for all
i 6= j. The constraint gives x1 = · · · = xn = 1

nP , which give the maximum area as claimed. (The
minimum values of A are the ones where one of the xi equals s.)

3. Let f : R2 → R be the function defined by f(x, y) = −x2−y3 +3y and let D ⊆ R2 be the region
enclosed by the circle x2 + y2 = 2y. Show that∫∫

D
f(x, y) dA ≤ 2π.

Hint: You can take it for granted without justification that the maximum value of f over D does
not occur on the boundary of D.

Proof. By the hint, the maximum value of f occurs within D and not on its boundary. Since

∇f = (−2x,−3y2 + 3),

the critical points of f are at (0,±1), and only (0, 1) lies within D. You can check that this is
indeed a maximum by checking that the Hessian at (0, 1) is negative definite. Since f(0, 1) = 2,
the maximum value of f in D is 2. Thus∫∫

D
f(x, y) dA ≤

∫∫
D

2 dA = 2 area(D).

The given circle can be written as x2 + (y − 1)2 = 1, so D is a disk of radius 1 and thus has area
π. Hence we get

∫∫
D f(x, y) dA ≤ 2π as claimed.

4. Let f : R3 → R be a continuous function. Rewrite the following as an iterated integral with
respect to the order dy dz dx. ∫ 1

0

∫ 1−y

0

∫ y2

0
f(x, y, z) dz dx dy.
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Solution. The region of integration is bounded by the xy-plane, the yz-plane, the plane x+ y = 1,
and the surface z = y2. The shadow of this in the xz-plane is the portion of the first quadrant
lying below the curve obtained by pushing the intersection of the plane x+ y = 1 with the surface
z = y2 onto the xz-plane. This curve has equation

z = (1− x)2,

which we find by eliminating y from x+ y = 1 and z = y2. Thus in the new order, the bounds on
x are 0 to 1 and the bounds on z are 0 to (1− x)2. Finally, at a fixed (x, z), the values of y within
the region of integration start on the left along z = y2 and move to the right to x+ y = 1, so the
bounds on y are

√
z to 1− x. Thus the given integral in the rewritten order is∫ 1

0

∫ (1−x)2

0

∫ 1−x

√
z

f(x, y, z) dy dz dx.

5. Suppose f : R→ R is a continuous function satisfying∫ 1

0
(1− x)f(x) dx = 5.

Find the value of the double integral ∫ 1

0

∫ x

0
f(x− y) dy dx.

Hint: Let u = x − y and use this as one of the new variables in a suitable change of variables
application.

Solution. Let φ : R2 → R2 be the function

φ(u, v) = (v, v − u),

so x = v and y = v − u. This is C1 and one-to-one and has Jacobian matrix

Dφ =

(
0 1
−1 1

)
everywhere. For the region E in the uv-plane bounded by u = 0, u = v, and v = 1 we have that
φ(E) is described by the bounds on the given double integral:
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Thus the change of variables formula gives:∫ 1

0

∫ x

0
f(x−y) dy dx =

∫∫
φ(E)

f(x−y) d(x, y) =

∫∫
E
f(u)| detDφ(u, v)| d(u, v) =

∫∫
E
f(u) d(u, v)

since detDφ = 1. By Fubini’s Theorem the resulting integral is:∫∫
E
f(u) d(u, v) =

∫ 1

0

∫ 1

u
f(u) dv du =

∫ 1

0
(1− u)f(u) du = 5

by the assumption that
∫ 1
0 (1− x)f(x) dx = 5.
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