Math 291-3: Midterm 1 Solutions
Northwestern University, Spring 2016

1. Determine whether each of the following statements is true or false. If it is true, explain why;
if it is false, give a counterexample.
(a) Any Riemann sum of the function f(z,y) =z over [—1,1] x [—1, 1] is positive.

(b) The function
2 +y? (=) <1
f(x’y):{Q )] > 1
22 Y

is integrable over the square [—1,1] x [—1,1].

Solution. (a) This is false. For one counterexample, take the partition consisting of all of [—1, 1] x
[—1,1] itself, meaning that we do not divide it into smaller rectangles at all. Take (—1,—1) as a
sample point. Then the Riemann sum of f corresponding to this partition and this sample point is

f(=1,—1)area([—1,1] x [-1,1]) = —4,

which is not positive.

(b) This is true. First, the function 22 + y? is continuous on the compact set ||(z,y)|| < 1, so
it is bounded. Also, :CQQTyQ is continuous on the compact set consisting of the part of the region
II(x,y)|| > 1 within the square in question, so it is also bounded. Thus f is bounded over both
regions [|(z,y)| <1 and ||(x,y)| > 1, so it is bounded over the entire square. Moreover, f fails to

be continuous only on the unit circle ||(z,y)|| = 1, so since this has measure zero, we conclude that
f is integrable over the square [—1,1] x [—1,1]. O
2. An n-sided polygon with side lengths z1, ..., z,\has area\ —————— \\rorre ot \covwfe_
A= /(s —21)(s —x2) -~ (5 — @) wergetatian 65 an
AARI‘N

where s is half the perimeter. Show that among all n-sided polygons with fixed perimeter P, there
is one with maximal area and determine the lengths of all its sides.

Proof. First we show that there is an n-sided polygon of perimeter P with maximal area. Since
r1+ -+ x, = P and each z; is nonnegative, each x; must be between 0 and P, so the region in
R"™:

E:={(x1,...,2p) € R" |z; >0and z1 +--- +z, = P}

consisting of points (x1,...,z,) satisfying the constraints x; > 0 and =1 + - - - + x,, = P lies within
the box [0, P] x --- x [0, P] and hence is bounded. This region is also closed since it is defined by
an equality =1 4+ - -- + x, = P, so it is compact. The function

Alxy,... x0) =\/s(s — 1) (s — x)

is continuous on F, and hence by the Extreme Value Theorem it has a maximum and a minimum.
Note that A is maximized when f = A2 is maximized.

Now, by the method of Lagrange multipliers, the values (z1,--- ,z,) which maximize f = A2
among points in E satisfy

Vf(x) = AVy(x)



for some A where g(x) = x1 + - - - + . This gives
(=55 = 2) (s = ).+, =s{s = 21) -+ (s — 20 1)) = AL+, 1),

SO X1, - , Xy satisfy

—s(s—mg) - (s—xy) = A
—s(s—x1)(s—x3) - (s—xp) = A
—s(s—xa) - (s —xp_1) = A
1+ +x, =P

Since P > 0, s = %(3:1 +txy,) = %P > 0 so the first two equations give the requirement that
(s—mo)(s—w3) - (s—mp)=(s—x1)(s—2x3) -+ (5 — Tp)-

If z; = s for any 4, then A(x) = 0, which is not the maximum we are looking for since, for instance,

taking x1 = --- = x, = %P gives a positive value for A. Thus we may assume each z; # s. Then

the equation above gives
S§—x92=8—T1, SO T = T3.

A similar argument using the other pairs of equations among the original ones give z; = x; for all
i # j. The constraint gives x1 = -+ = x,, = %P, which give the maximum area as claimed. (The
minimum values of A are the ones where one of the z; equals s.) O

3. Let f : R? — R be the function defined by f(x,y) = —2? —y>+ 3y and let D C R? be the region
enclosed by the circle 22 4+ y? = 2y. Show that

J[ remaazon

Hint: You can take it for granted without justification that the maximum value of f over D does
not occur on the boundary of D.

Proof. By the hint, the maximum value of f occurs within D and not on its boundary. Since
Vf = (_2:57 _3y2 + 3)7

the critical points of f are at (0,£1), and only (0,1) lies within D. You can check that this is
indeed a maximum by checking that the Hessian at (0,1) is negative definite. Since f(0,1) = 2,
the maximum value of f in D is 2. Thus

//[,f($’y)dA§ //D2dA=2area(D).

The given circle can be written as z2 + (y — 1)2 = 1, so D is a disk of radius 1 and thus has area
7. Hence we get [[, f(z,y) dA < 2w as claimed. O

4. Let f : R?> — R be a continuous function. Rewrite the following as an iterated integral with

respect to the order dy dz dzx.
1 pl-y ry?
/ / / f(z,y, z)dz dx dy.
0o Jo 0



Solution. The region of integration is bounded by the zy-plane, the yz-plane, the plane z +y =1,
and the surface z = 2. The shadow of this in the zz-plane is the portion of the first quadrant
lying below the curve obtained by pushing the intersection of the plane x + y = 1 with the surface
z = y? onto the zz-plane. This curve has equation

z = (1_1.)27

which we find by eliminating y from x +y = 1 and z = 2. Thus in the new order, the bounds on
x are 0 to 1 and the bounds on z are 0 to (1 — z)2. Finally, at a fixed (x, z), the values of y within
the region of integration start on the left along z = y? and move to the right to z +y = 1, so the
bounds on y are y/z to 1 — z. Thus the given integral in the rewritten order is

1 p(1—x)? pl-x
/ / / f(z,y,2)dydzdx.
0o Jo vz

5. Suppose f : R — R is a continuous function satisfying

1
/ (1 2)f(z)dz = 5.
0

Find the value of the double integral

/Ol/oxﬂx—y)dyd:c.

Hint: Let u = x — y and use this as one of the new variables in a suitable change of variables
application.

Solution. Let ¢ : R? — R? be the function

¢(uvv) = (U,U - u)’

so x =v and y = v — u. This is C' and one-to-one and has Jacobian matrix

pe=(50)

everywhere. For the region E in the uv-plane bounded by v = 0,u = v, and v = 1 we have that
¢(E) is described by the bounds on the given double integral:




Thus the change of variables formula gives:

/01 /Oxf(x—y)dydﬂf_/(m) f(x—y)d(x7y)_//Ef(u)]dethﬁ(u,v)]d(u,v)—//Ef(u)d(u7v)

since det D¢ = 1. By Fubini’s Theorem the resulting integral is:

//Ef(u)d(u,v)Z/Ol/ulf(u)dvdu:/01(1_u)f(u)du:5

by the assumption that fol(l —z)f(z)dr =5. O



